JP4980178B2 - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP4980178B2
JP4980178B2 JP2007231716A JP2007231716A JP4980178B2 JP 4980178 B2 JP4980178 B2 JP 4980178B2 JP 2007231716 A JP2007231716 A JP 2007231716A JP 2007231716 A JP2007231716 A JP 2007231716A JP 4980178 B2 JP4980178 B2 JP 4980178B2
Authority
JP
Japan
Prior art keywords
polygon mirror
image forming
forming apparatus
rotary polygon
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007231716A
Other languages
English (en)
Other versions
JP2008096985A (ja
Inventor
愼一 式井
博之 古屋
公典 水内
達男 伊藤
哲郎 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007231716A priority Critical patent/JP4980178B2/ja
Publication of JP2008096985A publication Critical patent/JP2008096985A/ja
Application granted granted Critical
Publication of JP4980178B2 publication Critical patent/JP4980178B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Projection Apparatus (AREA)

Description

本発明は、赤(R)、緑(G)、青(B)等の複数色の光源を用いたプロジェクタ等の画像形成装置に関する。
スクリーン上に画像を投射するプロジェクタ等のディスプレイが知られている。従来、光源としては高圧水銀灯を用いたものが主流であったが、近年、光源としてレーザを用いたレーザディスプレイが検討されている。光源に赤(R)、緑(G)、青(B)のレーザを用いると、色再現範囲が飛躍的に広がり原色に近い色表現ができることや、低消費電力化が可能である等、様々なメリットがある。
一方、プロジェクタに対するニーズとしては、プロジェクタを携帯して持ち運べるサイズまでの小型化の要望もある。また、光源にレーザを用いた場合、スペックルノイズといった画質上の問題が生じることも分かっている。それらの要望や問題に対して、例えば、特許文献1や、特許文献2にあるような提案がなされている。
特開2005−99160号公報 特開平11−64789号公報
しかしながら、特許文献1では、レーザを小型化したことにより装置サイズを小型化できたが、価格が高くなってしまうといった問題を抱えている。さらに、特許文献2では、スペックルノイズを除去するために、各R、G、B光源それぞれに対してスペックルノイズを除去する構成を盛り込んでいるため、装置サイズとして大きくなってしまうといった問題があった。
上記課題に鑑み、本発明は、簡単かつ安価な構成により装置サイズの小型化及びスペックルノイズの低減を同時に達成する画像形成装置を提供することを目的とする。
上記目的を達成するために、本発明に係る画像形成装置は、複数のレーザ光源と、前記複数のレーザ光源からの複数のレーザ光を走査する回転多面鏡と、前記回転多面鏡により走査される複数のレーザ光を合波する合波部材とを備え、前記回転多面鏡の回転軸の延長線は、前記合波部材を通過する。
上記の画像形成装置では、複数のレーザ光源からのレーザ光を走査する回転多面鏡の回転軸の延長線が合波部材を通るように配置することにより、装置サイズの大幅な小型化を達成することができる。さらに、単一の回転多面鏡により複数のレーザ光を走査することにより、装置サイズの小型化を阻むことなく、複数のレーザ光に起因するスペックルノイズを効率よく除去することができる。
前記回転多面鏡の回転軸の延長線は、前記複数のレーザ光のそれぞれに対応する前記回転多面鏡から前記合波部材までの各光路が略同一の距離を有するよう、前記合波部材の中心の位置から所定の距離ずれていることが好ましい。
この場合、回転多面鏡の回転軸の延長線を合波部材の中心の位置から所定の距離ずらすことにより、複数のレーザ光のそれぞれに対応する回転多面鏡から合波部材までの各光路の距離を略同一にすることができる。このため、各光路の冗長性が無くなり、装置サイズをより小型化することができる。
前記複数のレーザ光源のそれぞれから前記回転多面鏡までの各光路上における前記回転多面鏡の近傍に配置された複数の集光素子、をさらに備え、前記集光素子は、前記レーザ光源からのレーザ光を前記回転多面鏡によるレーザ光の走査方向に集光して前記回転多面鏡の反射面に出射することが好ましい。
この場合、回転多面鏡に入射されるレーザ光が回転多面鏡の反射面内で集光されることにより、回転多面鏡の反射面のサイズ及び数を小さくすることができる。このため、装置サイズをより小型化することができる。
前記複数のレーザ光のそれぞれに対応する前記回転多面鏡から前記合波部材までの各光路上に配置され、前記回転多面鏡により走査されるレーザ光が照射される複数の空間変調素子、をさらに備え、前記空間変調素子の被照射面に照射されるレーザ光の照射位置の移動速度が前記被照射面において均一化されるよう、前記回転多面鏡により走査される複数のレーザ光のそれぞれは前記回転多面鏡の近傍において前記空間変調素子の被照射面に略垂直な光に変換されることが好ましい。
この場合、回転多面鏡により走査されるレーザ光を空間変調素子の被照射面に略垂直な光に変換することにより、空間変調素子の被照射面でのレーザ光の照射位置の移動速度を均一化できる。このため、空間変調素子の被照射面の端部における照射位置の移動速度の上昇が抑えられ、この結果、被照射面における変調の均一性が向上する。
前記回転多面鏡から前記合波部材までの各光路上における前記回転多面鏡の近傍に配置された複数の光平行化素子、をさらに備え、前記光平行化素子は、入射されるレーザ光を前記空間変調素子の被照射面に略垂直化することが好ましい。
この場合、各光路上に光平行化素子を配置することにより、レーザ光を空間変調素子の被照射面に略垂直な光に変換できる。このため、複雑な光学系を別途設ける必要は無く、装置サイズの小型化が図られる。
前記回転多面鏡の反射面は、前記回転多面鏡によるレーザ光の走査方向に所定の曲率を有し、前記所定の曲率は、前記反射面で反射した光が前記空間変調素子の被照射面に略垂直な光となるよう、設定されることが好ましい。
この場合、回転多面鏡の反射面に所定の曲率を持たせることにより、レーザ光を空間変調素子の被照射面に略垂直な光に変換できる。このため、複雑な光学系を別途設ける必要は無く、装置サイズの小型化が図られる。
前記回転多面鏡に設置された放熱用ファン、をさらに備え、前記放熱用ファンは、前記回転多面鏡と一体となって回転することが好ましい。
この場合、回転多面鏡の回転に合わせて放熱用ファンが回転することにより、放熱用ファン専用の回転駆動部を別途設けることなく、装置内での発熱を冷却することができる。このため、装置サイズの小型化が図られると共に、余分な電力消費も削減される。
前記回転多面鏡の各反射面の面倒れ量のばらつきの範囲は、0.12度以上であることが好ましい。
この場合、回転多面鏡の反射面の面倒れによりレーザ光の光路が変動するので、視聴者によるスペックルノイズの視認度合いを低下させることができる。
前記複数のレーザ光のそれぞれに対応する前記回転多面鏡から前記合波部材までの各光路上に配置された複数の光学系、をさらに備え、前記光学系は、前記レーザ光を伝搬する複数の光学素子を有し、前記複数の光学素子のうちの少なくとも1つは、前記光路方向に対して略垂直方向に振動することが好ましい。
この場合、各光路上に配置された光学素子の振動によりレーザ光の光路が変動するので、視聴者によるスペックルノイズの視認度合いを低下させることができる。
前記回転多面鏡を回転させる駆動部、をさらに備え、前記振動する光学素子は、前記駆動部に接続され、前記駆動部により振動させられることが好ましい。
この場合、回転多面鏡の回転に連動させて光学素子を振動させることにより、光学素子の振動専用の駆動部を別途設けることなく、スペックルノイズを低減することができる。このため、装置サイズの小型化が図られると共に、余分な電力消費も削減される。
前記複数のレーザ光源からの複数のレーザ光のそれぞれは、前記回転多面鏡の周囲から互いに異なる方向から前記回転多面鏡に入射されており、前記複数のレーザ光源のそれぞれは、前記回転多面鏡により走査されるレーザ光の走査範囲の中心の位置を通るレーザ光が前記空間変調素子の被照射面の中心の位置に到達するように、前記複数のレーザ光のそれぞれの出射方向を設定して配置されていることが好ましい。
この場合、回転多面鏡から合波部材までの各光路上に配置される光学系の設計が容易となる。すなわち、回転多面鏡により走査されるレーザ光の走査方向がレーザ光の走査範囲の中心方向に対して左右対称となるように光学系を設計すればよい。
前記合波部材により合波されるレーザ光が照射されることにより画像を表示する液晶表示パネル、をさらに備えることが好ましい。
この場合、装置サイズが小型化され、スペックルノイズが低減された液晶表示装置を実現することができる。
前記合波部材は、クロスプリズムであることが好ましい。
この場合、複数のレーザ光を合波し、スクリーン上に投射する投射光学系を小型化することができる。
前記合波部材は、所定の角度で交差された2つのダイクロイックミラーであることが好ましい。
この場合、この場合、複数のレーザ光を合波し、スクリーン上に投射する投射光学系を小型化することができる。
前記回転多面鏡は、前記合波部材の上部または下部に配置されることが好ましい。
この場合、装置サイズの小型化をより効果的に行うことができる。
本発明によれば、簡単かつ安価な構成により装置サイズの小型化及びスペックルノイズの低減を同時に達成する画像形成装置を提供することができる。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、同一の部分には同一の符号を付し、図面で同一の符号が付いたものは、説明を省略する場合もある。
(実施の形態1)
図1は、本発明の実施の形態1における画像形成装置の概略構成を示す上面図、図2は、その側面図である。以下、図1及び図2を用いて、本実施の形態における画像形成装置の動作の仕組みを説明する。本実施の形態における画像形成装置の光学系は、B光源1a、G光源1b、R光源1cを含む複数のレーザ光源と、B光源1a、G光源1b、R光源1cに対応するシリンドリカルレンズ2a、2b、2cと、回転多面鏡3と、シリンドリカルレンズ4a、4b、4cと、シリンドリカルミラーアレイ5a、5b、5cと、反射ミラー6a、6b、6cと、拡散板7a、7b、7cと、フィールドレンズ8a、8b、8cと、空間変調素子9a、9b、9cと、合波部材10と、を備えている。シリンドリカルレンズ4a、4b、4c、シリンドリカルミラーアレイ5a、5b、5c、反射ミラー6a、6b、6c、拡散板7a、7b、7c、フィールドレンズ8a、8b、8c、及び、空間変調素子9a、9b、9cは、シリンドリカルレンズ2a、2b、2cと同様、B光源1a、G光源1b、R光源1cに対応している。
本実施の形態における画像形成装置の光学系においては、図2に示すように、合波部材10の上部に回転多面鏡3を配置する2階構造を有している。すなわち、レーザ光源1a、1b、1c、シリンドリカルレンズ2a、2b、2c、回転多面鏡3、シリンドリカルレンズ4a、4b、4c、及び、シリンドリカルミラーアレイ5a、5b、5cは、2階部分に配置されており、残りの部材は、1階部分に配置されている。もちろん、本実施の形態は、この構成に限られるものではない。例えば、レーザ光源1a、1b、1c、シリンドリカルレンズ2a、2b、2c、回転多面鏡3、シリンドリカルレンズ4a、4b、4c、及び、シリンドリカルミラーアレイ5a、5b、5cを1階部分に配置し、残りの部材を2階部分に配置しても構わない。要は、回転多面鏡3及び合波部材10の一方が他方の上部または下部に配置されると共に、レーザ光源1a、1b、1cから出射され、回転多面鏡3により走査されたレーザ光が合波部材10に導光されるように、その他の部材が配置されればよい。
レーザ光源1a、1b、1cから出射されたレーザ光は、シリンドリカルレンズ2a、2b、2cにて主走査方向に収束された状態で、回転多面鏡3に入射される。回転多面体3の反射面で反射された光は、主走査方向に走査される。ここで述べる主走査方向とは、回転多面鏡3による回転走査方向を指している。回転多面鏡3上で主走査方向にビームを集光することで、回転多面鏡3上でのビームの主走査方向のケラレを最小限に抑えることができる。このため、回転多面鏡3として小径の回転多面鏡を使用することが可能になり、装置を小型にすることが可能になる。
回転多面鏡3で反射されたビームは発散しているため、シリンドリカルレンズ4a、4b、4cにて略平行光に戻される。この場合、シリンドリカルレンズ4a、4b、4cには、主走査方向にパワーを持つメニスカスレンズを用いることが有利である。
シリンドリカルレンズ4a、4b、4cによって略平行光になった各ビームは、シリンドリカルミラーアレイ5a、5b、5cにて反射され、1階部分に配置されている反射ミラー6a、6b、6cに向かう。シリンドリカルミラーアレイ5a、5b、5cの間隔及び曲率は、空間変調素子9a、9b、9c上での露光強度が上下方向で略均一になるように設定されている。反射ミラー6a、6b、6cにて反射されたビームは、拡散板7a、7b、7cに入射し、拡散板7a、7b、7cにて所定角度範囲に透過拡散される。その後、フィールドレンズ8a、8b、8cにてテレセントリックに変換された後、空間変調素子9a、9b、9cに入射する。空間変調素子9a、9b、9cにて空間変調された光は、合波部材10にてR、G、B各色を合波された後、投射レンズ11に出射され、投射レンズ11を経由してスクリーン12に画像として投射される。
次に、本実施の形態のシリンドリカルレンズ2a、2b、2c及び4a、4b、4cを有する光学系の利点について説明する。すなわち、本実施の形態においては、レーザ光源1a、1b、1cから出射されるレーザ光はシリンドリカルレンズ2a、2b、2cにより回転多面鏡3の主走査方向に集光されると共に、回転多面鏡3の反射面による反射光はシリンドリカルレンズ4a、4b、4cにより再び略平行光となり、合波部材10に導光される。本実施の形態は、このシリンドリカルレンズ2a、2b、2cによる集光及びシリンドリカルレンズ4a、4b、4cによる平行化によって、次のような特有の効果を有している。以下、この特有の効果について具体的に説明する。
ここでは、R光源1cの主走査方向における平行ビーム径が2mm、回転多面鏡3からシリンドリカルレンズミラーアレイ5c、反射ミラー6c、拡散板7c、フィールドレンズ8cを経由して空間変調素子9cまでの距離が50mm程度、空間変調素子9cの幅が主走査方向に15mmであった場合を例にして説明する。まず、本実施の形態のシリンドリカルレンズ2c、4cが無い光学系について考える。
シリンドリカルレンズ2cで主走査方向に集光せず、さらにシリンドリカルレンズ4cを通さない状態では、レーザの走査期間のデューティ比を90%程度に保つと、回転多面鏡3の面数は36面程度必要になる。さらに、回転多面鏡3の反射面の1面あたり主走査方向に2mmの幅を持たせると、回転多面鏡3の内接円の半径は最低でも12mm以上必要になり、回転多面鏡3のサイズは巨大なものとなってしまう。この結果、回転多面鏡3のサイズが装置全体のサイズを大きくしてしまう。仮に、合波部材10が20mm×20mm×20mmの直方体のクロスプリズムであれば、クロスプリズムの上側もしくは下側に配置した回転多面鏡3のサイズはクロスプリズムを上から見た投影面積よりも大サイズになってしまい、回転多面鏡3のサイズが装置サイズの律速になってしまう。
次に、回転多面鏡3の前後に本実施の形態のシリンドリカルレンズ2c、4cを配置した場合について考える。この場合、シリンドリカルレンズ2cで主走査方向に集光し、さらにシリンドリカルレンズ4cを通すと、回転多面鏡3に必要とされる面数は12面程度なり、上記の場合と比べて少なくすることができる。回転多面鏡3の内接円の半径も5mm程度あれば、回転多面鏡3の反射面の1面あたりの大きさを主走査方向に2mm以上の幅を持つことになる。回転多面鏡3上で主走査方向にビームを絞っていることもあり、十分な反射面のサイズであるといえる。このサイズであれば、合波部材10のサイズが上記と同じ20mm×20mm×20mmであったとしても、その投影面積から回転多面鏡3がはみ出すことはなく、装置サイズの律速にならない。また、面数が12面程度の回転多面鏡は、汎用のレーザプリンタ等で広く量産されており、入手性やコストの観点でも36面のポリゴンよりも有利である。さらには、シリンドリカルレンズ4a、4b、4cが挿入されたことにより、空間変調素子9a、9b、9c上の走査左右端での走査速度のアップを抑えることができるため、主走査方向での露光均一性が向上する。
以上のように、シリンドリカルレンズ2cによる集光及びシリンドリカルレンズ4cによる平行化によって、スペース的、コスト的、入手性、露光均一性の観点等多くの面で有利になる。なお、上記の例では、R光源1cの系を例にして述べたが、もちろんG光源1b、B光源1aそれぞれに対しても全く同じことが言える。
本実施の形態では、主走査方向のみにパワーを持つシリンドリカルレンズ2c、4cを用いたが、回転多面鏡3の厚み方向のビーム径によっては、反射面の厚み方向にもシリンドリカルレンズ2c、4cにパワーを持たせて、厚み方向のケラレをなくす構成を持たせることも、当然可能である。
次に、本実施の形態の回転多面鏡3を有する光学系の利点について説明する。
一般に、スペックルノイズを除去する手段として、背景技術で述べた特開平11−64789号公報に開示されているように、複数光源の各光路に回転するレンチキュラーレンズを配置することが考えられている。この場合、レンチキュラーレンズ回転用のモータが光源の個数分だけ必要になるため、特に、複数光源を持つ小型のプロジェクタへの採用は装置サイズやコストの観点で問題となる。また、スペックルノイズは、特開平11−64789号公報にあるようなレンチキュラーレンズ以外でも、一般にガルバノスキャナ等で走査することにより低減させることは可能である。しかし、ガルバノスキャナを特開平11−64789号公報のように、複数光源の各光路に挿入しては、上記のレンチキュラーレンズと同じ理由で、小型化や低コスト化が困難である。
それに対し、本実施の形態の回転多面鏡3によれば、複数の光源1a、1b、1cからの複数ビームを回転多面鏡3にその周囲から入射させることにより、単一の走査手段である回転多面鏡3により複数ビームを走査することができる。このため、複数光源であっても走査手段の数を増やすことなく、スペックルノイズを取ることができ、コスト的、スペース的に有利である。さらには、本実施の形態の回転多面鏡3においては、合波部材10の内部を回転多面鏡3の回転軸の延長線が通るように、回転多面鏡3と合波部材10を上下方向に配置する。そうすることにより、回転多面鏡3から合波部材10までの各複数のビームの光路を略同一にすることが可能となり、各ビームの光路に冗長性が無くなり、さらに大幅な小型化が可能になる。
次に、本実施の形態の回転多面鏡3と合波部材10との位置関係について説明する。ここでは、合波部材10としてクロスプリズムを用いた場合について説明する。もちろん、本実施の形態は、合波部材10をクロスプリズムとしたものに限られるものではない。例えば、2枚のダイクロイックミラーを所定の角度で交差させることによってR、G、Bの各レーザ光を合波しても構わない。
本実施の形態における画像形成装置の光学系においては、図1に示すように、各R、G、B光源1a、1b、1cは、デッドスペース13a、13bの内部に配置されており、その配置により装置の設置場所を有効に活用する。デッドスペース13a、13bに各R、G、B光源1a、1b、1cを配置すると、図3に示すように、各R、G、Bの偏向中心方向16a、16b、16cに対して各R、G、Bの入射ビーム17a、17b、17cはそれぞれ或る角度を成して回転多面鏡3の反射面に入射することになる。具体的には、B光源1aからの入射ビーム17aは、偏向中心方向16aに対して入射角度θ1で入射し、G光源1bからの入射ビーム17bは、偏向中心方向16bに対して入射角度θ2で入射し、R光源1cからの入射ビーム17cは、偏向中心方向16cに対して入射角度θ3で入射している。各入射ビーム17a、17b、17cは、回転多面鏡3の回転により各偏向中心方向16a、16b、16cを中心として走査される。ここで、回転多面鏡3で各偏向中心方向16a、16b、16cに反射したビームが空間変調素子9a、9b、9cの中心に向かうように、各R、G、B光源1a、1b、1cを配置すればよい。具体的には、上記の各入射角度θ1、θ2、θ3を調節すればよい。そうすることにより、回転多面鏡3から後段の光学系は、回転多面鏡3からの各ビームが偏向中心方向16a、16b、16cを中心として左右対称な角度を走査するように設計すれば良く、光学系の設計が容易となる。
上記のように入射角度θ1、θ2、θ3が調節された場合、図3に示すように、回転多面鏡3の回転中心14とクロスプリズム10の中心15とは、所定の距離だけずれて配置されることになる。具体的には、図3に示すように、R、G、Bの各入射ビーム17a、17b、17cを3方向から回転多面鏡3に入射する場合、クロスプリズム10の対角線上の中心15から距離X及びYずれた位置に回転多面鏡3の回転中心14を配置すると良い。
なお、クロスプリズム10の中心15に対して回転多面鏡3の回転中心14がずれたことで、回転多面鏡3の内接円の直径をクロスプリズム10の縦横長さ以下にする必要がある。前述の通り、回転多面鏡3上で入射ビーム17a、17b、17cを主走査方向に集光することで、回転多面鏡3の内接円の直径をクロスプリズム10の縦横長さに対して小さくすることができる。具体的には、例えば、図3のR、G、B各レーザの回転多面鏡3への入射ビーム17a、17b、17cと偏向中心方向16a、16b、16cとの成す角度を50度とし、クロスプリズムの大きさが前述と同じく20mm×20mm×20mmであった場合、回転多面鏡3の内接円の半径を7mm、面数を12面にすることができる。さらに、回転多面鏡3の回転中心14はクロスプリズム10の中心15からX=Y=2.85mmの位置に配置するのが偏向中心方向16a、16b、16cに対して左右均等に走査できる最も良い配置となり、この時、回転多面鏡3はクロスプリズム10よりもはみ出すことなく、装置サイズの律速にならない。
(実施の形態2)
次に、本発明の実施の形態2について説明する。本実施の形態は、上記の実施の形態1の画像形成装置において、簡単な構成により放熱機構を実現する形態である。図4は、本実施の形態における画像形成装置の概略構成を示す側面図である。
通常、プロジェクタ等の画像形成装置を小型化して行くと、装置の表面積が小さくなることから、装置内の放熱も重要になる。しかしながら、そのために新たにファン等を追加すると、小型化に対して逆行する。
そこで、本実施の形態における画像形成装置は、図4に示すように、回転多面鏡3に取り付けられたファン18、をさらに備えている。ファン18は、回転多面鏡3と共に一体となって高速回転し、その高速回転により送風を生成して装置内で発生する熱を装置外に放出する。本実施の形態においては、回転多面鏡3が合波部材10の上部または下部に配置され、装置の中心部に位置している。このため、回転多面鏡3と一体化されたファン18の回転により生成される送風は装置の中心部から装置内全体に行き渡ることになる。この結果、装置内からの発熱は効率よく装置外に放出されることになる。さらに、回転多面鏡3の回転によりファン18を回転させることができるので、ファン18の回転専用の駆動機構を別途設ける必要が無く、安価な構成により放熱機構を実現できる。
(実施の形態3)
次に、本発明の実施の形態3について説明する。本実施の形態は、上記の実施の形態1及び2の画像形成装置において、回転多面鏡の反射面に生じる面倒れを用いてスペックルノイズを除去する形態である。図5は、本実施の形態における画像形成装置に用いられる回転多面鏡の拡大側面図である。以下、図5を用いて、回転多面鏡3の面倒れを用いたスペックルノイズの除去方法について説明する。
回転多面鏡3は、図5に示すように、その製造工程にて反射面と回転軸とが略平行になるように加工されるが、一般にはわずかながら反射面には倒れが生じる。例えば、反射面19aは回転軸に略平行であるが、反射面19bでは下向きに倒れが生じ、また、反射面19cでは上向きに倒れが生じる。一般に、これを面倒れと呼んでいる。このように回転多面鏡3の反射面に面倒れがあると、図5に示すように、回転多面鏡3の各反射面19a、19b、19cで反射したビームは、上下方向にわずかに光路がずれることになる。例えば、反射面19aで反射したビームは略水平に方向20aに進行するが、反射面19bで反射したビームは、下向きに方向20bに進行し、反射面19cで反射したビームは上向きに方向20cに進行することになる。
この状態で回転多面鏡3が回転走査すると、ビームは主走査方向に走査されながら、各面ごとに面倒れの分だけ上下方向(回転多面鏡3の厚み方向)に光路がずれることになり、拡散板7a、7b、7c上での照射領域もずれることになる。このため、スペックルパターンが各反射面19a、19b、19cごとに変動することになる。これにより、視認されるスペックルノイズが低減されることになる。具体的には、通常、拡散板7a、7b、7c上で200μm程度の位置変動があると、スペックルノイズが視認されにくくなることが分かっており、回転多面鏡3から拡散板7a、7b、7cまでの距離を50mmとすると、回転多面鏡3の一回転内で0.12°程度の面倒れがあると、スペックルノイズが視認されにくくなることになる。これも、単一の回転多面鏡3の面倒れ精度のみの規定により、複数ビームのスペックルを一度に低減させることができるため、非常に効果が大きい。
(実施の形態4)
次に、本発明の実施の形態4について説明する。本実施の形態は、上記の実施の形態1及び2の画像形成装置において、光学系を構成する部材を振動させることによりスペックルノイズを除去する形態である。
本実施の形態における画像形成装置においては、図1及び2において、各R、G、Bの各光路に配置された、シリンドリカルレンズ4a、4b、4c、シリンドリカルミラーアレイ5a、5b、5c、反射ミラー6a、6b、6c、拡散板7a、7b、7c、及び、フィールドレンズ8a、8b、8cのうちのいずれかもしくは複数の部材を、上下もしくは左右方向に振動させることによりスペックルノイズを低減させることが可能である。これは、仮に、図5での回転多面鏡3の反射面の面倒れが無い場合でも、前記いずれかの部材を振動させることで、スペックルパターンを変動させて視認されるスペックルノイズを低減させることができる。ただし、複数ビームの場合は、各光路でそれぞれ振動させる必要があるため、モータ等を各光路で振動させる部品に取り付けるか、もしくは単一のモータ等で各光路の振動させる部材を連動させて動かす等の工夫が必要になる。
本実施の形態においては、上記の実施の形態3の回転多面鏡3の面倒れ精度を規定するを同時に行っても良い。そうすることで更なるスペックルノイズの低減が図れる。
本実施の形態においては、上記の振動させる部材を振動させるためのモータを、回転多面鏡3のモータと併用することも考えられる。例えば、図6に示すように、回転多面鏡3の回転軸に周囲方向で厚みの違う円盤形状の部材21を取り付け、回転多面鏡3の直後のシリンドリカルレンズ4a、4b、4cを部材21の厚みに連動して上下するようにしておく。そして、回転多面鏡3は、回転多面鏡3の回転軸に接続されたモータを有する駆動部31により回転駆動されている。こうすることで、回転多面鏡3の回転時には、連動して部材21も回転し、それに伴いシリンドリカルレンズ4a、4b、4cも上下振動することになり、それにより光路が変動し、スペックルパターンが変動し、スペックルノイズが軽減されることになる。これにより、新たなモータの追加なく、低コストで簡便にさらなるスペックルノイズの低減が可能になる。
(実施の形態5)
次に、本発明の実施の形態5について説明する。上記の実施の形態1では、回転多面鏡3の反射面による反射光をシリンドリカルレンズ4a、4b、4cにより再び略平行光とした後、合波部材10に導光するものであった。本実施の形態では、上記の実施の形態1において、回転多面鏡3の反射面による反射の際に略平行化することによりシリンドリカルレンズ4a、4b、4cを不要とする形態である。図7は、本実施の形態における画像形成装置の概略構成を示す上面図である。
本実施の形態の回転多面鏡22は、図7に示すように、主走査方向に所定の曲率を持つ反射面を有している。このため、レーザ光源1a、1b、1cから出射されるレーザ光がシリンドリカルレンズ2a、2b、2cにより回転多面鏡22の主走査方向に集光され、集光したビームは、回転多面鏡22の反射面による反射の際に略平行ビームに変換されている。こうすることで、上記の実施の形態1では必要であった回転多面鏡3の直後のシリンドリカルレンズ4a、4b、4cが不要となる。空間変調素子9a、9b、9c上の走査端での走査速度のアップによる露光強度の均一性を抑えることはできなくなるが、レーザ光源1a、1b、1c毎に持っているシリンドリカルレンズ4a、4b、4cをなくすことができるため、部品点数の削減に寄与することができる。
(実施の形態6)
本発明の実施の形態1〜5においては、画像形成装置としてスクリーン上に画像を投射するプロジェクタ等のディスプレイ装置を用いて説明したが、本発明はこれに限られるものではない。例えば、液晶表示画面を背面から照明する液晶ディスプレイ装置であっても構わない。図8に、本発明の実施の形態6における画像形成装置の概略構成を示す。
本実施の形態における画像形成装置においては、図8に示すように、レーザ光源1a、1b、1cから出射されたレーザ光は、シリンドリカルレンズ2a、2b、2cにて主走査方向に収束された状態で、回転多面鏡3に入射される。回転多面体3の反射面で反射された光は、主走査方向に走査される。
回転多面鏡3で反射されたビームは、シリンドリカルレンズ4a、4b、4cにて略平行光に戻され、略平行光になった各ビームは、シリンドリカルミラーアレイ5a、5b、5cにて反射され、1階部分に配置されている反射ミラー6a、6b、6cに向かう。反射ミラー6a、6b、6cにて反射されたビームは、フィールドレンズ8a、8b、8cにてテレセントリックに変換された後、合波部材10にて合波され、照明光学系23により液晶表示パネルユニット24に照射される。
以上説明したように、本発明の実施の形態1〜6によれば、簡単かつ安価な構成により、プロジェクタ等の画像形成装置の小型化及びスペックル対策を同時に達成することができる。
本発明に係る画像形成装置は、携帯可能な小型プロジェクタとして応用することが可能である。
本発明の実施の形態1における画像形成装置の概略構成を示す上面図である。 本発明の実施の形態1における画像形成装置の概略構成を示す側面図である。 合波部材と回転多面鏡との位置関係及び回転多面鏡に対する各レーザ光の入射角度を説明するための図である。 本発明の実施の形態2における画像形成装置の概略構成を示す側面図である。 本発明の実施の形態3における画像形成装置に用いられる回転多面鏡の拡大側面図である。 本発明の実施の形態4における画像形成装置の概略構成を示す側面図である。 本発明の実施の形態5における画像形成装置の概略構成を示す上面図である。 本発明の実施の形態6における画像形成装置の概略構成を示す上面図である。
符号の説明
1a、1b、1c 光源
2a、2b、2c、4a、4b、4c シリンドリカルレンズ
3、22 回転多面鏡
5a、5b、5c シリンドリカルミラーアレイ
6a、6b、6c 反射ミラー
7a、7b、7c 拡散板
8a、8b、8c フィールドレンズ
9a、9b、9c 空間変調素子
10 合波部材
11 投射レンズ
12 スクリーン
13a、13b デッドスペース
14 回転中心
15 中心
16a、16b、16c 偏向中心方向
17a、17b、17c 入射ビーム
18 ファン
19a、19b、19c 反射面
20a、20b、20c 反射方向
21 円盤形状の部材
23 照明光学系
24 液晶表示パネルユニット
31 駆動部

Claims (15)

  1. 複数のレーザ光源と、
    前記複数のレーザ光源からの複数のレーザ光を走査する回転多面鏡と、
    前記回転多面鏡により走査される複数のレーザ光を合波する合波部材と
    を備え、
    前記回転多面鏡の回転軸の延長線は、前記合波部材を通過することを特徴とする画像形成装置。
  2. 前記回転多面鏡の回転軸の延長線は、前記複数のレーザ光のそれぞれに対応する前記回転多面鏡から前記合波部材までの各光路が略同一の距離を有するよう、前記合波部材の中心の位置から所定の距離ずれていることを特徴とする請求項1に記載の画像形成装置。
  3. 前記複数のレーザ光源のそれぞれから前記回転多面鏡までの各光路上における前記回転多面鏡の近傍に配置された複数の集光素子、をさらに備え、
    前記集光素子は、前記レーザ光源からのレーザ光を前記回転多面鏡によるレーザ光の走査方向に集光して前記回転多面鏡の反射面に出射することを特徴とする請求項1または2に記載の画像形成装置。
  4. 前記複数のレーザ光のそれぞれに対応する前記回転多面鏡から前記合波部材までの各光路上に配置され、前記回転多面鏡により走査されるレーザ光が照射される複数の空間変調素子、をさらに備え、
    前記空間変調素子の被照射面に照射されるレーザ光の照射位置の移動速度が前記被照射面において均一化されるよう、前記回転多面鏡により走査される複数のレーザ光のそれぞれは前記回転多面鏡の近傍において前記空間変調素子の被照射面に略垂直な光に変換されることを特徴とする請求項3に記載の画像形成装置。
  5. 前記回転多面鏡から前記合波部材までの各光路上における前記回転多面鏡の近傍に配置された複数の光平行化素子、をさらに備え、
    前記光平行化素子は、入射されるレーザ光を前記空間変調素子の被照射面に略垂直化することを特徴とする請求項4に記載の画像形成装置。
  6. 前記回転多面鏡の反射面は、前記回転多面鏡によるレーザ光の走査方向に所定の曲率を有し、
    前記所定の曲率は、前記反射面で反射した光が前記空間変調素子の被照射面に略垂直な光となるよう、設定されることを特徴とする請求項4または5に記載の画像形成装置。
  7. 前記回転多面鏡に設置された放熱用ファン、をさらに備え、
    前記放熱用ファンは、前記回転多面鏡と一体となって回転することを特徴とする請求項1〜6のいずれか1項に記載の画像形成装置。
  8. 前記回転多面鏡の各反射面の面倒れ量のばらつきの範囲は、0.12度以上であることを特徴とする請求項1〜7のいずれか1項に記載の画像形成装置。
  9. 前記複数のレーザ光のそれぞれに対応する前記回転多面鏡から前記合波部材までの各光路上に配置された複数の光学系、をさらに備え、
    前記光学系は、前記レーザ光を伝搬する複数の光学素子を有し、前記複数の光学素子のうちの少なくとも1つは、前記光路方向に対して略垂直方向に振動することを特徴とする請求項1〜8のいずれか1項に記載の画像形成装置。
  10. 前記回転多面鏡を回転させる駆動部、をさらに備え、
    前記振動する光学素子は、前記駆動部に接続され、前記駆動部により振動させられることを特徴とする請求項9に記載の画像形成装置。
  11. 前記複数のレーザ光源からの複数のレーザ光のそれぞれは、前記回転多面鏡の周囲から互いに異なる方向から前記回転多面鏡に入射されており、
    前記複数のレーザ光源のそれぞれは、前記回転多面鏡により走査されるレーザ光の走査範囲の中心の位置を通るレーザ光が前記空間変調素子の被照射面の中心の位置に到達するように前記複数のレーザ光のそれぞれの出射方向を設定して配置されていることを特徴とする請求項4〜6のいずれか1項に記載の画像形成装置。
  12. 前記合波部材により合波されるレーザ光が照射されることにより画像を表示する液晶表示パネル、をさらに備えることを特徴とする請求項1〜11のいずれか1項に記載の画像形成装置。
  13. 前記合波部材は、クロスプリズムであることを特徴とする請求項1〜12のいずれか1項に記載の画像形成装置。
  14. 前記合波部材は、所定の角度で交差された2つのダイクロイックミラーであることを特徴とする請求項1〜12のいずれか1項に記載の画像形成装置。
  15. 前記回転多面鏡は、前記合波部材の上部または下部に配置されることを特徴とする請求項1〜14のいずれか1項に記載の画像形成装置。
JP2007231716A 2006-09-12 2007-09-06 画像形成装置 Expired - Fee Related JP4980178B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007231716A JP4980178B2 (ja) 2006-09-12 2007-09-06 画像形成装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006246493 2006-09-12
JP2006246493 2006-09-12
JP2007231716A JP4980178B2 (ja) 2006-09-12 2007-09-06 画像形成装置

Publications (2)

Publication Number Publication Date
JP2008096985A JP2008096985A (ja) 2008-04-24
JP4980178B2 true JP4980178B2 (ja) 2012-07-18

Family

ID=39379831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007231716A Expired - Fee Related JP4980178B2 (ja) 2006-09-12 2007-09-06 画像形成装置

Country Status (1)

Country Link
JP (1) JP4980178B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5979481B2 (ja) * 2012-04-16 2016-08-24 大日本印刷株式会社 照明装置、投射装置および投射型映像表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0530378B1 (en) * 1991-03-20 1999-01-07 Mitsubishi Denki Kabushiki Kaisha Projection type display device
JP3975514B2 (ja) * 1997-08-15 2007-09-12 ソニー株式会社 レーザディスプレイ装置
JP4053212B2 (ja) * 2000-04-05 2008-02-27 松下電器産業株式会社 カラー画像表示装置
JP2002207184A (ja) * 2000-11-09 2002-07-26 Matsushita Electric Ind Co Ltd カラー画像表示装置
JP2003262808A (ja) * 2002-03-07 2003-09-19 Hitachi Ltd 光学ユニット及びそれを用いた映像表示装置
JP3914819B2 (ja) * 2002-05-24 2007-05-16 オリンパス株式会社 照明装置及び画像投影装置
JP4082332B2 (ja) * 2003-04-11 2008-04-30 セイコーエプソン株式会社 表示装置およびプロジェクタ
JP4349048B2 (ja) * 2003-09-22 2009-10-21 セイコーエプソン株式会社 プロジェクタ

Also Published As

Publication number Publication date
JP2008096985A (ja) 2008-04-24

Similar Documents

Publication Publication Date Title
US4474422A (en) Optical scanning apparatus having an array of light sources
JP4301282B2 (ja) プロジェクタ
JP4508743B2 (ja) パターン露光方法およびパターン露光装置
JP4175078B2 (ja) 照明装置及び画像表示装置
JP2007065627A (ja) 携帯可能なプロジェクタ
US20090135376A1 (en) Lighting apparatus, display apparatus, projection display apparatus, lighting method, image display method and image projection method
CN110462488B (zh) 平视显示器装置
JP4924069B2 (ja) 画像表示装置
US7643194B2 (en) Image forming apparatus
JP5590628B2 (ja) 投写型表示装置
WO2011040479A1 (ja) 光学ユニット、投写型映像表示装置及び拡散光学素子
JP2019002983A (ja) 走査型表示装置及び走査型表示システム
JP6447881B2 (ja) 光源装置及び投影装置
CN111665621A (zh) 光扫描装置、显示系统以及移动体
US8226242B2 (en) Projection display for displaying a color image by modulating a plurality of single beams according to image information
JP4980178B2 (ja) 画像形成装置
JP4095428B2 (ja) 光走査光学系、画像投影装置、画像表示システム
JP3757222B2 (ja) 投写型表示装置
JP5991389B2 (ja) 照明装置及びプロジェクター
JP2021135472A (ja) 表示装置、及び移動体
JP4938069B2 (ja) パターン露光方法およびパターン露光装置
JP2008191435A5 (ja)
US20080049288A1 (en) Prism scanner and display device using diffractive optical modulator and prism scanner
JP4661861B2 (ja) 照明装置及び画像表示装置
JP4639691B2 (ja) 光走査装置及び画像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees