JP4972760B2 - Optical element manufacturing method - Google Patents

Optical element manufacturing method Download PDF

Info

Publication number
JP4972760B2
JP4972760B2 JP2005190617A JP2005190617A JP4972760B2 JP 4972760 B2 JP4972760 B2 JP 4972760B2 JP 2005190617 A JP2005190617 A JP 2005190617A JP 2005190617 A JP2005190617 A JP 2005190617A JP 4972760 B2 JP4972760 B2 JP 4972760B2
Authority
JP
Japan
Prior art keywords
mold
optical element
resin
heat insulating
molding space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005190617A
Other languages
Japanese (ja)
Other versions
JP2006044244A (en
Inventor
篤 内藤
幹司 関原
佳弘 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Advanced Layers Inc
Original Assignee
Konica Minolta Advanced Layers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Advanced Layers Inc filed Critical Konica Minolta Advanced Layers Inc
Priority to JP2005190617A priority Critical patent/JP4972760B2/en
Publication of JP2006044244A publication Critical patent/JP2006044244A/en
Application granted granted Critical
Publication of JP4972760B2 publication Critical patent/JP4972760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、光学素子の製造方法、特に、非晶質ポリオレフィン樹脂の光学素子を製造するための製造方法に関する。 The present invention relates to a method of manufacturing an optical element, in particular, it relates to a manufacturing method for manufacturing an optical element made of amorphous polyolefin resin.

近年では、樹脂材料及び射出成形技術の発展により、小型軽量の樹脂製レンズが種々開発されており、光ピックアップ装置や携帯電話などの光学素子としての需要が高まっている。特に、非晶質ポリオレフィン樹脂は、透明性に優れて光学的均質性が高く(複屈折率が小さい)、かつ、微細形状の転写性にも好ましい性質を有しているため、平滑面や回折性能を備えたレンズなどの光学素子の成形に適した材料である(特許文献1参照)。   In recent years, various small and light resin lenses have been developed due to the development of resin materials and injection molding technology, and the demand for optical elements such as optical pickup devices and mobile phones is increasing. In particular, amorphous polyolefin resins have excellent transparency, high optical homogeneity (low birefringence), and favorable properties for transfer of fine shapes. It is a material suitable for molding optical elements such as lenses having performance (see Patent Document 1).

しかし、非晶質ポリオレフィン樹脂にあっては、材料強度が低いため、射出成形する際に樹脂成形空間への充填後の保圧工程や冷却工程で成形品に発生する残留応力によりクラックが生じたり、表面形状に歪みが生じたり、あるいは、複屈折が大きくなるなどの問題点を有していた。   However, since the material strength of amorphous polyolefin resin is low, cracks may occur due to residual stress generated in the molded product during the pressure-holding process or cooling process after filling the resin molding space during injection molding. However, the surface shape is distorted or the birefringence is increased.

一方、樹脂成形では成形サイクルの短縮化(ハイサイクル化)が求められており、この種の要請に応えることも重要である。仮に、何らかの手段によって成形精度の向上が図られたとしても、ハイサイクル化が損なわれるのであれば、必ずしも好ましい手段とは言えない。
特開2002−22907号公報
On the other hand, in resin molding, shortening of the molding cycle (high cycle) is required, and it is important to meet this type of request. Even if the molding accuracy is improved by some means, it is not necessarily a preferable means as long as the high cycle is impaired.
Japanese Patent Laid-Open No. 2002-22907

そこで、本発明の目的は、成形品に生じる残留応力を低減して転写性を向上させるとともに成形品にクラックなどが発生する不具合を効果的に防止でき、かつ、ハイサイクル化を損なうことのない光学素子の製造方法を提供することにある。 Accordingly, an object of the present invention is to improve the transferability by reducing the residual stress generated in the molded product, and to effectively prevent the occurrence of cracks in the molded product, and without impairing the high cycle. An object of the present invention is to provide a method for manufacturing an optical element .

以上の目的を達成するため、第1の形態である光学素子の製造方法は、光学面を成形するための金型コアと、該金型コアを取り囲むように配置された金型キャビティとが組み合わされて構成され、前記金型コアは断熱材によって樹脂成形空間を構成する面が形成されている射出成形用金型を用いて非晶質ポリオレフィン樹脂製の光学素子を射出成形する、光学素子の製造方法であって、前記断熱材はチタン合金又はステンレス鋼により形成されており、溶融させた非晶質ポリオレフィン樹脂を金型内の前記樹脂成形空間に充填するための充填工程の完了時に、該樹脂成形空間を構成する金型部材の表面温度を非晶質ポリオレフィン樹脂のガラス転移点温度以上に保つこと、を特徴とする。前記金型コアは断熱材のみで構成されていてもよく、あるいは、該断熱材を保持するコア型を備えていてもよい。 In order to achieve the above object, a method for manufacturing an optical element according to a first embodiment is a combination of a mold core for molding an optical surface and a mold cavity arranged so as to surround the mold core. The mold core is formed by injection molding an optical element made of an amorphous polyolefin resin using an injection mold in which a surface constituting a resin molding space is formed by a heat insulating material. In the manufacturing method, the heat insulating material is formed of a titanium alloy or stainless steel , and when the filling step for filling the molten amorphous polyolefin resin into the resin molding space in the mold is completed, It is characterized in that the surface temperature of the mold member constituting the resin molding space is maintained at or above the glass transition temperature of the amorphous polyolefin resin. The mold core may be composed of only a heat insulating material, or may be provided with a core mold that holds the heat insulating material.

第1の形態である光学素子の製造方法は、光学面を成形するための金型コアが断熱材によって樹脂成形空間を構成する面が形成されており、溶融させた非晶質ポリオレフィン樹脂が樹脂成形空間に充填されたときの該樹脂成形空間の表面温度が非晶質ポリオレフィン樹脂のガラス転移点温度以上に保たれるため、充填された樹脂の表面部分(スキン層)と中心部分との温度差が小さく、その後の保圧工程や冷却工程で生じる残留応力が低減される。従って、転写性が向上するとともに、成形品にクラックが生じたり、成形品の表面形状に歪みが生じたり、複屈折が大きくなるなどの不具合を防止できる。特に、特殊平滑面や微細形状の転写性が向上する。 In the method for manufacturing an optical element according to the first embodiment, a mold core for molding an optical surface has a surface forming a resin molding space formed of a heat insulating material, and a molten amorphous polyolefin resin is a resin. temperature and the for the surface temperature of the resin molding space is maintained above the glass transition temperature of the amorphous polyolefin resin, the surface portion (skin layer) and the central portion of the filled resin when filled in the molding space The difference is small, and the residual stress generated in the subsequent pressure holding process and cooling process is reduced. Accordingly, the transferability is improved, and problems such as cracks in the molded product, distortions in the surface shape of the molded product, and increased birefringence can be prevented. In particular, the transfer properties of special smooth surfaces and fine shapes are improved.

第2の形態である光学素子の製造方法は、光学面を成形するための金型コアと、該金型コアを取り囲むように配置された金型キャビティとが組み合わされて構成され、前記金型コアは断熱材を備え、該断熱材の表面に別の素材で樹脂成形空間を構成する面が形成されている射出成形用金型を用いて非晶質ポリオレフィン樹脂製の光学素子を射出成形する、光学素子の製造方法であって、前記断熱材はチタン合金又はステンレス鋼により形成されており、溶融させた非晶質ポリオレフィン樹脂を金型内の前記樹脂成形空間に充填するための充填工程の完了時に、該樹脂成形空間を構成する金型部材の表面温度を非晶質ポリオレフィン樹脂のガラス転移点温度以上に保つこと、を特徴とする。前記金型コアは断熱材と樹脂成形空間構成面のみで構成されていてもよく、あるいは、該断熱材を保持するコア型を備えていてもよい。 The method of manufacturing an optical element according to the second embodiment is configured by combining a mold core for molding an optical surface and a mold cavity arranged so as to surround the mold core, and the mold The core is provided with a heat insulating material, and an optical element made of an amorphous polyolefin resin is injection-molded by using an injection mold in which a surface constituting the resin molding space is formed of another material on the surface of the heat insulating material. A method of manufacturing an optical element, wherein the heat insulating material is formed of a titanium alloy or stainless steel, and includes a filling step for filling the molten amorphous polyolefin resin into the resin molding space in a mold. When completed, the surface temperature of the mold member constituting the resin molding space is maintained at a temperature equal to or higher than the glass transition temperature of the amorphous polyolefin resin. The mold core may be constituted only by a heat insulating material and a resin molding space constituting surface, or may be provided with a core mold for holding the heat insulating material.

第2の形態である光学素子の製造方法は、光学面を成形するための金型コアが断熱材を備えており、溶融させた非晶質ポリオレフィン樹脂が樹脂成形空間に充填されたときの該樹脂成形空間の表面温度が非晶質ポリオレフィン樹脂のガラス転移点温度以上に保たれるため、前記第1の形態である光学素子の製造方法と同様に、充填工程後の保圧工程や冷却工程で生じる残留応力が低減され、転写性が向上するとともに、成形品にクラックが生じたり、成形品の表面形状に歪みが生じたり、複屈折が大きくなるなどの不具合を防止できる。特に、特殊平滑面や微細形状の転写性が向上する。 In the method of manufacturing an optical element according to the second aspect, the mold core for molding the optical surface is provided with a heat insulating material, and the molten amorphous polyolefin resin is filled in the resin molding space. Since the surface temperature of the resin molding space is kept above the glass transition temperature of the amorphous polyolefin resin, the pressure holding step and the cooling step after the filling step are the same as in the manufacturing method of the optical element according to the first embodiment. Residual stress generated in the process is reduced, transferability is improved, and cracks in the molded product, distortion in the surface shape of the molded product, and increased birefringence can be prevented. In particular, the transfer properties of special smooth surfaces and fine shapes are improved.

第1及び第2の形態である光学素子の製造方法において、少なくとも移動側金型と固定側金型とを密接させて前記樹脂成形空間を構成し、移動側金型及び固定側金型はそれぞれ前記金型コアと前記金型キャビティとを組み合わせて構成することができる。 In the optical element manufacturing method according to the first and second embodiments , at least the moving-side mold and the fixed-side mold are in close contact to form the resin molding space, and the moving-side mold and the fixed-side mold are respectively The mold core and the mold cavity can be combined.

また、前記断熱材の熱伝導率は20W/m・K以下であることが好ましい。 Moreover, it is preferable that the heat conductivity of the said heat insulating material is 20 W / m * K or less.

第1及び第2の形態である光学素子の製造方法において、前記非晶質ポリオレフィン樹脂はそれぞれ異なるガラス転移点温度を有する複数の成分を混合したものを用いてもよい。この場合、複数の成分のうち最も高いガラス転移点温度以上に前記金型部材の表面温度を保つことが好ましい。 In the optical element manufacturing method according to the first and second embodiments, the amorphous polyolefin resin may be a mixture of a plurality of components having different glass transition temperatures. In this case, it is preferable to keep the surface temperature of the mold member above the highest glass transition temperature among a plurality of components.

以下、本発明に係る光学素子の製造方法の実施例について、添付図面を参照して説明する。 Embodiments of an optical element manufacturing method according to the present invention will be described below with reference to the accompanying drawings.

(金型の構成、図1〜図7参照)
まず、本発明に係る光学素子の製造方法に用いられる種々の射出成形用金型の構成について説明する。なお、図1〜図7においては、共通する部材には同じ符号を付し、重複した説明は省略する。
(Configuration of mold, see FIGS. 1-7)
First, the configuration of various injection molds used in the method for manufacturing an optical element according to the present invention will be described. 1 to 7, common members are denoted by the same reference numerals, and redundant description is omitted.

図1は第1例を示し、この金型1Aは、可動側金型10と固定側金型20とからなる。可動側金型10は、一様に中実な型板11と、一様に中実なコア型12と、断熱材14と、表面加工層15とで構成されている。固定側金型20は、一様に中実な型板21と、一様に中実なコア型22と、断熱材24と、表面加工層25とで構成されている。表面加工層15,25は、レンズなどの成形品の所定形状に対応して仕上げられており、樹脂成形空間30を構成する。コア型12,22、断熱材14,24及び表面加工層25を金型コアと称し、型板11,21を金型キャビティと称する。   FIG. 1 shows a first example, and this mold 1 </ b> A includes a movable mold 10 and a fixed mold 20. The movable-side mold 10 includes a uniformly solid template 11, a uniformly solid core mold 12, a heat insulating material 14, and a surface processing layer 15. The fixed-side mold 20 includes a uniformly solid mold plate 21, a uniformly solid core mold 22, a heat insulating material 24, and a surface processed layer 25. The surface processed layers 15 and 25 are finished corresponding to a predetermined shape of a molded product such as a lens, and constitute a resin molding space 30. The core molds 12 and 22, the heat insulating materials 14 and 24, and the surface processed layer 25 are referred to as mold cores, and the mold plates 11 and 21 are referred to as mold cavities.

型板11,21及びコア型12,22は、通常の金型母材材料、例えば、炭素鋼やステンレス鋼などの金属材料で製作されている。断熱材14,24は、コア型12,22上に溶射したセラミック、ポリイミド樹脂などの有機系材料(耐熱性重合体)、低熱伝導材である焼結セラミック、チタン合金(Ti−6Al−4V、Ti−3Al−2.5V、Ti−6Al−7Nbなど)、サーメット(チタン酸アルミニウム、TiO2−Al23)、ステンレス鋼(フェライト系、オーステナイト系など)、ニッケル合金(インコネル、FeNi)などにより形成されている。前記セラミックとしては、ジルコニア系、窒化珪素系、窒化チタンなどを用いることができる。また、表面加工層15,25は、断熱材14,24上に非鉄金属材料、例えば、ニッケルをメッキして形成されている。 The mold plates 11 and 21 and the core molds 12 and 22 are made of a normal mold base material, for example, a metal material such as carbon steel or stainless steel. The heat insulating materials 14 and 24 are ceramics sprayed on the core molds 12 and 22, organic materials (heat-resistant polymer) such as polyimide resin, sintered ceramics that are low thermal conductive materials, titanium alloys (Ti-6Al-4V, Ti-3Al-2.5V, Ti-6Al-7Nb, etc.), cermet (aluminum titanate, TiO 2 -Al 2 O 3 ), stainless steel (ferrite, austenite, etc.), nickel alloy (Inconel, FeNi), etc. It is formed by. As the ceramic, zirconia, silicon nitride, titanium nitride, or the like can be used. The surface processed layers 15 and 25 are formed on the heat insulating materials 14 and 24 by plating a non-ferrous metal material, for example, nickel.

なお、断熱材14,24は、前記の材料に限定されるものではなく、熱伝導率が型板11,21及びコア型12,22よりも低い材料、例えば、熱伝導率が20W/m・K以下であれば、いかなる材料であってもよい。   The heat insulating materials 14 and 24 are not limited to the above-described materials, and are materials having a lower thermal conductivity than the mold plates 11 and 21 and the core molds 12 and 22, for example, a thermal conductivity of 20 W / m · Any material may be used as long as it is K or less.

図2は第2例を示し、この金型1Bにおいて、断熱材14,24の表面が表面加工面とされている。断熱材14,24には、例えば、ポリイミド樹脂などの耐熱性重合体が用いられている。他の部材及びその材料は第1例である金型1Aと同じである。   FIG. 2 shows a second example. In the mold 1B, the surfaces of the heat insulating materials 14 and 24 are surface processed surfaces. For the heat insulating materials 14 and 24, for example, a heat resistant polymer such as polyimide resin is used. Other members and their materials are the same as those of the mold 1A as the first example.

図3は第3例を示し、この金型1Cにおいて、断熱材14,24は比較的厚い焼結セラミックから形成されている。他の部材及びその材料は第1例である金型1Aと同じである。   FIG. 3 shows a third example. In this mold 1C, the heat insulating materials 14 and 24 are formed of a relatively thick sintered ceramic. Other members and their materials are the same as those of the mold 1A as the first example.

図4は第4例を示し、この金型1Dにおいて、表面加工層25には成形品の表面に回折格子を転写するための微細形状が形成されている。他の部材及びその材料は第1例である金型1Aと同じである。   FIG. 4 shows a fourth example. In this mold 1D, the surface processed layer 25 has a fine shape for transferring the diffraction grating onto the surface of the molded product. Other members and their materials are the same as those of the mold 1A as the first example.

図5は第5例を示し、この金型1Eにおいて、表面加工層15,25の両方には成形品の表面に回折格子を転写するための微細形状が形成されている。他の部材及びその材料は第1例である金型1Aと同じである。   FIG. 5 shows a fifth example. In this mold 1E, both of the surface processed layers 15 and 25 are formed with fine shapes for transferring the diffraction grating onto the surface of the molded product. Other members and their materials are the same as those of the mold 1A as the first example.

図6は第6例を示し、この金型1Fにおいては、金型コアを断熱材14,24と表面加工層15,25とで構成している。この断熱材14,24及び表面加工層15,25の材料は第1例である金型1Aと同じである。また、他の部材及びその材料についても金型1Aと同じである。   FIG. 6 shows a sixth example. In this mold 1F, the mold core is composed of the heat insulating materials 14, 24 and the surface processed layers 15, 25. The materials of the heat insulating materials 14 and 24 and the surface processed layers 15 and 25 are the same as those of the mold 1A as the first example. The other members and their materials are the same as those of the mold 1A.

図7は第7例を示し、この金型1Gにおいては、金型コアを断熱材14,24のみで構成し、該断熱材14,24の表面が表面加工面とされている。この断熱材14,24には、例えば、ポリイミド樹脂などの耐熱性重合体が用いられている。他の部材及びその材料は第1例である金型1Aと同じである。   FIG. 7 shows a seventh example. In the mold 1G, the mold core is composed of only the heat insulating materials 14 and 24, and the surfaces of the heat insulating materials 14 and 24 are the surface processed surfaces. For the heat insulating materials 14 and 24, for example, a heat resistant polymer such as polyimide resin is used. Other members and their materials are the same as those of the mold 1A as the first example.

製造方法の実施例、図8及び図9参照)
本発明に係る製造方法について、図8及び図9を参照して説明する。図8は金型内における樹脂の温度と圧力の変化を時間(横軸)に沿って示している。また、図9は充填完了時(曲線e参照)での成形品の温度分布、及び、成形品を金型から取り出す離型時(曲線f参照)での成形品の温度分布を示している。
(Refer to Example of manufacturing method, FIG. 8 and FIG. 9)
The manufacturing method according to the present invention will be described with reference to FIGS. FIG. 8 shows changes in the temperature and pressure of the resin in the mold along the time (horizontal axis). FIG. 9 shows the temperature distribution of the molded product at the completion of filling (see curve e) and the temperature distribution of the molded product at the time of mold release (see curve f) when the molded product is removed from the mold.

まず、所定の温度に溶融された非晶質ポリオレフィン樹脂を樹脂成形空間30内に充填し、充填が完了すると直ちに保圧工程に入る。保圧工程は樹脂成形空間30に充填された樹脂が温度低下によって若干収縮する分を補うために樹脂に対して所定の圧力を保持しておく工程である。保圧工程の後、冷却工程(自然冷却)に入る。図8において、曲線aは樹脂成形空間30内における樹脂の圧力変化を示している。   First, the amorphous polyolefin resin melted at a predetermined temperature is filled into the resin molding space 30, and immediately after the filling is completed, the pressure holding process is started. The pressure holding step is a step of maintaining a predetermined pressure on the resin in order to compensate for the amount of shrinkage of the resin filled in the resin molding space 30 due to a decrease in temperature. After the pressure holding step, the cooling step (natural cooling) is entered. In FIG. 8, a curve a indicates a change in resin pressure in the resin molding space 30.

樹脂成形空間30に充填された樹脂の表面温度は曲線bに示すように変化し、該樹脂の中心温度は曲線cに示すように変化する。非晶質ポリオレフィン樹脂が樹脂成形空間30に充填されたときの樹脂成形空間30の表面温度(即ち、充填された樹脂の表面温度、図8の点A参照)は、非晶質ポリオレフィン樹脂のガラス転移点温度以上である。   The surface temperature of the resin filled in the resin molding space 30 changes as shown by a curve b, and the center temperature of the resin changes as shown by a curve c. The surface temperature of the resin molding space 30 when the amorphous polyolefin resin is filled in the resin molding space 30 (that is, the surface temperature of the filled resin, see point A in FIG. 8) is the glass of the amorphous polyolefin resin. Above the transition temperature.

このように、非晶質ポリオレフィン樹脂が樹脂成形空間30に充填されたときの樹脂成形空間30の表面温度が該樹脂のガラス転移点温度以上に保たれるため、充填された樹脂の表面部分(スキン層)と中心部分との温度差Bが小さく、保圧工程や冷却工程での残留応力が低減される。従って、成形品にクラックが生じたり、表面形状に歪みが生じたり、あるいは、複屈折が大きくなるなどの不具合を防止できる。また、平滑面や微細形状の転写性が向上する。   Thus, since the surface temperature of the resin molding space 30 when the amorphous polyolefin resin is filled in the resin molding space 30 is maintained at or above the glass transition temperature of the resin, the surface portion of the filled resin ( The temperature difference B between the skin layer) and the central portion is small, and the residual stress in the pressure holding process and the cooling process is reduced. Accordingly, it is possible to prevent problems such as cracks in the molded product, distortions in the surface shape, and increased birefringence. In addition, transferability of smooth surfaces and fine shapes is improved.

樹脂が樹脂成形空間30に充填されたときの樹脂成形空間30の表面温度がガラス転移点温度以上を保つのは、樹脂成形空間30の周囲に断熱材14,24が配置されていることによる。   The reason why the surface temperature of the resin molding space 30 when the resin is filled in the resin molding space 30 is equal to or higher than the glass transition temperature is that the heat insulating materials 14 and 24 are arranged around the resin molding space 30.

ちなみに、非晶質ポリオレフィン樹脂のガラス転移点温度の具体例を示すと、例えば、日本ゼオン社製ZEONEX、E48Rは139℃、同じくZEONEX、330Rは123℃である。さらに、三井石油化学工業社製APEL、APL5014は135℃であり、JSR社製ARTON、FX4727は125℃である。   Incidentally, specific examples of the glass transition temperature of the amorphous polyolefin resin are, for example, 139 ° C for ZEONEX and E48R manufactured by Nippon Zeon, and 123 ° C for ZEONEX and 330R. Further, APEL and APL5014 manufactured by Mitsui Petrochemical Industries, Ltd. are 135 ° C., and ARTON and FX4727 manufactured by JSR are 125 ° C.

なお、非晶質ポリオレフィン樹脂はそれぞれ異なるガラス転移点温度を有する複数の成分を混合したものが成形材料として使用される場合もある。この場合は、非晶質ポリオレフィン樹脂が樹脂成形空間30に充填されたときの樹脂成形空間30の表面温度を最も高いガラス転移点温度以上に保つようにすればよい。   In some cases, the amorphous polyolefin resin is a mixture of a plurality of components having different glass transition temperatures. In this case, the surface temperature of the resin molding space 30 when the amorphous polyolefin resin is filled in the resin molding space 30 may be kept above the highest glass transition temperature.

一方、図8に示す曲線dは、金型に断熱材を設けない従来例での非晶質ポリオレフィン樹脂の表面温度の変化を表している。この場合、樹脂成形空間30に充填されたときの樹脂の表面温度は図8の点A’であり、樹脂の表面部分と中心部分との温度差B’は比較的大きい。材料強度の低い非晶質ポリオレフィン樹脂にあっては、温度差B’では残留応力にて成形品にクラックが生じたり、表面形状に歪みが生じたり、複屈折が大きくなる。本発明ではこのような不具合を防止することができる。   On the other hand, a curve d shown in FIG. 8 represents a change in the surface temperature of the amorphous polyolefin resin in the conventional example in which a heat insulating material is not provided in the mold. In this case, the surface temperature of the resin when the resin molding space 30 is filled is a point A ′ in FIG. 8, and the temperature difference B ′ between the surface portion and the central portion of the resin is relatively large. In the case of an amorphous polyolefin resin having a low material strength, the temperature difference B 'causes cracks in the molded product due to residual stress, distortion in the surface shape, and increased birefringence. In the present invention, such a problem can be prevented.

また、図9において、曲線eは充填完了時での成形品の温度分布を示している。充填完了時における成形品の表面温度は、曲線e上の点Aであり、ガラス転移点温度以上に保たれている。   In FIG. 9, a curve e indicates the temperature distribution of the molded product when filling is completed. The surface temperature of the molded product at the completion of filling is a point A on the curve e, and is kept at the glass transition temperature or higher.

成形品を金型から取り出すことができるのは、少なくとも成形品の表面が熱変形温度以下にまで低下した時点であり、この時点を離型可能温度として図8及び図9に示している。図9の曲線fは離型時での成形品の温度分布を示し、離型時における成形品の表面温度は、曲線f上の点Cであり、離型可能温度以下である。   The molded product can be taken out from the mold at least when the surface of the molded product is lowered to a temperature equal to or lower than the heat deformation temperature, and this time is shown in FIGS. The curve f in FIG. 9 shows the temperature distribution of the molded product at the time of mold release, and the surface temperature of the molded product at the time of mold release is a point C on the curve f, which is below the mold release possible temperature.

一方、比較のため、図10に、金型に断熱材を設けない従来例での成形品の温度分布を示す。曲線e’は充填完了時での成形品の温度分布、曲線f’は離型時での成形品の温度分布をそれぞれ示している。曲線e’,f’から明らかなように、充填完了時における成形品の表面温度は金型設定温度に相当し、ガラス転移点温度以下である。   On the other hand, for comparison, FIG. 10 shows a temperature distribution of a molded product in a conventional example in which a heat insulating material is not provided in a mold. Curve e 'represents the temperature distribution of the molded product at the completion of filling, and curve f' represents the temperature distribution of the molded product at the time of mold release. As is apparent from the curves e 'and f', the surface temperature of the molded product at the completion of filling corresponds to the mold setting temperature and is equal to or lower than the glass transition temperature.

(成形サイクル)
以上説明した本発明に係る製造方法において、非晶質ポリオレフィン樹脂が樹脂成形空間に充填されたときの樹脂成形空間の表面温度を該樹脂のガラス転移点温度以上に保つことは、樹脂成形空間の周囲に断熱材を配置することにより達成している。
(Molding cycle)
In the production method according to the present invention described above, maintaining the surface temperature of the resin molding space when the amorphous polyolefin resin is filled in the resin molding space is equal to or higher than the glass transition temperature of the resin. This is achieved by placing thermal insulation around.

充填時において樹脂成形空間の表面温度を樹脂のガラス転移点温度以上に保つことは、本発明の製造方法以外に、例えば、金型を強制的により高い温度まで加熱する方法(ヒートサイクル成形)や、樹脂成形空間を構成する部材を熱容量の大きいバルク材で被覆する方法を採用することが考えられる。 Keeping the surface temperature of the resin molding space above the glass transition temperature of the resin at the time of filling is not limited to the production method of the present invention, for example, a method of forcibly heating the mold to a higher temperature (heat cycle molding) It is conceivable to employ a method of covering a member constituting the resin molding space with a bulk material having a large heat capacity.

しかし、金型を強制的に加熱して充填時における樹脂成形空間の表面をガラス転移点温度に保つことは、保圧工程後に成形品を取り出すまでに強制的な冷却工程を必要として時間を要し、ハイサイクル化を損なう。また、バルク材を用いる方法も、バルク材の冷却に時間を要するので、同様に、ハイサイクル化を損なう。   However, keeping the surface of the resin molding space at the glass transition temperature at the time of filling by forcibly heating the mold requires a forced cooling step before taking out the molded product after the pressure-holding step, which takes time. However, the high cycle is impaired. Also, in the method using a bulk material, since it takes time to cool the bulk material, the high cycle is similarly impaired.

これらに対して、本発明は金型に断熱材を設けるだけで好ましい温度コントロールが可能であり、成形品が取出し可能な温度に低下するまでの時間が短くて済み、ハイサイクル化を損なうことがない。   On the other hand, the present invention enables preferable temperature control only by providing a heat insulating material in the mold, and it takes a short time until the molded article is lowered to a temperature at which the molded product can be taken out. Absent.

(他の実施例)
なお、本発明に係る光学素子の製造方法は前記実施例に限定するものではなく、その要旨の範囲内で種々に変更できる。
(Other examples)
In addition, the manufacturing method of the optical element which concerns on this invention is not limited to the said Example, It can change variously within the range of the summary.

特に、金型構造の細部は任意であり、使用材料として前記実施例で示した具体的な材料は例示であることは勿論である。また、図1〜図7において、金型10が固定側であり、金型20が可動側であってもよい。あるいは、中間金型部材を備えたスリープレート方式の成形用金型であってもよい。   In particular, the details of the mold structure are arbitrary, and it is needless to say that the specific materials shown in the above-described embodiments are examples. 1 to 7, the mold 10 may be a fixed side, and the mold 20 may be a movable side. Alternatively, it may be a sleep rate type molding die provided with an intermediate die member.

本発明に係る製造方法で使用される金型の第1例を示す断面図である。It is sectional drawing which shows the 1st example of the metal mold | die used with the manufacturing method which concerns on this invention. 本発明に係る製造方法で使用される金型の第2例を示す断面図である。It is sectional drawing which shows the 2nd example of the metal mold | die used with the manufacturing method which concerns on this invention. 本発明に係る製造方法で使用される金型の第3例を示す断面図である。It is sectional drawing which shows the 3rd example of the metal mold | die used with the manufacturing method which concerns on this invention. 本発明に係る製造方法で使用される金型の第4例を示す断面図である。It is sectional drawing which shows the 4th example of the metal mold | die used with the manufacturing method which concerns on this invention. 本発明に係る製造方法で使用される金型の第5例を示す断面図である。It is sectional drawing which shows the 5th example of the metal mold | die used with the manufacturing method which concerns on this invention. 本発明に係る製造方法で使用される金型の第6例を示す断面図である。It is sectional drawing which shows the 6th example of the metal mold | die used with the manufacturing method which concerns on this invention. 本発明に係る製造方法で使用される金型の第7例を示す断面図である。It is sectional drawing which shows the 7th example of the metal mold | die used with the manufacturing method which concerns on this invention. 本発明に係る製造方法において、金型内おける樹脂の温度と圧力の変化を示すグラフである。It is a graph which shows the temperature of the resin in a metal mold | die, and the change of a pressure in the manufacturing method which concerns on this invention. 本発明に係る製造方法において、金型内における成形品の温度分布を示すグラフである。It is a graph which shows the temperature distribution of the molded article in a metal mold | die in the manufacturing method which concerns on this invention. 従来の成形方法において、金型内における成形品の温度分布を示すグラフである。It is a graph which shows the temperature distribution of the molded article in a metal mold | die in the conventional shaping | molding method.

1A〜1G…金型
11,21…型板
12,22…コア型
14,24…断熱材
15,25…表面加工層
30…樹脂成形空間
DESCRIPTION OF SYMBOLS 1A-1G ... Metal mold | die 11,21 ... Template 12,22 ... Core type | mold 14,24 ... Thermal insulation 15,25 ... Surface processed layer 30 ... Resin molding space

Claims (7)

光学面を成形するための金型コアと、該金型コアを取り囲むように配置された金型キャビティとが組み合わされて構成され、前記金型コアは断熱材によって樹脂成形空間を構成する面が形成されている射出成形用金型を用いて非晶質ポリオレフィン樹脂製の光学素子を射出成形する、光学素子の製造方法であって、
前記断熱材はチタン合金又はステンレス鋼により形成されており、
溶融させた非晶質ポリオレフィン樹脂を金型内の前記樹脂成形空間に充填するための充填工程の完了時に、該樹脂成形空間を構成する金型部材の表面温度を非晶質ポリオレフィン樹脂のガラス転移点温度以上に保つこと、
を特徴とする光学素子の製造方法。
A mold core for molding an optical surface and a mold cavity arranged so as to surround the mold core are combined, and the mold core has a surface that forms a resin molding space by a heat insulating material. An optical element manufacturing method for injection molding an optical element made of an amorphous polyolefin resin using a formed injection mold,
The heat insulating material is formed of titanium alloy or stainless steel,
At the completion of the filling process for filling the molten amorphous polyolefin resin into the resin molding space in the mold, the surface temperature of the mold member constituting the resin molding space is changed to a glass transition of the amorphous polyolefin resin. Keep above the point temperature,
A method for producing an optical element characterized by the above.
光学面を成形するための金型コアと、該金型コアを取り囲むように配置された金型キャビティとが組み合わされて構成され、前記金型コアは断熱材を備え、該断熱材の表面に別の素材で樹脂成形空間を構成する面が形成されている射出成形用金型を用いて非晶質ポリオレフィン樹脂製の光学素子を射出成形する、光学素子の製造方法であって、
前記断熱材はチタン合金又はステンレス鋼により形成されており、
溶融させた非晶質ポリオレフィン樹脂を金型内の前記樹脂成形空間に充填するための充填工程の完了時に、該樹脂成形空間を構成する金型部材の表面温度を非晶質ポリオレフィン樹脂のガラス転移点温度以上に保つこと、
を特徴とする光学素子の製造方法。
A mold core for molding an optical surface and a mold cavity arranged so as to surround the mold core are combined, and the mold core includes a heat insulating material, and is provided on the surface of the heat insulating material. A method of manufacturing an optical element, wherein an optical element made of an amorphous polyolefin resin is injection-molded using an injection mold in which a surface constituting a resin molding space is formed of another material,
The heat insulating material is formed of titanium alloy or stainless steel,
At the completion of the filling process for filling the molten amorphous polyolefin resin into the resin molding space in the mold, the surface temperature of the mold member constituting the resin molding space is changed to a glass transition of the amorphous polyolefin resin. Keep above the point temperature,
A method for producing an optical element characterized by the above.
前記非晶質ポリオレフィン樹脂はそれぞれ異なるガラス転移点温度を有する複数の成分を混合したものを用いることを特徴とする請求項1又は請求項2に記載の光学素子の製造方法。   The method for producing an optical element according to claim 1 or 2, wherein the amorphous polyolefin resin is a mixture of a plurality of components each having a different glass transition temperature. 前記複数の成分のうち最も高いガラス転移点温度以上に前記金型部材の表面温度を保つことを特徴とする請求項3に記載の光学素子の製造方法。   The method for manufacturing an optical element according to claim 3, wherein the surface temperature of the mold member is maintained at a temperature equal to or higher than the highest glass transition temperature among the plurality of components. 前記金型コアは前記断熱材を保持するコア型を備えていることを特徴とする請求項1又は請求項4に記載の光学素子の製造方法。   The method of manufacturing an optical element according to claim 1, wherein the mold core includes a core mold that holds the heat insulating material. 少なくとも移動側金型と固定側金型とを密接させて前記樹脂成形空間を構成し、移動側金型及び固定側金型はそれぞれ前記金型コアと前記金型キャビティとを組み合わせて構成されていることを特徴とする請求項1ないし請求項5のいずれかに記載の光学素子の製造方法。   At least the moving mold and the fixed mold are in close contact to form the resin molding space, and the moving mold and the fixed mold are each configured by combining the mold core and the mold cavity. 6. The method of manufacturing an optical element according to claim 1, wherein 前記断熱材の熱伝導率は20W/m・K以下であることを特徴とする請求項1ないし請求項6のいずれかに記載の光学素子の製造方法。   The method of manufacturing an optical element according to claim 1, wherein the heat conductivity of the heat insulating material is 20 W / m · K or less.
JP2005190617A 2004-06-29 2005-06-29 Optical element manufacturing method Active JP4972760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005190617A JP4972760B2 (en) 2004-06-29 2005-06-29 Optical element manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004191834 2004-06-29
JP2004191834 2004-06-29
JP2005190617A JP4972760B2 (en) 2004-06-29 2005-06-29 Optical element manufacturing method

Publications (2)

Publication Number Publication Date
JP2006044244A JP2006044244A (en) 2006-02-16
JP4972760B2 true JP4972760B2 (en) 2012-07-11

Family

ID=36023335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005190617A Active JP4972760B2 (en) 2004-06-29 2005-06-29 Optical element manufacturing method

Country Status (1)

Country Link
JP (1) JP4972760B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919413B2 (en) * 2007-03-02 2012-04-18 株式会社リコー Method and apparatus for manufacturing plastic molded product
JP5120752B2 (en) * 2008-02-14 2013-01-16 独立行政法人産業技術総合研究所 Injection molding equipment
JP2009190276A (en) * 2008-02-14 2009-08-27 National Institute Of Advanced Industrial & Technology Injection molding method
WO2009122862A1 (en) * 2008-03-31 2009-10-08 コニカミノルタオプト株式会社 Optical element manufacturing method, optical element molding die, and optical element
JP5360679B2 (en) * 2008-12-12 2013-12-04 株式会社リコー Thermal control mold for injection molding and manufacturing method thereof
JP2010179586A (en) * 2009-02-06 2010-08-19 Tatsuhiko Aizawa Material for forming mold, mold material, molding mold, and method for manufacturing optical lens element
CN102821926A (en) * 2010-03-30 2012-12-12 柯尼卡美能达先进多层薄膜株式会社 Die
JP5951987B2 (en) * 2011-12-27 2016-07-13 Hoya株式会社 Manufacturing method of plastic lens
JP6085450B2 (en) * 2012-10-31 2017-02-22 ポリプラスチックス株式会社 Nested manufacturing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211619A (en) * 1985-07-09 1987-01-20 Ricoh Co Ltd Process of injection molding
JP2537231B2 (en) * 1987-05-07 1996-09-25 キヤノン株式会社 Plastic lens molding method
JP3476841B2 (en) * 1991-09-27 2003-12-10 オリンパス株式会社 Plastic lens injection molding method
JPH05154880A (en) * 1991-12-06 1993-06-22 Hitachi Ltd Metal mold and method for molding plastic lens
JP3382281B2 (en) * 1993-01-22 2003-03-04 株式会社太洋工作所 Mold for thermoplastic resin injection molding
JP3385491B2 (en) * 1994-06-21 2003-03-10 コニカ株式会社 Injection molding method
JP4135304B2 (en) * 2000-09-25 2008-08-20 コニカミノルタオプト株式会社 Manufacturing method of mold for molding optical element
JP2002240110A (en) * 2001-02-19 2002-08-28 Olympus Optical Co Ltd Method for injection molding plastic optical element
JP2002022907A (en) * 2001-05-21 2002-01-23 Konica Corp Plastic lens
JP2003084195A (en) * 2001-06-26 2003-03-19 Mitsumi Electric Co Ltd Plastic aspherical collimator lens

Also Published As

Publication number Publication date
JP2006044244A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP4972760B2 (en) Optical element manufacturing method
JP4815898B2 (en) Injection mold and injection molding method
JP4815897B2 (en) Injection mold and injection molding method
US20070231575A1 (en) Apparatus and method for molding object with enhanced transferability of transfer face and object made by the same
US20130249128A1 (en) Injection mold and method for molding an optical element
CN1715034B (en) Injection mold and injection molding apparatus
JP4135304B2 (en) Manufacturing method of mold for molding optical element
JP4650514B2 (en) Optical element molding method
JP2009255468A (en) Two-color molding die and two-color molding method
JP4919413B2 (en) Method and apparatus for manufacturing plastic molded product
JP4057385B2 (en) Molding method of plastic molded product and injection mold
JP2009113423A (en) Mold for injection molding
JP2001079889A (en) Mold
JP5203259B2 (en) Manufacturing method of optical components
JPWO2008035521A1 (en) Manufacturing method of mold for molding optical element
JP2006044246A (en) Injection mold and injection molding method
JP2007261142A (en) Mold for injection-molding optical lens
JP2006273655A (en) Method for designing molding face shape in mold
JP4952614B2 (en) Glass lens molding equipment
JP2005305797A (en) Optical element molding mold, optical element molding method, and optical element
JP4751818B2 (en) Mold for forming and manufacturing method thereof
JP5740028B2 (en) Lens mold
JP2005162547A (en) Optical element shaping die, optical element manufacturing apparatus and method for manufacturing optical element
JP2010143129A (en) Method for molding resin lens
JP2007008172A (en) Mold assembly for molding thermoplastic resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

R150 Certificate of patent or registration of utility model

Ref document number: 4972760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350