JP4992957B2 - 絶縁膜、半導体素子、電子デバイスおよび電子機器 - Google Patents
絶縁膜、半導体素子、電子デバイスおよび電子機器 Download PDFInfo
- Publication number
- JP4992957B2 JP4992957B2 JP2009270768A JP2009270768A JP4992957B2 JP 4992957 B2 JP4992957 B2 JP 4992957B2 JP 2009270768 A JP2009270768 A JP 2009270768A JP 2009270768 A JP2009270768 A JP 2009270768A JP 4992957 B2 JP4992957 B2 JP 4992957B2
- Authority
- JP
- Japan
- Prior art keywords
- insulating film
- gate insulating
- film
- atoms
- semiconductor element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Formation Of Insulating Films (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Description
例えばMOSFET(Metal Oxide Semiconductor Field Effect Transistor)では、ゲート絶縁膜の厚さがさらに薄くなる傾向を示し、これにともなって絶縁膜の絶縁破壊耐性を確保するのが難しくなっている。
絶縁膜の絶縁破壊としては、タイムゼロ絶縁破壊(TZDB)と経時絶縁破壊(TDDB)とがある。
一方、TDDBは電気的ストレスを印加した時点ではなく、ストレス印加後あるいは時間経過してから絶縁膜に絶縁破壊が生じる現象である。
また、TDDBは、ハードブレークダウン(HBD)とソフトブレークダウン(SBD)とに分けられる。
一方、SBDは、初期の絶縁状態よりは、多くリーク電流が流れるが、HBD後よりは、流れない中途半端な状態のことである。
HBDは、比較的高い電気的ストレスで発生する絶縁破壊であり、一旦リーク電流が発生すると、その後、電圧ストレスを与えずに放置しても、絶縁特性が回復したりしない。これに対し、SBDは、低い電気的ストレスで頻発する絶縁破壊であり、リーク電流発生後、電気的ストレスを与えずに放置すると、絶縁特性が回復することがある。
この他、電圧印加後に生じる劣化として、ストレス誘起リーク電流(SILC)と称される低電界リーク電流がある。
なお、SILCやSBDについては、さまざまな研究がなされているにもかかわらず、いまだに不明な点が多く、SBDは、B−mode SILCとも呼ばれ、両者の区別は、明確ではない。
例えば、特許文献1には、SILCの発生を防止すべく、水素原子の濃度を所定の値以下に低減させた絶縁膜が開示されている。この特許文献1では、SILCの発生を防止することに主眼が置かれており、その帰結としてのSBDの発生については検討がなされていない。
なお、絶縁膜中において水素原子は、水素分子の状態や、絶縁膜の構成元素と結合した状態で存在するが、特許文献1では、これらの水素原子の総量を規定しているだけであり、本発明者の検討によれば、単に、絶縁膜中における水素原子の総量を減少させるだけでは、SBDの発生を防止することが困難であることが判っている。
本発明の絶縁膜は、珪素を含む基体の表面に配置される絶縁膜であって、
珪素よりなる第1の元素と、
酸素よりなる第2の元素と、
水素及び重水素の少なくとも一方よりなる第3の元素と、
窒素よりなる第4の元素と、
を含み、
前記絶縁膜の厚みをYとしたとき、前記基体と前記絶縁膜との界面から前記厚みの方向にY/10の距離の前記絶縁膜は、
前記窒素の濃度をAとし、前記第3の元素の濃度をBとしたとき、1.6≦B/A≦8.6であることを特徴とする。
これにより、薄膜化した場合でもSBDやSILCが生じ難く、高い絶縁破壊耐性(SILC、TZDB、TDDBの改善)を得ることができる。
二次イオン質量分析法によれば、高い精度で、任意の厚さにおける原子Xの濃度および水素原子の濃度を測定することができる。
本発明の絶縁膜では、前記第3の元素の原子は、水素原子の少なくとも一部が重水素原子により置換されていることが好ましい。
これにより、絶縁膜の絶縁破壊耐性をより向上させることができる。
本発明によれば、このような範囲の膜厚の絶縁膜において、絶縁破壊耐性が顕著に改善される。
これにより、特性に優れる半導体素子が得られる。
これにより、ゲート絶縁膜の絶縁破壊が防止され、半導体素子の特性がより向上する。
本発明の電子デバイスは、本発明の半導体素子を備えることを特徴とする。
これにより、信頼性の高い電子デバイスが得られる。
本発明の電子機器は、本発明の電子デバイスを備えることを特徴とする。
これにより、信頼性の高い電子機器が得られる。
なお、以下では、本発明の絶縁膜を半導体素子のゲート絶縁膜として適用した場合を一例として説明する。
<半導体素子>
まず、本発明の絶縁膜を適用した半導体素子の構成について説明する。
図1は、本発明の絶縁膜を適用した半導体素子の実施形態を示す縦断面図、図2は、SiO2で構成される絶縁膜の分子構造を示す模式図、図3は、本発明の絶縁膜の分子構造を示す模式図である。なお、以下では、説明の都合上、図1中の上側を「上」、下側を「下」として説明する。
前述したように、この半導体基板2は、素子分離構造24を有し、この素子分離構造24によって区画形成された領域に、チャネル領域21とソース領域22とドレイン領域23とを有している。
そして、チャネル領域21の一方の側部にソース領域22が形成され、チャネル領域21の他方の側部にドレイン領域23が形成された構成となっている。
チャネル領域21は、例えば真正半導体材料で構成されている。
ソース領域22およびドレイン領域23は、例えば、P+等のn型不純物が導入(ドープ)された半導体材料で構成されている。
例えば、ソース領域22およびドレイン領域23は、それぞれ、p型不純物が導入された半導体材料で構成されてもよい。また、チャネル領域21は、例えばp型またはn型不純物が導入された半導体材料で構成されてもよい。
このような半導体基板2は、絶縁膜(ゲート絶縁膜3、層間絶縁膜4)で覆われている。このような絶縁膜のうち、チャネル領域21とゲート電極5との間に介在している部分は、チャネル領域21とゲート電極5との間に生じる電界の経路として機能する。
層間絶縁膜4の構成材料としては、特に限定されないが、例えばSiO2、TEOS(ケイ酸エチル)、ポリシラザン等のシリコン系化合物を用いることができる。なお、層間絶縁膜4は、その他、例えば樹脂材料、セラミックス材料等で構成することもできる。
前述したように、導電部61は、チャネル領域21の上方に形成され、導電部62、63は、それぞれソース領域22、ドレイン領域23の上方に形成されている。
また、ゲート絶縁膜3および層間絶縁膜4において、チャネル領域21、ソース領域22およびドレイン領域23が形成された領域内には、それぞれ、ゲート電極5に連通する孔部(コンタクトホール)、ソース領域21に連通する孔部、ドレイン領域23に連通する孔部が形成されており、これらの孔部内に、それぞれコンタクトプラグ71、72、73が設けられている。
次に、ゲート絶縁膜3の構成について説明する。
本発明において、ゲート絶縁膜3は、シリコン、酸素原子、および、これらの原子以外の少なくとも1種の原子Xを含有する絶縁性無機材料を主材料として構成される。
ところが、このSiO2膜の内部には、このSiO2膜を、後述するような熱酸化法やCVD法(化学的気相成長法)等により形成(成膜)する際に、その雰囲気中に存在する水素分子や、水素原子を含むガス等に由来して不可避的に水素原子が混入する。
そして、この水素原子は、SiO2膜の内部では、H2として存在するとともに、所々でSi−O結合と反応し、SiO2膜の内部に入り込んで、ゲート絶縁膜3の電子構造に影響を与えている。
すなわち、単に、SiO2膜中の水素原子の総量を規定するだけでは、リーク電流が流れるのを抑制できず、このSi−OH構造31の総量が少ないもの程、リーク電流が流れにくい(TZDBの発生が抑制される)ことを見出した。
そして、これらの結果として、HBDが生じやすくなることも判った(TDDBを起こしやすい)。
すなわち、ゲート絶縁膜3を、シリコンおよび酸素原子の他に少なくとも1種の原子Xを含有する絶縁性無機材料で構成することにより、このゲート絶縁膜3中では、水素原子が原子Xとの結合を形成するために消費される。
その結果、ゲート絶縁膜3中に存在するSi−OH構造31が相対的に減少し、さらには、外部電場によるSi−OH構造31の増加が抑制または防止される。これにより、ゲート絶縁膜3の絶縁破壊耐性を向上できると考えた。
さらに、本発明者の検討の過程において、SILCおよびSBDは、ゲート絶縁膜3の中でも、特に、半導体基板(基材)2との界面付近から生じ、ゲート絶縁膜3の全体に進行することも分かってきた。
なお、原子Xと水素元素との前述した関係は、ゲート絶縁膜3の全体で満足するような構成としてもよいが、半導体基板2との界面付近において偏在するような構成とすることにより、ゲート絶縁膜3中における原子Xの絶対量を少なくできる。これにより、ゲート絶縁膜3の原子Xの含有量の変化に伴う、絶縁膜特性の変化を好適に抑えることができる。
かかる観点からは、原子Xと水素元素との前述した関係は、ゲート絶縁膜3の半導体基板2にできるだけ近い領域において満足するのが好ましく、具体的には、ゲート絶縁膜3の平均厚さをY[nm]としたとき、半導体基板2との界面からY/3[nm]以内の領域において満足するのが好ましく、Y/5[nm]以内の領域において満足するのがより好ましく、Y/10[nm]以内の領域において満足するのがさらに好ましい。これにより、前記効果がより顕著に発揮される。
ここで、ゲート絶縁膜3の任意の厚さにおいて、このゲート絶縁膜3(SiOZ膜)が含有する原子Xおよび水素原子の濃度は、例えば、二次イオン質量分析法、X線光電子分光分析法、水素前方散乱法、ラザフォード後方散乱法、昇温脱離ガス分析法のうち1種または2種以上を組み合わせて測定することができる。特に、これらのうち二次イオン質量分析法を用いるのが好ましい。二次イオン質量分析法によれば、高い精度で、任意の厚さにおける前記原子Xの濃度および水素原子の濃度を測定することができる。
以上のようなゲート絶縁膜3の形成方法については、後述する半導体素子1の製造方法において説明する。
また、ゲート絶縁膜3中の水素原子の少なくとも一部は、重水素原子(D)で置換されたものであってもよい。これにより、外部電場に対して影響を受けやすい構造、すなわち、Si−OH構造31をより減少させることができ、その結果、ゲート絶縁膜3の絶縁破壊耐性をより向上させることができる。
また、SILCやSBDの発生は、特に、ゲート絶縁膜3の膜厚を前記範囲のように薄くしたときに頻発する傾向にあり、したがって、このような薄い膜厚のゲート絶縁膜3に、本発明を適用することにより、その効果が顕著に発揮される。
また、ゲート絶縁膜3は、3MV/cm(絶対値)以下の電界強度で測定されるリーク電流値の最大値が、2×10−8A/cm2以下であるものが好ましく、1×10−8A/cm2以下であるものがより好ましく、9×10−9A/cm2以下であるものがさらに好ましい。ゲート絶縁膜3がこのような条件を満足することにより、半導体素子1の使用時におけるゲート絶縁膜3の絶縁破壊がより生じ難くなる。
まず第1に、ゲート絶縁膜3の平均厚さが前述したような範囲のもの、すなわちゲート絶縁膜3の厚さが比較的薄いものである場合、半導体素子1は、通常、ゲート絶縁膜3における電界強度(絶対値)を3MV/cm以下の所定値に設定して使用される頻度が高い。
そして、本発明では、3MV/cm(絶対値)以下の電界強度で測定されるリーク電流値の最大値を前記の値以下に規定することにより、ゲート絶縁膜3の絶縁破壊が生じることを好適に防止することができる。その結果、半導体素子1の使用時におけるゲート絶縁膜3の絶縁破壊がより生じ難くなる。
さらに、ゲート絶縁膜3に定電流を供給し、小規模な電圧変化が初めて生じた時点をSBDとした場合、ゲート絶縁膜3は、SBDが生じるまでに流れる総電荷量が、40C/cm2以上であるものが好ましく、75C/cm2以上であるものがより好ましい。ゲート絶縁膜3がこのような条件を満足することにより、半導体素子1の使用時におけるゲート絶縁膜3の絶縁破壊がより生じ難くなる。
以上、本発明の絶縁膜をゲート絶縁膜3として備える半導体素子1の構成について説明したが、本発明の絶縁膜は、前記構成の半導体素子1における層間絶縁膜4に適用することもできる。
次に、図1に示す半導体素子の製造方法について説明する。
図4〜図6は、それぞれ、図1に示す半導体素子の製造方法を説明するための図(縦断面図)である。なお、以下では、説明の都合上、図4〜図6中の上側を「上」、下側を「下」として説明する。
これにより、半導体基板2の表面に、素子形成領域が区画形成される。
<2> 次に、半導体基板2にイオンドープを行い、ウェルを形成する。
例えば、pウェルを形成する場合には、B+イオン等のp型不純物をドープし、nウェルを形成する場合には、P+イオン等のn型不純物をドープする。
なお、ここでは、半導体基板2が主としてシリコンで構成される場合を代表に説明する。
I:ゲート絶縁膜3を、シリコンおよび酸素原子以外に、原子Xとして窒素および炭素の少なくとも一方を含有する無機絶縁材料で構成する場合
ゲート絶縁膜3は、例えば、シリコン酸化膜を形成した後、シリコン酸化膜中に原子Xを拡散させることにより形成することができる。
まず、シリコン基板(半導体基板2)の表面に、例えば、熱酸化法、CVD法によりシリコン酸化膜を形成する。
A:熱酸化法
熱酸化法では、加熱したシリコン基板に、酸素原子を含むガスを供給する。これにより、シリコンを酸化させて、シリコン基板の表面に、シリコン酸化膜を形成する。
加熱の温度(加熱温度)は、300〜1000℃程度であるのが好ましく、500〜800℃程度であるのがより好ましい。
また、酸素原子を含むガスとしては、例えば、酸素(純酸素)、オゾン、過酸化水素、水蒸気、一酸化窒素、二酸化窒素、酸化二窒素等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
CVD法では、所定圧力のチャンバ内に、シリコン酸化物前駆体と酸素原子を含むガスとを導入し、シリコン基板(半導体基板2)を加熱する。これにより、シリコン基板の表面に、シリコン酸化膜を形成する。
シリコン酸化物前駆体としては、例えば、ジクロロシラン、ヘキサクロロジシラン、テトラキス(ヒドロカルビルアミノ)シラン、トリス(ヒドロカルビルアミノ)シラン等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
加熱の温度(加熱温度)は、300〜1000℃程度であるのが好ましく、500〜800℃程度であるのがより好ましい。
チャンバ内の圧力(真空度)は、0.05Torr〜大気圧(760Torr)程度であるのが好ましく、0.1〜500Torr程度であるのがより好ましい。
また、シリコン酸化物前駆体と酸素原子を含むガスとの混合比は、モル比で10:1〜1:100程度であるのが好ましく、1:2〜1:10程度であるのがより好ましい。
次に、前記工程[I−1]の酸素原子を含むガスに代えて、窒素原子を含むガスおよび炭素原子を含むガスの少なくとも一方(原子Xを含むガス)を供給して、シリコン酸化膜が形成されたシリコン基板に熱処理を施す。これにより、窒素および炭素の少なくとも一方がシリコン酸化(SiO2)膜中に拡散して、目的とするゲート絶縁膜3が得られる。
熱処理の温度(熱処理温度)は、300〜1000℃程度であるのが好ましく、600〜900℃程度であるのがより好ましい。
窒素原子を含むガスとしては、例えば、アンモニア、ヒドラジン、アルキルヒドラジン化合物、アジ化水素、一酸化窒素、二酸化窒素、酸化二窒素等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
また、この[I]の方法では、前記工程[I−1]において、酸素原子を含むガスに代えて、酸素原子を含むガスと、窒素原子を含むガスおよび炭素原子を含むガスの少なくとも一方(原子Xを含むガス)とを供給するようにしてもよい。これにより、前記工程[I−2]を省略することができる。
ゲート絶縁膜3は、例えば、スパッタリング法のようなPVD法(真空蒸着法等の物理蒸着法)やCVD法等を用いて形成することができる。
ここで、前述したように、通常、ゲート絶縁膜3の内部には、その製造工程において、不可避的に水素原子が混入するが、この水素原子の濃度は、製造方法およびその条件に依存するものであり、同一の製造方法およびその条件では、ほぼ一定となる。
また、前記[II]では、例えば、ゲート絶縁膜3の製造方法およびその条件毎に、予め、ゲート絶縁膜3の内部に含まれる水素原子の濃度を実験的に測定しておき、この測定値に基づいて、用いるターゲット(原材料)中の原子Xの濃度等を適宜設定することにより、ゲート絶縁膜3中における原子Xの濃度と水素原子の濃度とが所定の関係を満足するように調整することができる。
さらに、得られたゲート絶縁膜3には、例えば、水蒸気(H2O)を含む雰囲気中で熱処理等を施すようにしてもよい。
この場合、加熱の温度(加熱温度)は、500〜1200℃程度であるのが好ましく、700〜1000℃程度であるのがより好ましい。
また、雰囲気の相対湿度は、50〜100%RH程度が好ましく、75〜100%RH程度であるのがより好ましい。
以上のような方法および条件でゲート絶縁膜3を形成することにより、上述したようなシリコン酸化物以外の原子を効果的にゲート絶縁膜3内に混入することができる。これにより、得られたゲート絶縁膜3は、その厚さ方向の少なくとも一部において、より確実に、前述したような関係を満足するようになり、当該領域において、Si−OH構造31の存在量を極めて少なくすることができる。その結果、Si−OH構造31が存在することによるリーク電流および絶縁破壊の発生をより確実に阻止(防止)することができる。
この導電膜51は、ゲート絶縁膜3上に、例えばCVD法等により、多結晶シリコン等を堆積させて形成することができる。
<5> 次に、導電膜51上に、例えばフォトリソグラフィー法等により、ゲート電極5の形状に対応するレジストマスクを形成する。
そして、このレジストマスクを介して導電膜51の不要部分をエッチングにより除去する。これにより、図5(d)に示すようなゲート電極5が得られる。
このエッチングには、例えば、プラズマエッチング、リアクティブエッチング、ビームエッチング、光アシストエッチング等の物理的エッチング法、ウェットエッチング等の化学的エッチング法等のうちの1種または2種以上を組み合わせて用いることができる。
このとき、p型不純物によりウェルを形成した場合には、P+等のn型不純物をドープすることにより、ソース領域22およびドレイン領域23を形成する。
一方、n型不純物によりウェルを形成した場合には、B+等のp型不純物をドープすることによりソース領域22およびドレイン領域23を形成する。
<8> 次に、層間絶縁膜4上に、例えばフォトリソグラフィー法等により、コンタクトホールに対応する部分が開口したレジストマスクを形成する。
そして、このレジストマスクを介して、層間絶縁膜4の不要部分をエッチングにより除去する。これにより、図6(g)に示すように、チャネル領域21、ソース領域22、ドレイン領域23のそれぞれに対応してコンタクトホール41、42、43が形成される。
<10> 次に、導電膜上に、例えばフォトリソグラフィー法等により導電部の形状に対応するレジストマスクを形成する。
そして、このレジストマスクを介して、導電膜の不要部分をエッチングにより除去する。これにより、図6(h)に示すように、チャネル領域21、ソース領域22、ドレイン領域23のそれぞれに対応して導電部61、62、63およびコンタクトプラグ71、72、73が形成される。
以上のような工程を経て、半導体素子1が製造される。
前述したような半導体素子1は、各種電子デバイスに適用される。
以下では、本発明の電子デバイスを透過型液晶表示装置に適用した場合を代表に説明する。
図7は、本発明の電子デバイスを透過型液晶表示装置に適用した場合の実施形態を示す分解斜視図である。
図7に示す透過型液晶表示装置10(以下、単に「液晶表示装置10」と言う。)は、液晶パネル(表示パネル)20と、バックライト(光源)60とを有している。
液晶パネル20は、互いに対向して配置された第1の基板220と第2の基板230とを有し、これらの第1の基板220と第2の基板230との間には、表示領域を囲むようにしてシール材(図示せず)が設けられている。
なお、図示は省略したが、液晶層240の上面および下面には、それぞれ、例えばポリイミド等で構成される配向膜が設けられている。これらの配向膜により液晶層240を構成する液晶分子の配向性(配向方向)が規制されている。
第1の基板220は、その上面(液晶層240側の面)221に、マトリックス状(行列状)に配置された複数の画素電極223と、X方向に延在する走査線224と、Y方向に延在する信号線228とが設けられている。
また、第1の基板220の下面には、偏光板225が設けられている。
一方、第2の基板230は、その下面(液晶層240側の面)231に、複数の帯状をなす対向電極232が設けられている。これらの対向電極232は、互いに所定間隔をおいてほぼ平行に配置され、かつ、画素電極223に対向するように配列されている。
対向電極232も、前記画素電極223と同様に、透明性(光透過性)を有する透明導電膜(により構成されている。
ブラックマトリックス234は、遮光機能を有し、例えば、クロム、アルミニウム、アルミニウム合金、ニッケル、亜鉛、チタンのような金属、カーボン等を分散した樹脂等で構成されている。
また、第2の基板230の上面には、前記偏光板225とは偏光軸が異なる偏光板235が設けられている。
なお、以上の説明では、本発明の電子デバイスとして、アクティブマトリックス駆動方式の透過型液晶表示装置に適用した場合を代表に説明したが、その他、本発明の電子デバイスは、反射型液晶表示装置や、有機または無機のEL表示装置、電気泳動表示装置に適用することもできる。
前述したような液晶表示装置10(本発明の電子デバイス)は、各種電子機器の表示部に用いることができる。
図8は、本発明の電子機器を適用したモバイル型(またはノート型)のパーソナルコンピュータの構成を示す斜視図である。
このパーソナルコンピュータ1100においては、表示ユニット1106が前述の液晶表示装置(電気光学装置)10を備えている。
この図において、携帯電話機1200は、複数の操作ボタン1202、受話口1204および送話口1206とともに、前述の液晶表示装置(電気光学装置)10を表示部に備えている。
ここで、通常のカメラは、被写体の光像により銀塩写真フィルムを感光するのに対し、ディジタルスチルカメラ1300は、被写体の光像をCCD(Charge Coupled Device)などの撮像素子により光電変換して撮像信号(画像信号)を生成する。
ケースの内部には、回路基板1308が設置されている。この回路基板1308は、撮像信号を格納(記憶)し得るメモリが設置されている。
また、ケース1302の正面側(図示の構成では裏面側)には、光学レンズ(撮像光学系)やCCDなどを含む受光ユニット1304が設けられている。
また、このディジタルスチルカメラ1300においては、ケース1302の側面に、ビデオ信号出力端子1312と、データ通信用の入出力端子1314とが設けられている。そして、図示のように、ビデオ信号出力端子1312にはテレビモニタ1430が、デ−タ通信用の入出力端子1314にはパーソナルコンピュータ1440が、それぞれ必要に応じて接続される。さらに、所定の操作により、回路基板1308のメモリに格納された撮像信号が、テレビモニタ1430や、パーソナルコンピュータ1440に出力される構成になっている。
以上、本発明の絶縁膜、半導体素子、電子デバイス、電子機器を図示の各実施形態に基づいて説明したが、本発明は、これらに限定されるものではなく、各構成は、同様の機能を発揮し得る任意のものと置換することができ、あるいは、任意の構成のものを付加することもできる。
1.絶縁膜の作製および評価
1−1.絶縁膜の作製
以下に示す各実施例および比較例において、それぞれ、5つの絶縁膜を形成した。
(実施例1)
−1A− 面方位(100)のp型シリコン結晶基板(基材)を用意し、熱酸化処理によりシリコン酸化膜を形成した。
熱酸化処理は、相対湿度33%RHの水蒸気(H2O)雰囲気中、750℃×15minで行った。
得られたシリコン酸化膜の平均厚さYは、5.5nmであった。
−2A− 次に、このシリコン酸化膜に対して、アンモニア(NH3)雰囲気中、850℃×10minで加熱処理を行った。
以上のようにして、絶縁膜を得た。
前記工程−2A−において、アンモニア(NH3)雰囲気中の加熱処理の条件を、750℃×10minに代えた以外は、前記実施例1と同様にして、絶縁膜(平均厚さY:5.3nm)を得た。
(実施例3)
前記工程−2A−において、アンモニア(NH3)雰囲気中の加熱処理の条件を、900℃×15minに代えた以外は、前記実施例1と同様にして、絶縁膜(平均厚さY:5.5nm)を得た。
前記工程−2A−において、アンモニア(NH3)雰囲気中の加熱処理の条件を、450℃×5minに代えた以外は、前記実施例1と同様にして、絶縁膜(平均厚さY:5.3nm)を得た。
(実施例5)
前記工程−2A−において、アンモニア(NH3)雰囲気に代えて二酸化炭素(CO2)雰囲気とした以外は、前記実施例1と同様にして、絶縁膜(平均厚さY:5.2nm)を得た。
前記工程−2A−において、アンモニア(NH3)雰囲気に代えて二酸化炭素(CO2)雰囲気とした以外は、前記実施例2と同様にして、絶縁膜(平均厚さY:5.3nm)を得た。
(実施例7)
前記工程−2A−において、アンモニア(NH3)雰囲気に代えて二酸化炭素(CO2)雰囲気とした以外は、前記実施例3と同様にして、絶縁膜(平均厚さY:5.4nm)を得た。
前記工程−2A−において、アンモニア(NH3)雰囲気に代えて二酸化炭素(CO2)雰囲気とした以外は、前記実施例4と同様にして、絶縁膜(平均厚さY:5.2nm)を得た。
(実施例9)
前記工程−1A−において、水蒸気雰囲気に代えて重水蒸気(D2O)雰囲気とした以外は、前記実施例1と同様にして、絶縁膜(平均厚さY:5.5nm)を得た。
−1B− まず、面方位(100)のp型シリコン結晶基板を用意し、この基板上に、スパッタリング法によりアルミニウムを含有するシリコン酸化膜を形成した。
なお、スパッタリング法は、二酸化ケイ素とアルミニウムとを構成材料とするターゲットを用い、放電ガスとしてアルゴンを用い、チャンバ内の圧力を3×10−3Torrとして行った。
得られたシリコン酸化膜の平均厚さYは、5.0nmであった。
−2B− 次に、このシリコン酸化膜に対して、相対湿度95%RHの水蒸気(H2O)雰囲気中、900℃×5分で熱処理を施した。
以上のようにして、絶縁膜を得た。
前記工程−1B−において、二酸化ケイ素とハフニウムとを構成材料とするターゲットを用いた以外は、前期実施例10と同様にして、絶縁膜(平均厚さY:5.3nm)を得た。
(実施例12)
前記工程−1B−において、二酸化ケイ素とジルコニウムとを構成材料とするターゲットを用いた以外は、前期実施例10と同様にして、絶縁膜(平均厚さY:4.8nm)を得た。
前記工程−1B−において、二酸化ケイ素とゲルマニウムとを構成材料とするターゲットを用いた以外は、前期実施例10と同様にして、絶縁膜(平均厚さY:5.1nm)を得た。
(比較例)
前記工程−2A−を省略した以外は、前記実施例1と同様にして、絶縁膜(平均厚さY:5.2nm)を得た。
1−2−1.二次イオン質量分析
各実施例および比較例の絶縁膜について、それぞれ、二次イオン質量分析法により、これら絶縁膜の基材と反対側の面を厚さ0[nm]とし、この面から厚さ方向に向かって、シリコンおよび酸素原子のイオン強度、および、水素(重水素)原子、窒素原子、炭素原子、アルミニウム、ハフニウム、ジルコニウムおよびゲルマニウムの濃度(密度)を分析した。
・二次イオン質量分析装置 :Physical Electronics社製、「ADEPT1010」
・一次イオン種 :Cs+
・一次イオン加速エネルギー:500ev
・二次イオン極性 :Positive
ここに、実施例1および比較例の測定結果を、一例として、図11および図12に示す。
次に、各実施例および比較例の絶縁膜について、それぞれ、電界強度(印加電圧)の値を変化させたときのリーク電流値の変化を測定した。
なお、測定面積は、0.02039cm2とした。
また、一例として、実施例1および比較例の絶縁膜において測定された電界強度の値の変化とリーク電流値の変化との関係を示すグラフを、図13に示す。
また、これら各実施例の中でも、特に、B/A値が小さかったものは、リーク電流値がより小さく抑えられる傾向を示した。
これに対して、比較例の絶縁膜では、低い電界強度において、大きなリーク電流が流れた。
次に、各実施例および比較例の絶縁膜について、それぞれ、Qbd値を測定した。
ここで、Qbd値とは、絶縁膜に電圧を印加したときに、絶縁破壊が生じるまでに流れた総電荷量であり、この値が大きい程、絶縁破壊が生じ難いことを意味する。
このQbd値の測定では、水銀電極を用いて絶縁膜に定電流を供給し、小規模な電圧変化が初めて生じた時点をSBDとし、急激な電圧変化が生じた時点をHBDとした。そして、SBDが生じるまでに流れた総電荷量(Qbd(SBD)値)と、HBDが生じるまでに流れた総電荷量(Qbd(HBD)値)とを測定した。
各実施例および比較例の絶縁膜において、それぞれ測定されたQbd(SBD)値とQbd(HBD)値とを、以下の表3に示す。なお、表3中の数値は、5つの絶縁膜の平均値である。
また、各実施例の絶縁膜のQbd(HBD)値も同様に、比較例の絶縁膜のQbd(HBD)値よりも大きなものであった。
また、各実施例の中でも、特に、B/A値が小さかったものは、Qbd(SBD)値とQbd(HBD)値とがともにより大きくなる傾向を示した。
以上のような各評価結果から、原子Xの総濃度Aと水素原子の濃度Bとの比B/Aが10以下となる領域を有する絶縁膜は、絶縁破壊耐性に優れることが明らかとなった。
また、B/A値が小さくなるにしたがって、絶縁膜は、その絶縁破壊耐性が向上する傾向を示した。
2−1.半導体素子の作製
図1に示す半導体素子を、前記実施形態で説明したような方法にしたがって作製した。なお、ゲート絶縁膜は、前記各実施例および比較例と同様にして形成した。
2−2.半導体素子の評価
各実施例および比較例と同様にして形成したゲート絶縁膜を備える各半導体素子について、そのスイッチング特性を評価する目的にて、それぞれ、しきい電圧を測定した。
さらに、これらの半導体素子のうち、基材との界面により近い領域においてB/A値が小さく抑えられていたものほど、その絶対値がより小さくなる傾向を示した。このことは、原子Xを界面付近に効果的に含有しているものほど、絶縁膜の特性の低下が防止されていることを示唆するものである。
ここで、しきい電圧とは、ゲート電圧とId1/2(Id:ドレイン電流の値)との関係を表す近似式(関係式)の値が0となるときのゲート電圧値であり、ドレイン電流が流れ始めるのに要するゲート電圧にほぼ等しい。
以上のことから、このような絶縁膜は、絶縁破壊(SBD,SILC)の発生を効果的に抑制しつつ、優れた特性を有するものであることがわかる。
Claims (8)
- 珪素を含む基体の表面に配置される絶縁膜であって、
珪素よりなる第1の元素と、
酸素よりなる第2の元素と、
水素及び重水素の少なくとも一方よりなる第3の元素と、
窒素よりなる第4の元素と、
を含み、
前記絶縁膜の厚みをYとしたとき、前記基体と前記絶縁膜との界面から前記厚みの方向にY/10の距離の前記絶縁膜は、
前記窒素の濃度をAとし、前記第3の元素の濃度をBとしたとき、1.6≦B/A≦8.6であることを特徴とする絶縁膜。 - 前記第3の元素の濃度及び前記第4の元素の濃度は、それぞれ、二次イオン質量分析法により測定される請求項1に記載の絶縁膜。
- 前記第3の元素の原子は、水素原子の少なくとも一部が重水素原子により置換されている請求項1または2に記載の絶縁膜。
- 前記絶縁膜の厚みは、10nm以下である請求項1ないし3のいずれかに記載の絶縁膜。
- 請求項1ないし4のいずれかに記載の絶縁膜を備えることを特徴とする半導体素子。
- 請求項1ないし4のいずれかに記載の絶縁膜を、ゲート絶縁膜としたことを特徴とする半導体素子。
- 請求項5または6に記載の半導体素子を備えることを特徴とする電子デバイス。
- 請求項7に記載の電子デバイスを備えることを特徴とする電子機器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009270768A JP4992957B2 (ja) | 2004-02-10 | 2009-11-27 | 絶縁膜、半導体素子、電子デバイスおよび電子機器 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004033960 | 2004-02-10 | ||
JP2004033960 | 2004-02-10 | ||
JP2009270768A JP4992957B2 (ja) | 2004-02-10 | 2009-11-27 | 絶縁膜、半導体素子、電子デバイスおよび電子機器 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004306228A Division JP4511307B2 (ja) | 2004-02-10 | 2004-10-20 | ゲート絶縁膜、半導体素子、電子デバイスおよび電子機器 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010098322A JP2010098322A (ja) | 2010-04-30 |
JP4992957B2 true JP4992957B2 (ja) | 2012-08-08 |
Family
ID=42259739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009270768A Expired - Fee Related JP4992957B2 (ja) | 2004-02-10 | 2009-11-27 | 絶縁膜、半導体素子、電子デバイスおよび電子機器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4992957B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013197187A (ja) | 2012-03-16 | 2013-09-30 | Toshiba Corp | 半導体装置及びその製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54163679A (en) * | 1978-06-15 | 1979-12-26 | Fujitsu Ltd | Semiconductor device |
JP3585938B2 (ja) * | 1991-12-07 | 2004-11-10 | 株式会社東芝 | 半導体装置 |
JP2793416B2 (ja) * | 1992-03-06 | 1998-09-03 | 沖電気工業株式会社 | 絶縁膜形成方法 |
JPH06169083A (ja) * | 1992-11-30 | 1994-06-14 | Hitachi Ltd | 半導体装置およびその製造方法 |
JP2759411B2 (ja) * | 1993-09-16 | 1998-05-28 | 株式会社半導体エネルギー研究所 | 半導体装置およびその作製方法 |
JPH0851108A (ja) * | 1994-05-31 | 1996-02-20 | Kawasaki Steel Corp | 半導体装置およびその製造方法 |
JP4149013B2 (ja) * | 1996-12-26 | 2008-09-10 | 株式会社ルネサステクノロジ | 半導体装置 |
JPH10223628A (ja) * | 1997-02-04 | 1998-08-21 | Fujitsu Ltd | 半導体装置の製造方法 |
JPH10256539A (ja) * | 1997-03-10 | 1998-09-25 | Fujitsu Ltd | 半導体装置及びその製造方法 |
JPH11288933A (ja) * | 1998-02-04 | 1999-10-19 | Sony Corp | 絶縁膜の形成方法及びp形半導体素子の製造方法 |
JP3875455B2 (ja) * | 1999-04-28 | 2007-01-31 | 株式会社東芝 | 半導体装置の製造方法 |
JP2001148381A (ja) * | 1999-09-07 | 2001-05-29 | Tokyo Electron Ltd | 絶縁膜の形成方法及びその装置 |
JP4091265B2 (ja) * | 2001-03-30 | 2008-05-28 | 株式会社東芝 | 半導体装置及びその製造方法 |
-
2009
- 2009-11-27 JP JP2009270768A patent/JP4992957B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010098322A (ja) | 2010-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8168482B2 (en) | Semiconductor device, an electronic device and an electronic apparatus | |
TWI589000B (zh) | 半導體裝置 | |
TW201234596A (en) | Semiconductor device and manufacturing method thereof | |
KR100852817B1 (ko) | 반도체 소자용 절연막의 특성 평가 및 제조 방법 | |
US7696047B2 (en) | Method for evaluating a gate insulation film characteristic for use in a semiconductor device | |
JP2008159640A (ja) | ゲート絶縁膜、ゲート絶縁膜の製造方法、ゲート絶縁膜の評価方法、半導体素子、電子デバイスおよび電子機器 | |
JP4992957B2 (ja) | 絶縁膜、半導体素子、電子デバイスおよび電子機器 | |
JP2008159639A (ja) | ゲート絶縁膜、ゲート絶縁膜の評価方法、半導体素子、電子デバイスおよび電子機器 | |
JP4458527B2 (ja) | ゲート絶縁膜、半導体素子、電子デバイスおよび電子機器 | |
CN100464427C (zh) | 评估栅极绝缘膜的特性的方法 | |
JP2007103611A (ja) | 半導体装置、半導体装置の製造方法、電気光学装置、および電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120123 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120410 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120423 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150518 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |