JP4992179B2 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP4992179B2
JP4992179B2 JP2004166147A JP2004166147A JP4992179B2 JP 4992179 B2 JP4992179 B2 JP 4992179B2 JP 2004166147 A JP2004166147 A JP 2004166147A JP 2004166147 A JP2004166147 A JP 2004166147A JP 4992179 B2 JP4992179 B2 JP 4992179B2
Authority
JP
Japan
Prior art keywords
slit
insulating region
semiconductor device
electrode
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004166147A
Other languages
English (en)
Other versions
JP2005347565A (ja
Inventor
泰正 渡辺
秀明 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2004166147A priority Critical patent/JP4992179B2/ja
Publication of JP2005347565A publication Critical patent/JP2005347565A/ja
Application granted granted Critical
Publication of JP4992179B2 publication Critical patent/JP4992179B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

この発明は、半導体基板の表面領域に埋め込まれた絶縁領域を素子耐圧部として用いる半導体装置およびその製造方法に関する。
近年、トレンチゲートMOSFET(絶縁ゲート型電界効果トランジスタ)やトレンチ横型デバイスのように、半導体基板に形成されたトレンチ自体を機能素子として用いたデバイスが注目されている。このようなデバイスの一つとして、シリコン半導体基板に形成された20μm程度の深さのトレンチを酸化物で埋め込むことにより立体構造の絶縁領域を形成し、その絶縁領域の外周を延長ドレイン領域として利用したものが公知である(例えば、特許文献1参照。)。
上述したデバイスでは、従来の横型MOSFETのように半導体基板の表面に素子が形成されるのではなく、トレンチの周囲に素子が作り込まれるので、素子寸法の低減が可能であり、低オン抵抗化を図ることができるという利点がある。また、パワー素子部が半導体基板の片面に作製されるので、パワー素子と制御用ICとを一体化した高機能デバイスを作製することができるという利点がある。通常のIGBT(絶縁ゲート型バイポーラトランジスタ)やMOSFET等のパワー素子では、半導体基板の表面と裏面の両方に電極が形成されるため、制御用ICとの一体化は困難である。
次に、上述したデバイスの従来の製造方法について説明する。図20〜図23は、従来のトレンチ自体を機能素子として用いた半導体装置の製造途中の構造を示す縦断面図である。これらの図には、例えばトレンチエッチング用レジストマスクのマスクパターンを示す図7において、A−A’線に相当する断面における半導体装置の構造が示されている。ただし、図が煩雑になるのを避けるため、トレンチを二つだけ示した。
まず、図20に示すように、シート抵抗が100Ωcm程度であるp型のシリコン半導体基板1の表面に、熱酸化により800nmの厚さの熱酸化膜を形成する。そして、この熱酸化膜上にフォトレジストを塗布した後、図示しないマスクを用いて露光および現像を行ってレジストマスク3を形成する。
このレジストマスク3は、図20において図面に平行な方向(以下、Y方向とする)の長さが1.4μmである複数の島状領域を1.4μm間隔で配置したパターンを有する。このレジストマスク3をマスクとし、CHF3とCF4とArの混合ガスを用いて異方性ドライエッチングを行い、熱酸化膜の一部を除去してハードマスク4を形成する。
ついで、図21に示すように、ハードマスク4をマスクとし、Cl2とO2の混合ガスを用いて異方性ドライエッチングを行い、図21において図面に垂直な方向(以下、X方向とする)の長さが20μmであり、かつ深さ方向(以下、Z方向とする)の長さが20μmである複数のトレンチ6を形成する。つづいて、CF4とO2の混合ガスを用いて等方性エッチングを行い、トレンチエッチング時に生成したトレンチ側壁の保護膜を除去するとともに、トレンチ角部を丸める。
このときに、隣り合うトレンチ6間に残る半導体部分(以下、シリコン柱とする)5の上端の幅がおおよそ1.4μmとなるように調整する。また、トレンチ6の幅がトレンチの開口端から底に向かって狭くなるように、トレンチ側壁の角度が基板表面に対して89°程度で傾いているのが望ましい。
つづいて、図21において図面の手前側上方から奥側下方に向かって斜め方向にリンイオンを注入する。さらに、図21において図面の奥側上方から手前側下方に向かって斜め方向にリンイオンを注入する。この2回のイオン注入の方向と基板表面の法線方向(すなわち、トレンチ6の側面)とのなす角は、おおよそ+44°と−44°である。また、イオン注入量は、例えば1×1012cm-2である。
つづいて、基板表面に対して垂直な方向、すなわちトレンチ6の底面に対して90°の方向からリンイオンを注入する。このイオン注入では、トレンチ6の底部にのみリンイオンが注入される。このときのイオン注入量を例えば7×1011cm-2にすれば、n-オフセットドレイン領域の周囲におけるリンイオンの表面濃度を均一にすることができる。つづいて、リンイオンの拡散深さxjが例えば5μm程度になるようにドライブを行い、n-オフセットドレイン領域を形成する。
ついで、図22に示すように、1100℃で10時間程度、水蒸気雰囲気に半導体基板1を曝して、シリコン柱5を完全に酸化する。この酸化処理によってシリコン柱5は、すべてシリコン酸化物(以下、これをシリコン酸化柱とする)となる。その際、シリコンがシリコン酸化物となるときの膨張により、隣り合うシリコン酸化柱は、互いの間にあるトレンチ6を完全に埋めて一体化する。また、両端にあるシリコン酸化柱は、それぞれ、自らの膨張と、その外側にある半導体基板1の酸化による膨張によって、その間にあるトレンチ6を完全に埋める。
最後に、図23に示すように、シリコン表面のシリコン酸化物をCMP(化学機械研磨)により除去する。このようにして、Y方向に長い酸化物バルク7が半導体基板1に埋め込まれた状態となる。ついで、半導体基板1に周知の方法により種々の半導体領域や電極等を形成する。
図24は、上述した製造方法を適用して製造される横型の高耐圧トレンチパワーMOSFETの構造を示す縦断面図である。図24において、符号11は、p半導体層であり、上述した従来の製造方法の説明における半導体基板1に相当する。また、符号12は、pウェル層である。符号13は、nウェル層である。符号14は、n-オフセットドレイン領域である。
符号15は、一様な絶縁領域であり、上述した従来の製造方法の説明における酸化物バルク7に相当する。符号16は、pチャネル領域である。符号17は、ソース領域となるn+半導体領域である。符号18は、ドレイン領域となるn+半導体領域である。符号19は、ゲート絶縁膜である。符号20は、ゲート電極である。符号21は、ソース電極である。符号22は、ドレイン電極である。実際に上述した製造方法に従って製造されたトレンチ横型MOSFETの耐圧値は、510Vであった。
特開平8−97411号公報
しかしながら、上述したようにして製造された従来の半導体装置では、図25にその電位分布とブレークダウンポイント(丸印で囲む部分)を示すように、表面近くの電界強度が高くなる傾向にあるため、表面近傍に設けられたゲート部やドレイン部により耐圧が律則されてしまうことが多い。耐圧をより高くするには、絶縁領域15の底部の延長オフセットドレイン領域(n-オフセットドレイン領域)14に電気力線を導いて電位分布を改善し、表面近くの電界強度を緩和する必要がある。
この発明は、上述した従来技術による問題点を解消するため、半導体基板の表面領域に埋め込まれた絶縁領域を素子耐圧部として用いる半導体装置において、素子の表面近くの電界強度を緩和することによって、高い耐圧特性を有する半導体装置およびその製造方法を提供することを目的とする。
上述した課題を解決し、目的を達成するため、この発明にかかる半導体装置は、第1導電型の半導体基板の表面上に互いに離れて設けられた第1の電極および第2の電極と、前記半導体基板の、前記第1の電極と前記第2の電極との間の表面領域に埋め込まれ、素子耐圧部を構成する絶縁領域と、前記絶縁領域の側面および底面を囲み、前記第2の電極に電気的に接続された第2導電型半導体領域と、前記絶縁領域中に設けられた1以上のスリットと、を備え、前記絶縁領域と前記第2導電型半導体領域との界面において、前記絶縁領域の側面および底面は、前記絶縁領域を構成する材料よりも小さい誘電率を有する材料で囲まれており、前記スリットは、前記絶縁領域を構成する材料よりも小さい誘電率を有する材料で満たされており、前記絶縁領域の側面および底面を囲む材料と、前記スリット内を満たす材料は、シリコン酸化物であり、前記第1の電極はソース電極であり、前記第2の電極はドレイン電極であることを特徴とする。
の発明にかかる半導体装置は、上述した発明において、前記スリットの幅は、1μm以下であることを特徴とする。
の発明にかかる半導体装置は、上述した発明において、前記スリットの幅は、0.1μm以上であることを特徴とする。
この発明にかかる半導体装置は、上述した発明において、前記スリットを含み、かつ前記スリットに平行な断面における前記絶縁領域の、前記半導体基板と接する部分の厚さは、1.5μm以上であることを特徴とする。
この発明にかかる半導体装置は、上述した発明において、前記スリットを含み、かつ前記スリットに平行な断面における前記絶縁領域の、前記半導体基板と接する部分の厚さは、3μm以上であることを特徴とする。
この発明にかかる半導体装置は、上述した発明において、前記スリットを含み、かつ前記スリットに平行な断面における前記絶縁領域の、前記半導体基板と接する部分の厚さは、5μm以下であることを特徴とする。
この発明にかかる半導体装置は、上述した発明において、前記絶縁領域を構成する材料は、シリコン窒化物であることを特徴とする。
上述した発明によれば、半導体基板の、第1の電極と第2の電極との間の表面領域に埋め込まれた絶縁領域中に、この絶縁領域を構成する材料よりも誘電率の小さい1以上のスリットが設けられているので、このスリット内に電気力線が集中し、絶縁領域の底部において電界が高くなるような分布となる。従って、素子の表面付近の電界強度が緩和され、絶縁耐圧が高くなる。また、この発明によれば、スリット内に電界が集中すると、界面部分での固定電荷や残留気体中の分極によって信頼性が低下するおそれがあるが、これを回避することができる。
この発明にかかる半導体装置の製造方法は、半導体基板の表面上に互いに離れて設けられたソース電極となる第1の電極およびドレイン電極となる第2の電極の間に素子耐圧部を構成する絶縁領域が埋め込まれ、この絶縁領域を構成する材料よりも小さい誘電率を有する1以上のスリットが前記絶縁領域中に設けられた半導体装置を製造するにあたって、半導体基板に複数のトレンチを形成する第1の工程と、前記トレンチの中央部分に隙間を残した状態で前記トレンチの側面および底面を熱酸化させるとともに、隣り合う前記トレンチの間のスリットとなる半導体部分を完全に熱酸化させる第2の工程と、前記トレンチ中央部分に残った前記隙間を、前記第2の工程により生じた熱酸化膜よりも誘電率の大きい材料で埋める第3の工程と、を含み、前記第1の工程後、前記第2の工程前に、前記トレンチの側面および底面に不純物イオンを注入する第4の工程をさらに含むことを特徴とする。
上述した発明によれば、半導体基板の、第1の電極と第2の電極との間の表面領域に、熱酸化膜よりも誘電率の大きい材料よりなる絶縁領域が埋め込まれており、かつこの絶縁領域中に熱酸化膜よりなる1以上のスリットを有する半導体装置が得られる。この半導体装置では、スリット内に電気力線が集中し、絶縁領域の底部において電界が高くなるような分布となるので、素子の表面付近の電界強度が緩和され、絶縁耐圧が高くなる。また、上述した発明によれば、絶縁領域の周囲にオフセットドレイン領域が形成される。
本発明にかかる半導体装置およびその製造方法によれば、半導体基板の表面領域に埋め込まれた絶縁領域を素子耐圧部として用いる半導体装置において、素子の表面近くの電界強度を緩和することによって、高い耐圧特性を得ることができるという効果を奏する。
以下に添付図面を参照して、この発明にかかる半導体装置およびその製造方法の好適な実施の形態を詳細に説明する。
実施の形態1.
図1〜図6は、本発明の実施の形態1にかかる製造方法により製造される半導体装置の製造途中の構造を示す縦断面図であり、図7は、この製造方法において用いられるトレンチエッチング用レジストマスクのマスクパターンの一例を示す平面図である。図1〜図6には、図7のA−A’線に相当する断面における半導体装置の構造が示されている。ただし、図が煩雑になるのを避けるため、トレンチを二つだけ示した。
まず、図1に示すように、シート抵抗が例えば100Ωcm程度であるp型のシリコン半導体基板31を熱酸化して、基板表面に例えば800nmの厚さの熱酸化膜32を形成する。ついで、図2に示すように、熱酸化膜32上にフォトレジストを塗布した後、図示しないマスクを用いて露光および現像を行ってレジストマスク33を形成する。
図2において図面に平行な方向をY方向とすると、図7に示すように、レジストマスク33は、Y方向の長さが例えば1.4μmである複数の島状領域33aを例えば1.6μm間隔で配置したパターンを有する。1.6μm幅の開口部分33bは、後述するトレンチ36に対応する。そして、レジストマスク33をマスクとし、例えばCHF3とCF4とArの混合ガスを用いて異方性ドライエッチングを行い、熱酸化膜32の、トレンチ36に対応する部分を除去してハードマスク34を形成する。
ついで、図3に示すように、ハードマスク34をマスクとし、例えばCl2とO2の混合ガスを用いて異方性ドライエッチングを行い、図3において図面に垂直な方向(以下、X方向とする)の長さが例えば20μmであり、かつ深さ方向(以下、Z方向とする)の長さが例えば20μmである複数のトレンチ36を形成する。つづいて、例えばCF4とO2の混合ガスを用いて等方性エッチングを行い、トレンチエッチング時に生成したトレンチ側壁の保護膜を除去するとともに、トレンチ角部を丸める。
このときに、隣り合うトレンチ36間にシリコン柱35として残る半導体部分の上端の幅が例えばおおよそ1.4μmとなるように調整する。また、トレンチ36の幅がトレンチの開口端から底に向かって狭くなるように、トレンチ側壁が傾いているのが望ましいので、トレンチ側壁の角度が基板表面に対して例えば89°程度で傾くようにする。
つづいて、図3において図面の手前側上方から奥側下方に向かって斜め方向に例えばリンイオンを注入する。さらに、図3において図面の奥側上方から手前側下方に向かって斜め方向に例えばリンイオンを注入する。この2回のイオン注入の方向と基板表面の法線方向(すなわち、トレンチ36の側面)とのなす角は、例えばおおよそ+44°と−44°である。また、イオン注入量は、例えば9.3×1011cm-2である。
つづいて、基板表面に対して垂直な方向、すなわちトレンチ36の側面に対してほぼ0°の方向からリンイオンを注入する。このイオン注入では、トレンチ36の底部にのみリンイオンが注入される。このときのイオン注入量は、例えば6.6×1011cm-2である。その理由は、n-オフセットドレイン領域の周囲におけるリンイオンの表面濃度が均一になるからである。つづいて、例えば1150℃の窒素雰囲気中で約6時間のドライブを行い、リンイオンの拡散深さxjが例えば約4μmのn-オフセットドレイン領域を形成する。図3では、n-オフセットドレイン領域は省略されている。
ついで、図4に示すように、例えば1100℃で約10時間、水蒸気雰囲気に半導体基板31を曝して、シリコン柱35を完全に酸化する。この酸化処理によってシリコン柱35は、すべてシリコン酸化物よりなるシリコン酸化柱となる。その際、シリコンがシリコン酸化物となるときの膨張により、隣り合うシリコン酸化柱の間に例えば約0.1μmの幅のスリット38が残る。このとき、形成された熱酸化膜37の厚さは例えば3.1μmである。
ついで、図5に示すように、例えば減圧CVD法により熱酸化膜37上にHTO膜(高温熱CVD酸化膜)39を堆積して、スリット38の上端の開口を塞ぐ。その際、HTOの流動性が小さいので、スリット38内をHTOで完全に埋めることができない。そのため、熱酸化膜37とHTO膜39との間にスリット38が残る。
最後に、図6に示すように、シリコン表面のHTO膜39と熱酸化膜37を例えばCMPやウェットエッチングやドライエッチングなどにより除去する。このようにして、熱酸化膜37とHTO膜39とが一体化し、スリット38を含む絶縁領域40を有するトレンチ絶縁構造が得られる。ついで、半導体基板31に周知の方法により種々の半導体領域や電極等を形成する。実際に上述した製造方法に従って製造されたトレンチ横型MOSFETの耐圧値は、760Vであった。
図8は、上述した製造方法を適用して製造される半導体装置の一例である横型の高耐圧トレンチパワーMOSFETのスリットを含む断面の構造を示す縦断面図である。図8に示すように、横型トレンチMOSFETは、前記半導体基板31に相当するp半導体層51、pウェル層52、nウェル層53、n-オフセットドレイン領域54、絶縁領域55、pチャネル領域56、ソース領域となるn+半導体領域57、ドレイン領域となるn+半導体領域58、ゲート絶縁膜59、ゲート電極60、第1の電極に相当するソース電極61、および第2の電極に相当するドレイン電極62を備えている。
絶縁領域55は、半導体基板の表面領域に埋め込まれており、前記熱酸化膜37と前記HTO膜39からなる。絶縁領域55の内部には、前記スリット38が含まれている。n-オフセットドレイン領域54は、絶縁領域55の側面および底面を囲むように形成されている。pウェル層52は、p半導体層51の、絶縁領域55に対してソース側の表面部分において、n-オフセットドレイン領域54の外側に隣接して形成されている。
pチャネル領域56は、pウェル層52の表面部分に形成されている。n+半導体領域57は、pチャネル領域56の表面部分において、n-オフセットドレイン領域54から離れて形成されている。nウェル層53は、p半導体層51の、絶縁領域55に対してドレイン側(ソース側の反対側)の表面部分において、n-オフセットドレイン領域54につながるように形成されている。
+半導体領域58は、nウェル層53の表面部分に形成されている。ゲート絶縁膜59は、n+半導体領域57とn-オフセットドレイン領域54との間のpチャネル領域56の表面上に形成されている。ゲート電極60は、ゲート絶縁膜59上に形成されている。ソース電極61は、pチャネル領域56とn+半導体領域57に接触している。ドレイン電極62は、n+半導体領域58に接触している。
なお、図示省略したが、ゲート電極60は、層間絶縁膜によりソース電極61およびドレイン電極62から絶縁されている。また、装置全体は、パッシベーション膜により被覆されている。
次に、本発明者らがシミュレーションを用いて行った解析結果について説明する。図8に示す構造において、トレンチ内に、誘電率が3.9である熱酸化膜37を埋め込み、その中に、誘電率が1であるスリット38を設け、2次元の耐圧シミュレーションを行った。p半導体層51の不純物濃度を1.0×1014cm-3とし、n-オフセットドレイン領域54の表面濃度を8.0×1015cm-3とした。実際の素子構造においては、直方体の熱酸化膜37中にスリット38となる直方体形状の絶縁物が埋め込まれた構造となる。
2次元シミュレーションによるスリット38内の絶縁物の厚さと耐圧の関係を調べた。その結果を図9に示す。トレンチ36の一辺の寸法を20μmとすると、絶縁物の厚さが3μmであるときに耐圧が最大となり、その値は705Vであった。絶縁物の厚さが5μmになると、耐圧値は、639Vであった。また、トレンチ36内にスリット38を設けずに、熱酸化膜37のみでトレンチ36を埋めた場合の耐圧値は、480Vであった。
熱酸化膜37の厚さを変えたときの電位分布およびブレークダウンポイント(丸印で囲む部分)を調べた。その結果を図10〜図12に示す。図10、図11および図12は、熱酸化膜37の厚さをそれぞれ1.5μm、3μmおよび5μmとしたものである。これらの図と、スリット38がない従来の半導体装置の電位分布およびブレークダウンポイントを示す図25とを比較すると、スリット38を設けたことにより、耐圧特性が向上しているのがわかる。
つまり、周囲の絶縁物(誘電率が3.9である熱酸化膜37)よりも小さい誘電率を有するスリット38が存在することにより、スリット38内に電気力線が集中し、トレンチ底部で電界が高くなるような分布となる。それによって、従来の律則ポイントである素子の表面付近の電界強度が緩和されるので、絶縁耐圧が増加する。
ただし、スリット38内の電界集中により、界面部分での固定電荷や、スリット38内に残留する気体中の分極により、信頼性の低下が懸念される。このような問題を回避するためには、スリット38内を高真空にするか、または低誘電率の絶縁材料で埋めるとよい。
トレンチ36の縦横比、いわゆるアスペクト比と、耐圧との関係を調べた。その結果、トレンチ36のX方向およびZ方向の寸法がともに20μmである場合(アスペクト比は1)、耐圧は、スリット38があると693Vであるのに対して、スリット38がないと489Vであった。また、トレンチ36のX方向およびZ方向の寸法がそれぞれ15μmおよび25μmである場合(アスペクト比は1.66)、耐圧は、スリット38があると725Vであるのに対して、スリット38がないと568Vであった。
さらに、トレンチ36のX方向およびZ方向の寸法がそれぞれ10μmおよび25μmである場合(アスペクト比は2.5)、耐圧は、スリット38があると470Vであるのに対して、スリット38がないと360Vであった。この結果より、アスペクト比が1〜2.5である場合には、耐圧改善効果があり、特にアスペクト比が1に近い方がより効果的であることが分かった。
次に、トレンチ36内に誘電率3.9の熱酸化膜37を充填し、その中に誘電率1のスリット38を設け、スリット38の数および配置と素子耐圧との関係を調べるために行った3次元シミュレーションについて説明する。図13は、その3次元シミュレーションモデルを示す配置図である。
このシミュレーションでは、トレンチ36の寸法を20μm×20μm(アスペクト比は1)とし、熱酸化膜37の厚さを2μmとし、スリット38の数を1〜5とし、スリット38の幅を0.1μm、0.5μmおよび1μmとした。また、p半導体層51の不純物濃度を1.0×1014cm-3とし、図示省略したn-オフセットドレイン領域54の濃度を6.0×1014cm-3で一定とした。
3次元シミュレーションの結果を図14に示す。スリット38の幅が0.1μmである場合には、スリット38の数が3本以上であれば、顕著な耐圧改善効果が得られた。スリット38幅が0.5μmである場合には、スリット38の数が4本以上であれば、顕著な耐圧改善効果が得られた。スリット38幅が1μmである場合には、5本のスリット38を設けることによって、顕著な耐圧改善効果が得られた。
このように、3次元のモデルにおいても、周囲の絶縁物(誘電率が3.9である熱酸化膜37)よりも小さい誘電率を有するスリット38が存在することにより、素子表面への電界集中を抑制し、電界分布を変化させて、耐圧を改善することができることが分かった。耐圧の改善効果は、スリット38とトレンチ36の位置関係や、スリット38の形状や、トレンチ36のアスペクト比により異なるが、その最適な範囲がシミュレーションおよび実験により得られた。
実施の形態1によれば、ソース電極61とドレイン電極62との間に埋め込まれた絶縁領域55中に、この絶縁領域55を構成する熱酸化膜37よりも誘電率の小さい1以上のスリット38が設けられているので、このスリット38内に電気力線が集中し、絶縁領域55の底部において電界が高くなるような分布となる。従って、素子の表面付近の電界強度が緩和され、絶縁耐圧が高くなる。
実施の形態2.
実施の形態2は、隣り合うトレンチ間のシリコン柱を熱酸化してできたシリコン酸化柱を、低誘電率のスリットとして用いたものである。図15〜図19は、本発明の実施の形態2にかかる製造方法により製造される半導体装置の製造途中の構造を示す縦断面図である。この製造方法において用いられるトレンチエッチング用レジストマスクのマスクパターンは、図7に示すパターンと同様である。図15〜図19には、図7のA−A’線に相当する断面における半導体装置の構造が示されている。ただし、図が煩雑になるのを避けるため、トレンチを二つだけ示した。
まず、図15に示すように、実施の形態1と同様にして、半導体基板31上にハードマスク74およびレジストマスク73を設ける。レジストマスク73は、図15において図面に平行なY方向の長さが例えば0.2μmである複数の島状領域を例えば1.6μm間隔で配置したパターンを有する。従って、ハードマスク74も、レジストマスク73と同じパターンを有する。
ついで、図16に示すように、実施の形態1と同様にして、シリコン柱75およびトレンチ76を形成した後、トレンチ側壁の保護膜を除去するとともに、トレンチ角部を丸める。そして、実施の形態1と同様にして、斜め2方向から例えばリンイオンを注入し、トレンチ76の底部に例えばリンイオンを注入する。その後、ドライブを行って、図示省略したn-オフセットドレイン領域を形成する。
ついで、図17に示すように、例えば1100℃で約1時間、水蒸気雰囲気に半導体基板31を曝して、シリコン柱75を完全に酸化し、すべてシリコン酸化物よりなるシリコン酸化柱とする。このときのシリコン酸化柱の幅は、例えば約0.4μmである。トレンチ76の側面および底面には、熱酸化膜77(シリコン酸化柱を含む)が生成される。熱酸化膜77の誘電率は、3.9である。
ついで、図18に示すように、例えばプラズマCVD法により熱酸化膜77上にシリコン窒化膜79を堆積して、トレンチ76をシリコン窒化膜79で埋める。シリコン窒化膜79の誘電率は、約8である。最後に、図19に示すように、シリコン表面のシリコン窒化膜79と熱酸化膜77を例えばCMPにより除去する。このようにして、熱酸化膜77とシリコン窒化膜79とが一体化し、かつ熱酸化膜77の一部であるシリコン酸化柱をスリット78として含む絶縁領域80を有するトレンチ絶縁構造が得られる。ついで、半導体基板31に周知の方法により種々の半導体領域や電極等を形成する。
実際に上述した製造方法に従って製造されたトレンチ横型MOSFETの耐圧値は、489Vであった。なお、トレンチ76内に熱酸化膜77を設けずに、シリコン窒化膜79のみでトレンチ76を埋めた場合の耐圧値は、416Vであった。実施の形態2では、誘電率が約8であるシリコン窒化膜79中に、誘電率が3.9である熱酸化膜77よりなるスリット78が設けられた構成となり、電気力線の引き込み効果により素子表面の電界が緩和されるので、耐圧が向上した。
なお、実施の形態2では、スリット78を構成する材料よりも高い誘電率を有する材料として、シリコン窒化膜79の代わりに、例えばタンタルやハフニウム等の高誘電率材料を用いてもよい。また、シリコン窒化膜79等の高誘電率材料の埋め込みにあたっては、プラズマCVD法以外にも、塗布法やスパッタ法を用いてもよい。
以上において、本発明は、上述した各実施の形態に限らず、種々変更可能である。例えば、各実施の形態において示した各部の寸法や濃度、およびイオン注入量や各種処理条件等は、一例であり、本発明はこれらの値に限定されるものではない。また、本発明は、p型とn型を反転させても同様に成り立つ。さらに、本発明は、シリコン半導体に限らず、他の半導体材料を用いる場合にも同様に成り立つ。
以上のように、本発明にかかる半導体装置およびその製造方法は、半導体基板の表面領域に埋め込まれた絶縁領域を素子耐圧部として用いる半導体装置に有用であり、特に、トレンチ横型デバイスなどのパワーデバイスに適している。
本発明の実施の形態1にかかる製造方法により製造される半導体装置の製造途中の構造を示す縦断面図である。 本発明の実施の形態1にかかる製造方法により製造される半導体装置の製造途中の構造を示す縦断面図である。 本発明の実施の形態1にかかる製造方法により製造される半導体装置の製造途中の構造を示す縦断面図である。 本発明の実施の形態1にかかる製造方法により製造される半導体装置の製造途中の構造を示す縦断面図である。 本発明の実施の形態1にかかる製造方法により製造される半導体装置の製造途中の構造を示す縦断面図である。 本発明の実施の形態1にかかる製造方法により製造される半導体装置の製造途中の構造を示す縦断面図である。 本発明の実施の形態1にかかる製造方法において用いられるトレンチエッチング用レジストマスクのマスクパターンの一例を示す平面図である。 本発明の実施の形態1にかかる製造方法により製造されるトレンチパワーMOSFETの構造を示す縦断面図である。 本発明の実施の形態1にかかる半導体装置のスリット内絶縁物の厚さと耐圧の関係を示す特性図である。 本発明の実施の形態1にかかる半導体装置の電位分布とブレークダウンポイントを示す電位分布図である。 本発明の実施の形態1にかかる半導体装置の電位分布とブレークダウンポイントを示す電位分布図である。 本発明の実施の形態1にかかる半導体装置の電位分布とブレークダウンポイントを示す電位分布図である。 本発明の実施の形態1にかかる半導体装置の3次元シミュレーションモデルを示す配置図である。 本発明の実施の形態1にかかる半導体装置のスリット数と耐圧との関係を示す特性図である。 本発明の実施の形態2にかかる製造方法により製造される半導体装置の製造途中の構造を示す縦断面図である。 本発明の実施の形態2にかかる製造方法により製造される半導体装置の製造途中の構造を示す縦断面図である。 本発明の実施の形態2にかかる製造方法により製造される半導体装置の製造途中の構造を示す縦断面図である。 本発明の実施の形態2にかかる製造方法により製造される半導体装置の製造途中の構造を示す縦断面図である。 本発明の実施の形態2にかかる製造方法により製造される半導体装置の製造途中の構造を示す縦断面図である。 従来の半導体装置の製造途中の構造を示す縦断面図である。 従来の半導体装置の製造途中の構造を示す縦断面図である。 従来の半導体装置の製造途中の構造を示す縦断面図である。 従来の半導体装置の製造途中の構造を示す縦断面図である。 従来のトレンチパワーMOSFETの構造を示す縦断面図である。 従来の半導体装置の電位分布とブレークダウンポイントを示す電位分布図である。
符号の説明
31 半導体基板
35,75 トレンチ間の半導体部分(シリコン柱)
36,76 トレンチ
37,77 熱酸化膜
38,78 スリット
40,55,80 絶縁領域
61 第1の電極(ソース電極)
62 第2の電極(ドレイン電極)
79 シリコン窒化膜

Claims (8)

  1. 第1導電型の半導体基板の表面上に互いに離れて設けられた第1の電極および第2の電極と、
    前記半導体基板の、前記第1の電極と前記第2の電極との間の表面領域に埋め込まれ、素子耐圧部を構成する絶縁領域と、
    前記絶縁領域の側面および底面を囲み、前記第2の電極に電気的に接続された第2導電型半導体領域と、
    前記絶縁領域中に設けられた1以上のスリットと、を備え、
    前記絶縁領域と前記第2導電型半導体領域との界面において、前記絶縁領域の側面および底面は、前記絶縁領域を構成する材料よりも小さい誘電率を有する材料で囲まれており、
    前記スリット内は、前記絶縁領域を構成する材料よりも小さい誘電率を有する材料で満たされており、
    前記絶縁領域の側面および底面を囲む材料と、前記スリット内を満たす材料は、シリコン酸化物であり、
    前記第1の電極はソース電極であり、
    前記第2の電極はドレイン電極であることを特徴とする半導体装置。
  2. 前記スリットの幅は、1μm以下であることを特徴とする請求項1に記載の半導体装置。
  3. 前記スリットの幅は、0.1μm以上であることを特徴とする請求項2に記載の半導体装置。
  4. 前記スリットを含み、かつ前記スリットに平行な断面における前記絶縁領域の、前記半導体基板と接する部分の厚さは、1.5μm以上であることを特徴とする請求項1〜3のいずれか一つに記載の半導体装置。
  5. 前記スリットを含み、かつ前記スリットに平行な断面における前記絶縁領域の、前記半導体基板と接する部分の厚さは、3μm以上であることを特徴とする請求項1〜3のいずれか一つに記載の半導体装置。
  6. 前記スリットを含み、かつ前記スリットに平行な断面における前記絶縁領域の、前記半導体基板と接する部分の厚さは、5μm以下であることを特徴とする請求項4または5に記載の半導体装置。
  7. 前記絶縁領域を構成する材料は、シリコン窒化物であることを特徴とする請求項1〜6のいずれか一つに記載の半導体装置。
  8. 半導体基板の表面上に互いに離れて設けられたソース電極となる第1の電極およびドレイン電極となる第2の電極の間に素子耐圧部を構成する絶縁領域が埋め込まれ、この絶縁領域を構成する材料よりも小さい誘電率を有する1以上のスリットが前記絶縁領域中に設けられた半導体装置を製造するにあたって、
    半導体基板に複数のトレンチを形成する第1の工程と、
    前記トレンチの中央部分に隙間を残した状態で前記トレンチの側面および底面を熱酸化させるとともに、隣り合う前記トレンチの間のスリットとなる半導体部分を完全に熱酸化させる第2の工程と、
    前記トレンチ中央部分に残った前記隙間を、前記第2の工程により生じた熱酸化膜よりも誘電率の大きい材料で埋める第3の工程と、
    を含み、
    前記第1の工程後、前記第2の工程前に、前記トレンチの側面および底面に不純物イオンを注入する第4の工程をさらに含むことを特徴とする半導体装置の製造方法。
JP2004166147A 2004-06-03 2004-06-03 半導体装置およびその製造方法 Expired - Fee Related JP4992179B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004166147A JP4992179B2 (ja) 2004-06-03 2004-06-03 半導体装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004166147A JP4992179B2 (ja) 2004-06-03 2004-06-03 半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2005347565A JP2005347565A (ja) 2005-12-15
JP4992179B2 true JP4992179B2 (ja) 2012-08-08

Family

ID=35499643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004166147A Expired - Fee Related JP4992179B2 (ja) 2004-06-03 2004-06-03 半導体装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP4992179B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5026718B2 (ja) * 2006-03-31 2012-09-19 トヨタ自動車株式会社 半導体装置の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312331A (ja) * 1996-05-23 1997-12-02 Hitachi Ltd 半導体装置及びその製造方法
JP3395603B2 (ja) * 1997-09-26 2003-04-14 株式会社豊田中央研究所 横型mos素子を含む半導体装置
JP2002164535A (ja) * 2000-11-24 2002-06-07 Fujitsu Ltd 絶縁ゲート型半導体装置及びその製造方法
JP2003037267A (ja) * 2001-05-18 2003-02-07 Fuji Electric Co Ltd 半導体装置の製造方法
JP3694470B2 (ja) * 2001-05-31 2005-09-14 沖電気工業株式会社 半導体装置の製造方法
JP2002359369A (ja) * 2001-06-01 2002-12-13 Sony Corp 半導体装置の製造方法
US20040038489A1 (en) * 2002-08-21 2004-02-26 Clevenger Lawrence A. Method to improve performance of microelectronic circuits
JP4288925B2 (ja) * 2002-10-31 2009-07-01 富士電機デバイステクノロジー株式会社 半導体装置およびその製造方法

Also Published As

Publication number Publication date
JP2005347565A (ja) 2005-12-15

Similar Documents

Publication Publication Date Title
JP5154347B2 (ja) 超接合半導体ディバイスおよび超接合半導体ディバイスの製造方法
US6211018B1 (en) Method for fabricating high density trench gate type power device
US9153666B1 (en) LDMOS with corrugated drift region
TWI590457B (zh) 半導體裝置及其製造方法
US7906388B2 (en) Semiconductor device and method for manufacture
US7799641B2 (en) Method for forming a semiconductor device having recess channel
JP2005026664A (ja) 半導体装置およびその製造方法
KR101531882B1 (ko) 반도체 소자 및 그 제조 방법
TW201714306A (zh) 金氧半導體電晶體與形成閘極佈局圖的方法
JP2009260208A (ja) 半導体装置
JP2008153685A (ja) 半導体装置の製造方法
JP2008501235A (ja) 半導体装置及び製造方法
TWI414023B (zh) 用於製造一半導體器件的方法
KR100684428B1 (ko) 낮은 온저항을 갖는 고전압 트랜지스터 및 이의 제조 방법
JPH10209445A (ja) Mosfetおよびその製造方法
JP2006216863A (ja) 半導体装置およびその製造方法
JP3354127B2 (ja) 高電圧素子及びその製造方法
TWI685882B (zh) 具有多閘極結構之ldmos finfet結構
US20150295027A1 (en) Semiconductor device and method for fabricating the same
JP4992179B2 (ja) 半導体装置およびその製造方法
JP2009081427A (ja) 半導体装置および半導体装置の製造方法
JP2012124425A (ja) 縦型ゲート半導体装置の製造方法および縦型ゲート半導体装置
KR100790742B1 (ko) 트랜지스터 및 그 제조방법
CN216871979U (zh) 三栅极mos晶体管以及电子电路
JP5070751B2 (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees