WO2009122862A1 - Optical element manufacturing method, optical element molding die, and optical element - Google Patents

Optical element manufacturing method, optical element molding die, and optical element Download PDF

Info

Publication number
WO2009122862A1
WO2009122862A1 PCT/JP2009/054416 JP2009054416W WO2009122862A1 WO 2009122862 A1 WO2009122862 A1 WO 2009122862A1 JP 2009054416 W JP2009054416 W JP 2009054416W WO 2009122862 A1 WO2009122862 A1 WO 2009122862A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
mold
molding
optical
manufacturing
Prior art date
Application number
PCT/JP2009/054416
Other languages
French (fr)
Japanese (ja)
Inventor
基 森
智信 徳永
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to CN2009801109827A priority Critical patent/CN101980848A/en
Priority to JP2010505509A priority patent/JPWO2009122862A1/en
Publication of WO2009122862A1 publication Critical patent/WO2009122862A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3828Moulds made of at least two different materials having different thermal conductivities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • B29C45/372Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings provided with means for marking or patterning, e.g. numbering articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the present invention relates to a method for manufacturing an optical element using injection molding, an optical element molding die for performing the manufacturing method, and an optical element obtained by the molding die.
  • BD Blu-ray Disc
  • An optical pickup device using such a high storage capacity disk has been put into practical use.
  • the objective lens used for recording or reproducing on a high storage capacity disk using such a blue-violet laser not only supports a short wavelength different from that of the conventional objective lens for DVD, but also more than the conventional objective lens. Higher NA is required.
  • the surface is provided with fine uneven shapes for imparting optical path differences such as diffraction patterns.
  • optical path differences such as diffraction patterns.
  • a slight shape error reduces the light utilization efficiency of each light beam.
  • a low thermal conductivity material having a thermal conductivity of a predetermined value or less is used as a base material (base material), and a low hardness material coated on the surface of the base material is cut.
  • a technique in which molding is performed using a molding die provided with a mold member (nesting) on which a molding surface for transferring a fine shape of an optical element is formed see Patent Document 1).
  • Japanese Patent Application Laid-Open No. 2004-228561 describes that after molding, the mold is separated and the mold is opened, and then the optical element is released from the mold by projecting a mold member (nesting). JP 2004-284110 A
  • Patent Document 1 since a mold member (nesting) configured using a low heat conductive material as a base material is used, the resin filled in the mold member can be gradually cooled to a desired level. The mold member is sufficiently filled up to the finely shaped tip to enable highly accurate transfer. However, since the optical element is projected by the mold member (nesting), the slide of the mold member for molding the optical surface is performed. There is a problem that the eccentric state of the optical surface is not stable when the optical element is repeatedly molded by the movement.
  • the sprue or runner formed at the time of molding is generally gripped by the take-out member and the optical element held by the mold member is peeled off.
  • the fine shape is transferred to the tip details with high precision by the mold member composed of the low thermal conductive material as the base material.
  • high-precision transfer of fine shapes and suppression of eccentricity are important problems.
  • the present invention provides a good separation that prevents collapse of the concavo-convex shape without making the molding cycle time longer than necessary in molding an optical element having a concavo-convex shape such as an optical path difference providing structure having a fine shape.
  • An object of the present invention is to provide a method of manufacturing an optical element that can realize high-accuracy transfer while ensuring moldability, and that can stabilize aberration of an optical surface and reduce aberrations even in repeated molding.
  • Another object of the present invention is to provide an optical element molding die for realizing the above-described optical element manufacturing method, and an optical element molded thereby.
  • a first optical element manufacturing method is (a) an optical element manufacturing method having an optical function part having an uneven shape on an optical surface and a flange part, (B) A nesting having a transfer surface for transferring the concavo-convex shape and having a base material made of a low thermal conductive material having a thermal conductivity of 20 W / m ⁇ K or less is at least one of a fixed mold and a movable mold A molding step of molding an optical element by injection molding using a pair of molds provided in the above, and (c) an optical element molded by using a protruding member while separating the fixed mold and the movable mold And a release step of releasing the optical element by protruding a portion other than the optical surface.
  • a nesting provided with a transfer surface for transferring the concavo-convex shape and having a base made of a low thermal conductive material having a thermal conductivity of 20 W / m ⁇ K or less is fixed to a fixed metal. Since a pair of molds provided in at least one of a mold and a movable mold is used, the resin filled in the cavity between the pair of molds can be gradually cooled to a desired level without quenching, and molding It is possible to achieve highly accurate transfer of the uneven shape of the optical element while preventing an increase in cycle time.
  • the optical element in the mold releasing step, is released from the nest having the uneven shape by protruding a part other than the optical surface of the optical element formed using the protruding member.
  • High-precision transfer can be realized by preventing the collapse of the concavo-convex shape and ensuring good releasability.
  • the protruding member since the protruding member is used to release the insert from the nest having the concavo-convex shape, the eccentric accuracy of the optical surface can be increased as compared with the case where the insert is moved forward and backward to release.
  • the second optical element manufacturing method is (a) an optical element manufacturing method having an optical function part having an uneven shape on an optical surface and a flange part, and (b) an uneven shape.
  • a heat conduction suppressing layer composed of a low heat conductive material having a heat conductivity of 20 W / m ⁇ K or less between a substrate and a surface processing layer that forms the transfer surface.
  • the resin filled in the cavity between the pair of molds can be gradually cooled to a desired level without quenching due to the presence of the heat conduction suppressing layer provided in the insert, and the time of the molding cycle It is possible to achieve highly accurate transfer of the uneven shape of the optical element while preventing the increase. Further, in the above manufacturing method, the part other than the optical surface of the optical element formed by using the protruding member is released from the nest having the concavo-convex shape, so that the decentering accuracy of the optical surface is improved while releasing. It is possible to prevent the collapse of the uneven shape of the film and to secure a good releasability and realize a highly accurate transfer.
  • At least a part of the transfer portion for transferring the shape of the flange portion has a low thermal conductivity of 20 W / m ⁇ K or less. It consists of In this case, not only the base material and the low thermal conductive material but also the transfer part for the flange part provided on the peripheral side (hereinafter also referred to as “flange forming part”) can be managed, so a pair of molds The rapid cooling of the resin filled in the cavity between them can be suppressed, and the cooling rate of the optical element can be adjusted more precisely.
  • At least a part of the protruding member is made of a low thermal conductive material having a thermal conductivity of 20 W / m ⁇ K or less. In this case, rapid heat dissipation by the protruding member can be prevented, and rapid cooling of the resin filled in the cavity between the pair of molds can be suppressed.
  • the transfer part for transferring the shape of the flange part may be made of a low heat conductive material.
  • the transfer part for the flange part is not made of a low heat conductive material, and the protrusion member is made of a low heat conductive material, thereby further preventing the molding cycle time from being prolonged while ensuring high transfer. Can do.
  • the base material of the flange portion is made of a low heat conductive material such as ceramic, it is preferable because it is difficult to process a complicated shape of the transfer portion for the flange portion and the cost is increased.
  • the projecting member includes a plurality of members projecting portions other than the optical surface of the molded optical element, and the gate formed when molding the optical element among the plurality of members.
  • the member protruding from the near side and the member protruding from the side away from the gate are formed of materials having different thermal conductivities. In this case, the slow cooling of the molten resin can be finely adjusted between the side close to the gate and the side away from the gate.
  • the member protruding from the side away from the gate is formed of a material having lower thermal conductivity than the member protruding from the side closer to the gate, the ease of cooling the molten resin on the side away from the gate is reduced. As a result, substantially uniform cooling can be performed for the entire optical element. Thereby, it is possible to suppress aberration deterioration due to surface shape accuracy error, and it is possible to obtain an optical element suitable for an objective lens for an optical pickup device having an NA of 0.80 or more.
  • the protruding member is a member that transfers a part of the shape of the flange part and protrudes a part of the flange part, and transfers the shape of the flange part.
  • the transfer portion excluding the portion transferred by the protruding member and the protruding member are formed of materials having different thermal conductivities.
  • the movable mold includes a base made of a low heat conductive material or a nesting having a heat conduction suppressing layer.
  • the concavo-convex shape can be transferred to the optical element by the nesting transfer surface provided on the movable mold side, and high transfer of the concavo-convex shape can be achieved by releasing with the protruding member.
  • the fixed mold includes a base made of a low heat conductive material or a nesting having a heat conduction suppressing layer.
  • the concavo-convex shape can be transferred to the optical element by the nesting transfer surface provided on the fixed mold side, and when the protruding member is opened between the fixed mold and the movable mold, the concavo-convex shape of the optical element can be transferred. High transfer of such irregularities can be achieved without affecting the collapse.
  • the optical element is a lens.
  • a high-precision and high-performance lens having a fine uneven shape such as a diffraction pattern, for example, an objective lens for an optical pickup can be provided.
  • the first optical element molding die is (a) an optical element molding mold for molding an optical element by a pair of molds, and (b) at least one of the pair of molds is: A nesting having a transfer surface for transferring the concavo-convex shape and having a base material made of a low thermal conductive material having a thermal conductivity of 20 W / m ⁇ K or less, (c) a mold member for supporting the nesting, d) A protruding member that releases the optical element by protruding a part other than the optical surface of the optical element formed when the pair of molds are separated from each other.
  • the optical element molding die includes a nesting in which a base material is composed of a low thermal conductive material, the resin filled in the cavity between the pair of molds can be gradually cooled to a desired level, and a molding cycle can be performed. It is possible to achieve high transfer of the concave and convex shape of the optical element while preventing the increase in time.
  • the optical element molding die includes a protruding member that is released by protruding a portion other than the optical surface of the molded optical element, the unevenness of the concave and convex shape at the time of releasing is lost while improving the decentering accuracy of the optical surface. It is possible to achieve high-accuracy transfer while ensuring good releasability.
  • the second optical element molding die is (a) an optical element molding die for molding an optical element by a pair of molds, and (b) at least one of the pair of molds is: Heat transfer suppression comprising a transfer surface for transferring irregularities, and comprising a low thermal conductivity material having a thermal conductivity of 20 W / m ⁇ K or less between the surface processed layer forming the transfer surface and the substrate A nest having a layer; (c) a mold member that supports the nest; and (d) a portion other than the optical surface of the optical element formed when the pair of molds are separated from each other, thereby separating the optical element.
  • the optical element molding die includes a nesting having a heat conduction suppressing layer made of a low heat conductive material, the resin filled in the cavity between the pair of dies can be gradually cooled to a desired level. Further, it is possible to achieve high transfer of the uneven shape of the optical element while preventing the molding cycle time from increasing.
  • the optical element molding die includes a protruding member that is released by protruding a part other than the optical surface of the optical element, so that the eccentricity of the optical surface is improved and the uneven shape at the time of releasing is prevented from collapsing. As a result, it is possible to secure a good releasability and realize a highly accurate transfer.
  • the optical element according to the present invention is formed using the optical element molding die described above.
  • the optical element can be formed by using the above-described optical element molding die, so that the concavo-convex shape transferred well can be formed with less eccentricity.
  • high-precision, high-performance, high-NA objective lenses for BD, or compatible high-precision, high-performance, high-NA objective lenses that support multiple disc standards for BD, DVD, and CD, etc. Can be provided.
  • the low thermal conductive material is a low thermal conductive material of 10 W / m ⁇ K or less in order to exhibit the effect of gradually cooling the fine uneven shape and realizing high-precision transfer.
  • high-accuracy transfer can be realized even for an objective lens having a fine concavo-convex shape on an optical surface (deep optical surface) having a large curvature, such as an objective lens having a high NA of NA 0.80 or more.
  • a low heat conductive material is 0.05 W / m * K or more. Examples of the low heat conductive material include metal, ceramic, resin, glass, and the like.
  • an optical surface refers to a region that functions effectively as an optical surface.
  • the concavo-convex shape refers to a structure having a function of imparting an optical path difference to incident light, such as a shape having a fine step such as a diffraction pattern.
  • the base material of the nesting means an essential part (base material) constituting the nesting.
  • the surface processed layer is a layer for providing an uneven shape, and refers to a layer whose surface has been processed into a desired shape with a diamond bite after being coated with a plating layer or the like.
  • the surface of the nesting may further have a protective layer or a release layer on the surface processed layer.
  • the protruding member is composed of a plurality of pins, blocks, sleeve-like members, and the like. It is preferable that the protruding member protrudes the optical element along the mold opening direction, and the tip of the portion other than the optical surface is annular over the periphery of the optical surface so that the optical surface is symmetrical and the substantially uniform protrusion is performed.
  • the center of the optical surface is the center when the protruding member is composed of a plurality of members, or when the tip of the protruding member is in contact with a portion other than the optical surface at a plurality of locations. It is more preferable that these are arranged symmetrically and protruded.
  • FIG. 2 is an enlarged side view of a lens that is injection-molded by the mold of FIG. 1.
  • FIG. 1 is a front view explaining the shaping
  • FIG. 1 is a flowchart explaining operation
  • FIG. 2 is a conceptual diagram explaining the mold release in the optical element shaping die shown in FIG.
  • FIG. 1 is a partial sectional side view for explaining the structure of an optical element molding die composed of a fixed die and a movable die.
  • FIGS. 2 (A) to 2 (C) are P1 parts in FIG.
  • FIG. 3 is an arrow view of the movable mold shown in FIG. 2A viewed from the R direction.
  • FIG. 4 is an enlarged side view of a lens that is injection-molded by the mold shown in FIG.
  • the fixed mold 41 and the movable mold 42 can be opened and closed with the parting line PL as a boundary.
  • a cavity CV which is a space between both molds 41 and 42, corresponds to the shape of a lens OL (see FIG. 4 and the like) as an optical element that is a molded product.
  • the lens OL is made of plastic and includes a center portion OLa as an optical function portion having an optical function, and an annular flange portion OLb extending from the center portion OLa in the outer diameter direction.
  • the lens OL is an objective lens for an optical pickup device, is compatible with BD, DVD, and CD, and satisfies NA 0.85 with respect to a light beam having a wavelength for BD.
  • the fixed die 41 includes a core portion 52 as a nesting on the fixed side, an outer peripheral die 51 having a structure capable of supporting and fixing the nesting on the fixed side, and the outer peripheral die 51 and the core portion 52. And a mounting plate 53 that is integrally fixed.
  • the outer peripheral mold 51 and the mounting plate 53 are mold members that hold the core 52 as a nesting from the periphery.
  • the outer peripheral mold 51 has an end face 51a that forms a parting line PL. Further, a flange forming portion FF is provided at the tip of the outer peripheral mold 51, and a molding surface 56b for defining a cavity CV is formed on the surface of the flange forming portion FF.
  • the molding surface 56b is a transfer surface for molding the flange surface F1 of the flange portion OLb of the lens OL, that is, one annular end surface.
  • a core insertion hole 55 that is a cylindrical through hole that supports the core portion 52 is formed inside the outer peripheral mold 51.
  • the core portion 52 has a cylindrical outer peripheral side surface that can be fitted into the core insertion hole 55, and an optical surface for defining a cavity CV is provided at the distal end surface provided at the distal end portion 52 b of the core portion 52.
  • a molding surface 56a is provided.
  • the optical surface molding surface 56a is a concave surface and is a transfer surface that molds one optical surface Sa of the center portion OLa of the lens OL.
  • the outer peripheral mold 51 is made of a high thermal conductivity material having a thermal conductivity higher than 20 W / m ⁇ K, such as pre-hardened steel, that is, low carbon steel (thermal conductivity: 60.0 W / m ⁇ K). It is configured.
  • the core part 52 is also comprised with the base material of the high heat conductive material whose heat conductivity is larger than 20 W / m * K, specifically, low carbon steel or stainless steel.
  • the end surface of the core portion 62 on the cavity CV side can be covered with a nickel phosphorus plating layer formed by using an electroless nickel plating method, and the optical surface molding surface 56a is formed by this nickel phosphorus plating layer. Can do.
  • the optical surface molding surface 56a can be coated with a thin release film formed of a resin-based material.
  • the movable mold 42 includes a core portion 62 as a movable-side core mold, an outer peripheral mold 61 having a structure capable of supporting and fixing the movable-side core mold, and the outer peripheral mold 61 and the core.
  • the outer peripheral mold 61 and the mounting plate 63 are mold members that hold the core portion 62 as a nesting from the periphery.
  • the movable mold 42 is movable along the axis AX and opens and closes with respect to the fixed mold 41.
  • mold 61 is comprised with the high heat conductive material whose heat conductivity is larger than 20 W / m * K, for example, prehardened steel, ie, low carbon steel.
  • the core portion 62 is made of a lower heat conductive material than the outer peripheral die 61.
  • the base material of the core portion 62 that is, the low thermal conductivity material constituting the base material has a thermal conductivity of 0.05 W / m ⁇ K or more and 20 W / m ⁇ K or less.
  • 6-4Ti is used as the base material. be able to.
  • mold 61 has the end surface 61a which forms the parting line PL.
  • a core insertion hole 65 for supporting the core portion 62 and a pin insertion hole 65 b for supporting the movable pin 64 are formed inside the outer peripheral mold 61.
  • the core insertion hole 65 is a columnar through hole
  • the pin insertion hole 65b is a smaller diameter through hole.
  • a flange forming portion FM is provided at the tip of the outer peripheral mold 61, and a molding surface 66b for defining the cavity CV is formed on the surface of the flange forming portion FM.
  • the molding surface 66b is a transfer surface for molding the flange surface F2 of the flange portion OLb of the lens OL, that is, one annular end surface.
  • the core portion 62 has a cylindrical outer peripheral side surface that can be fitted into the core insertion hole 65, and an optical surface for defining a cavity CV is provided on the distal end surface provided at the distal end portion 62 b of the core portion 62.
  • a molding surface 66a is provided.
  • the optical surface molding surface 66a is a concave surface and is a transfer surface for molding one optical surface Sb of the center portion OLa of the lens OL.
  • the end surface of the core portion 62 on the cavity CV side is covered with a nickel phosphorous plating layer 67 formed using an electroless nickel plating method in order to improve machinability.
  • an optical surface molding surface 66 a is formed as the surface of the nickel phosphorus plating layer 67.
  • the optical surface molding surface 66a can be coated with a thin release film formed of a resin-based material.
  • a spacer can be interposed between the base side end surface of the core portion 62 and the front surface of the mounting plate 63. Thereby, the space
  • the movable pin 64 is inserted into the pin insertion hole 65b and is movable along the axis AX within the pin insertion hole 65b. That is, the movable pin 64 can be driven by the advance / retreat mechanism 68 to advance toward the fixed mold 41 or retract toward the opposite side within the pin insertion hole 65 b of the outer peripheral die 61.
  • the tip of the pin insertion hole 65b constitutes a part of the molding surface 66b that defines the cavity CV.
  • four movable pins 64 are arranged at equal intervals along the annular molding surface 66b of the outer peripheral die 61, and push out the flange portion OLb of the lens OL along the axis AX in a balanced manner. Is possible.
  • the number of movable pins 64 is not limited to four, and may be various numbers of three or more according to specifications such as the size of the lens OL and allowable accuracy.
  • the movable pin 64 can be a block-shaped member.
  • a sleeve-like protruding member that can push out the flange surface F2 of the flange portion OLb may be disposed around the core portion 62 and reciprocated along the axis AX.
  • the advancing / retracting mechanism 68 includes a flange-shaped rear end portion 72 provided at the rear end portion of the movable pin 64, a return spring 73 held between the rear end portion 72 and the mounting plate 63, and the rear end portion 72. And a pin drive plate 74 that supports and moves back and forth in the axial direction. Since the return spring 73 urges the movable pin 64 rearward, the movable pin 64 receives an urging force held in a retracted state, and protrudes by a necessary amount in response to the force from the pin drive plate 74.
  • the pin drive plate 74 is driven by an ejector of an injection molding machine, which will be described later, and is displaced along the axis AX by a distance necessary for mold release at an appropriate timing.
  • FIG. 5 is a front view illustrating a molding apparatus for carrying out the manufacturing method of the present embodiment.
  • the illustrated molding apparatus 100 includes an injection molding machine 10 that is a main body part that performs injection molding to produce a resin molded product MP, a take-out device 20 that is an accessory part that takes out the resin molded product MP from the injection molding machine 10, and molding. And a control device 30 that comprehensively controls the operation of each unit constituting the device 100.
  • the injection molding machine 10 includes a movable platen 11, a fixed platen 12, a mold clamping plate 13, an opening / closing drive device 15, and an injection device 16.
  • the injection molding machine 10 enables molding by sandwiching a movable mold 42 and a fixed mold 41 between the movable platen 11 and the fixed platen 12 and clamping both molds 41 and 42.
  • the movable platen 11 is supported by the slide guide 15a so as to be movable back and forth with respect to the fixed platen 12.
  • the movable platen 11 detachably supports the movable mold 42.
  • an ejector 45 is incorporated in the movable platen 11.
  • the ejector 45 is a part for operating the advance / retreat mechanism 68 shown in FIG.
  • the ejector 45 pushes the movable pin 64 so as to push the resin molded product MP in the movable mold 42 toward the fixed mold 41, and enables the ejector 20 to transfer the resin molded product MP.
  • the resin molded product MP includes a plurality of lenses OL shown in FIG. 4, and the plurality of lenses OL are connected to each other via sprues and runners (not shown) that are formed at the time of molding. Yes.
  • the fixed platen 12 is fixed to the center of the support frame 14 so as to face the movable platen 11, and supports the take-out device 20 on the top thereof.
  • the stationary platen 12 detachably supports the stationary mold 41.
  • the fixed platen 12 is fixed to the mold clamping machine 13 via a tie bar so that it can withstand the pressure of mold clamping at the time of molding.
  • the mold clamping machine 13 is fixed to the end of the support frame 14.
  • the mold clamping machine 13 supports the movable board 11 from the back via the power transmission part 15d of the opening / closing drive device 15 at the time of mold clamping.
  • the opening / closing drive device 15 includes a slide guide 15a, a power transmission unit 15d, and an actuator 15e.
  • the slide guide 15a supports the movable platen 11 and enables a smooth reciprocating movement in the advancing and retreating direction with respect to the fixed platen 12.
  • the power transmission unit 15 d expands and contracts by receiving a driving force from an actuator 15 e that operates under the control of the control device 30.
  • the movable platen 11 moves forward and backward freely with respect to the mold clamping plate 13, and as a result, the movable platen 11 and the fixed platen 12 are moved close to and away from each other, and the fixed mold 41 is moved. Clamping and mold opening with the movable mold 42 are performed.
  • the injection device 16 includes a cylinder 16a, a raw material storage unit 16b, a screw drive unit 16c, and the like.
  • the injection device 16 operates at an appropriate timing under the control of the control device 30, and can inject molten resin from the resin injection nozzle 16d in a temperature-controlled state.
  • the injection device 16 brings the resin injection nozzle 16d into contact with the opening of the sprue provided in the fixed mold 41, and the flow path space FC (see FIG. 1).
  • the molten resin in the cylinder 16a can be supplied at a desired timing.
  • the take-out device 20 includes a hand 21 that can hold the resin molded product MP and a three-dimensional drive device 22 that moves the hand 21 three-dimensionally.
  • the take-out device 20 operates at an appropriate timing under the control of the control device 30, and after the mold is opened with the fixed mold 41 and the movable mold 42 separated from each other, the resin molded product remaining in the movable mold 42 It has the role of holding the MP and carrying it out.
  • the control device 30 includes an opening / closing control unit 31, an injection device control unit 32, an ejector control unit 33, and a take-out device control unit 34.
  • the opening / closing control unit 31 enables the molds 41 and 42 to be clamped and opened by operating the actuator 15e.
  • the injection device controller 32 causes the resin to be injected at a desired pressure into the cavity formed between the molds 41 and 42 by operating the screw driver 16c and the like.
  • the ejector control unit 33 operates the ejector 45 to push out the resin molded product MP remaining in the movable mold 42 when the mold is opened from the movable mold 42.
  • the take-out device control unit 34 operates the take-out device 20 to grip the resin molded product MP remaining in the movable mold 42 after mold opening and mold release and carry it out of the injection molding machine 10.
  • the mold temperature controller 46 circulates a temperature-controlled heat medium through jackets (not shown) formed in the molds 41 and 42. Thereby, the temperature of both metal mold
  • FIG. 6 is a flowchart conceptually illustrating the operation of the molding apparatus 100 shown in FIG.
  • the mold temperature controller 46 heats both molds 41 and 42 to a temperature suitable for molding (step S10).
  • the temperature of the surface of the mold part which forms the cavity CV in both the molds 41 and 42 or the temperature in the vicinity thereof is, for example, 50 ° C. lower than the glass transition temperature of the molten resin supplied from the injection device 16.
  • the temperature is kept below 10 ° C. higher than the glass transition temperature.
  • the opening / closing drive device 15 is operated to move the movable platen 11 forward to start mold closing (step S11).
  • the movable platen 11 moves to the fixed platen 12 side to the die contact position where the fixed die 41 and the movable die 42 come into contact with each other, and the die closing is completed.
  • mold clamping is performed to clamp the fixed mold 41 and the movable mold 42 with necessary pressure (step S12).
  • the injection device 16 is operated to inject the molten resin into the cavity CV between the fixed mold 41 and the movable mold 42 that are clamped at a required pressure. (Step S13).
  • the injection molding machine 10 maintains the resin pressure in the cavity CV.
  • the molten resin in the cavity CV is gradually cooled by heat dissipation, so that the molten resin is solidified with the cooling and the molding is completed. It waits to do (step S14).
  • the base material of the core portion 62 is composed of a low thermal conductivity material having a thermal conductivity of 0.05 W / m ⁇ K or more and 20 W / m ⁇ K or less, the fineness formed on the optical surface molding surface 66a
  • the molten resin MM can be filled to the back of the structure SS (see FIG. 7A).
  • the opening / closing drive device 15 is operated to open the mold to retract the movable platen 11 (step S15).
  • the movable mold 42 moves backward, and the fixed mold 41 and the movable mold 42 are separated.
  • the resin molded product MP that is, the lens OL is released from the fixed mold 41 while being held by the movable mold 42.
  • the ejector 45 is operated to cause the resin molded product MP to be ejected by the movable pin 64 (step S16). Specifically, the four movable pins 64 are projected at the same time, and the flange portion OLb of the lens OL is pushed out along the axis AX with good balance. As a result, the lens OL of the resin molded product MP is urged toward the distal end surface of the movable pin 64 and pushed out toward the fixed mold 41, and the resin molded product MP as the lens OL is released from the movable mold 42. Is done.
  • FIG. 7C is a view for comparison, and shows a case where the center portion OLa of the lens OL is projected using the core portion 62.
  • the mold is released first from the gate side. Therefore, the fine shape FP is collapsed, and there is a tendency for a releasability defect that the deformed portion DP is formed at the tip. It will occur.
  • the take-out device 20 is operated, and the pin drive plate 74 driven by the ejector 45 and the resin molded product MP protruding by the movable pin 64 are gripped by the hand 21 and taken out to the outside (step) S17).
  • the mold OL is released by protruding the flange portion OLb as a portion other than the optical surface of the lens OL using the movable pin 64 in the mold releasing step.
  • the center portion OLa can be extruded from the core portion 62 by pushing out the axis AX, and the fine shape FP can be prevented from collapsing at the time of release to ensure good release properties.
  • the movable pin 64 is used at the time of protrusion, the eccentric accuracy of the optical surface Sb can be increased as compared with the case where the core part 62 is advanced and retracted.
  • FIG. 8A is a partial enlarged cross-sectional view of the fixed mold 41 and the movable mold 42 in the present embodiment, and shows a mold closed state and a mold clamped state.
  • FIG. 8B shows a state in which the lens OL is protruded after the fixed mold 41 and the movable mold 42 are opened.
  • a heat conduction suppressing layer 162 c made of a low heat conductive material is provided at the distal end portion 62 b of the core portion 62.
  • the heat conduction suppressing layer 162c is sandwiched between the nickel phosphorus plating layer 67 which is a surface processed layer and the base material portion 162d which is a base material, and has a role of preventing rapid cooling of the lens OL being molded. .
  • the heat conduction suppressing layer 162c is made of a low heat conductive material having a thermal conductivity of 0.05 W / m ⁇ K or more and 20 W / m ⁇ K or less.
  • a metal material such as 6-4Ti
  • the base material portion 162d is made of a high heat conductive material having a thermal conductivity higher than 20 W / m ⁇ K, specifically, a base material of low carbon steel or stainless steel.
  • the molten resin filled in the cavity CV between the pair of molds 41 and 42 can be gradually cooled to a desired level, thereby increasing the time of the molding cycle. It is possible to achieve high transfer of the fine shape FP of the lens OL while preventing it. Also in this embodiment, since the mold release is performed by using the movable pin 64 to project the flange part OLb as a part other than the optical surface of the lens OL, it is possible to prevent the fine shape FP from collapsing during the mold release. Can be secured.
  • FIG. 9A is a partially enlarged cross-sectional view of the fixed mold 41 and the movable mold 42 in the present embodiment, and shows a mold closed state and a mold clamped state.
  • FIG. 9B shows the open state of the fixed mold 41 and the movable mold 42
  • FIG. 9C shows the state in which the lens OL as an optical element protrudes from the movable mold 42. Yes.
  • the cavity CV side end surface of the core portion 252 of the fixed mold 41 is covered with a nickel phosphorous plating layer 267, and the fine structure having an uneven shape by surface processing of the nickel phosphorous plating layer 267.
  • An optical surface molding surface 56a provided with SS is formed as a transfer surface.
  • the base material of the core part 252 is made of a low heat conductive material
  • the base material of the core part 262 is made of a high heat conductive material.
  • the base material of the core portion 252 on the fixed mold 41 side that is, the low thermal conductivity material constituting the base material has a thermal conductivity of 0.05 W / m ⁇ K or more and 20 W / m ⁇ K or less.
  • 6-4Ti can be used as a base material.
  • the base material of the core part 262 on the movable mold 42 side is a high thermal conductivity material having a thermal conductivity higher than 20 W / m ⁇ K, such as pre-hardened steel, that is, low carbon steel, etc. It consists of
  • the molten resin filled in the cavity CV between the pair of molds 41 and 42 can be gradually cooled to a desired level, and the center of the lens OL can be prevented while increasing the molding cycle time. High transfer of the fine shape FP of the portion OLa can be achieved.
  • the lens OL is released from the fixed mold 41 including the core portion 252 having the optical surface molding surface 56a for transferring the microstructure SS, and the core having the uneven shape. Since the lens OL is not protruded by the portion 252, the decentered state of the optical surface of the center portion OLa hardly changes even if it is repeatedly molded, and stable optical performance can be easily maintained.
  • the fixed mold 41 and the movable mold 42 are separated from each other, it is possible to prevent the core portion 252 from being displaced or vibrated out of the separation direction and damaging the fine shape FP. As a result, it is possible to obtain a lens OL such as a high NA objective lens that can suppress coma and realize high-accuracy transfer.
  • FIG. 10A is a partial enlarged cross-sectional view of the fixed mold 41 and the movable mold 42 in the present embodiment, and shows a mold closed state and a mold clamped state.
  • 10B shows the open state of the fixed mold 41 and the movable mold 42
  • FIG. 10C shows the state where the lens OL protrudes from the movable mold 42.
  • the base material of the core portion 252 is made of a low heat conductive material, and in the movable mold 42 facing the base material of the core portion 262, the high heat conductive material is made. Further, the end surface on the cavity CV side of the core portion 252 of the fixed mold 41 is covered with a nickel phosphorus plating layer 267.
  • each protrusion mechanism 81 includes a movable pin 81a that is a protrusion member, a spring 81b that urges the movable pin 81a toward the movable mold 42, and a storage hole 81c that can store the movable pin 81a behind the end surface 51a.
  • the movable mold 42 moves backward, and the fixed mold 41 and the movable mold 42 are separated from each other. At this time, the lens OL is released from the fixed mold 41 while being held by the movable mold 42. Since the lens OL is pushed out to the movable mold 42 side by the protrusion mechanism 81, the release of the lens OL becomes stable and reliable. Thereafter, as shown in FIG. 10C, the lens OL is protruded from the movable mold 42 by causing the movable pin 64 to project the lens OL.
  • the molten resin filled in the cavity CV between the pair of molds 41 and 42 can be gradually cooled to a desired level, thereby preventing an increase in molding cycle time.
  • high transfer of the fine shape FP of the central portion OLa of the lens OL can be achieved.
  • the decentered state of the optical surface of the center portion OLa of the lens OL is difficult to change, stable optical performance can be easily maintained, and the core portion 252 shifts or vibrates out of the separation direction, thereby causing a fine shape FP. Can be prevented from being damaged.
  • the mold part is released by protruding the flange part OLb as a part other than the optical surface of the lens OL from the core part 252 using the movable pin 81a and the like, so that it corresponds to the microstructure SS at the time of mold release. It is possible to more reliably prevent the fine shape FP from collapsing and to ensure good releasability.
  • FIG. 11A is a partially enlarged cross-sectional view of the fixed mold 41 and the movable mold 42 in the present embodiment, and shows a mold closed state and a mold clamped state.
  • FIG. 11B shows a state in which the lens OL is protruded after the fixed mold 41 and the movable mold 42 are opened.
  • mold 361 and the movable pin 364 shown in FIG. 11 is comprised with the low heat conductive material, and the low heat conductive material which comprises such a base material has thermal conductivity 0.05W / m * K or more and 20W.
  • 6-4Ti can be used as a base material.
  • the transfer surface for transferring the shape of the flange surface F2 of the flange portion OLb, that is, the molding surface 66b, is formed by a transfer portion that combines the distal end portion of the outer peripheral die 361 and the distal end portion of the movable pin 364.
  • the outer peripheral mold 361 and the movable pin 364 tend to block heat dissipation, the molten resin filled in the cavity CV between the pair of molds 41 and 42 can be cooled gradually. High transfer of the fine shape FP corresponding to the fine structure SS can be achieved more reliably.
  • FIG. 12A is a partially enlarged cross-sectional view of the fixed mold 41 and the movable mold 42 in the present embodiment, and shows a mold closed state and a mold clamped state.
  • FIG. 12B shows a state in which the lens OL is protruded after the fixed mold 41 and the movable mold 42 are opened.
  • the base material of the tip 461a of the outer peripheral mold 461 and the movable pin 364 shown in FIG. 12 is made of a low heat conductive material, and the low heat conductive material constituting such a base material has a heat conductivity of 0.05 W / m. It has a thermal conductivity of not less than K and not more than 20 W / m ⁇ K.
  • 6-4Ti can be used as a base material.
  • the main body portion 361b of the outer peripheral mold 461 is made of a high heat conductive material having a thermal conductivity higher than 20 W / m ⁇ K, specifically, a base material of low carbon steel or stainless steel.
  • the transfer portion formed by the tip portion 461a of the outer peripheral mold 461 and the movable pin 364 forms a transfer surface for transferring the shape of the flange surface F2 of the flange portion OLb, that is, a forming surface 66b.
  • FIG. 13A is a partially enlarged cross-sectional view of the fixed mold 41 and the movable mold 42 in the present embodiment, and shows a mold closed state and a mold clamped state.
  • FIG. 13B shows a state in which the lens OL is protruded after the fixed mold 41 and the movable mold 42 are opened.
  • each movable pin 364 shown in FIG. 13 is made of a low heat conductive material, and the low heat conductive material constituting such a base material has a thermal conductivity of 0.05 W / m ⁇ K or more and 20 W / m ⁇
  • 6-4Ti can be used as a base material.
  • mold 61 is comprised with the high heat conductive material with a heat conductivity larger than 20 W / m * K, specifically, the preform
  • the transfer surface for transferring the shape of the flange surface F2 of the flange portion OLb is formed by a transfer portion that combines the tip portion of the outer peripheral die 61 and the tip portion of the movable pin 364. It is formed.
  • the outer peripheral mold 61 and the movable pin 364 constituting the transfer part are formed of materials having different thermal conductivities.
  • FIG. 14A is a partially enlarged cross-sectional view of the fixed mold 41 and the movable mold 42 in the present embodiment, and shows a mold closed state and a mold clamped state.
  • FIG. 14B shows a state in which the lens OL is protruded after the fixed mold 41 and the movable mold 42 are opened.
  • the base material of some of the movable pins 364 is made of a low thermal conductive material, and the low thermal conductive material constituting such a base material has a thermal conductivity of 0. It has a thermal conductivity of 0.05 W / m ⁇ K or more and 20 W / m ⁇ K or less.
  • 6-4Ti can be used as a base material.
  • the other movable pins 64 and the outer peripheral mold 61 are made of a high heat conductive material having a thermal conductivity higher than 20 W / m ⁇ K, specifically, a base material of low carbon steel or stainless steel.
  • the movable pin 364 that is separated from the gate GT extending from the lens OL is formed of a low thermal conductive material, and the side of the lens OL that is close to the gate GT and the side that is away from the gate GT.
  • the degree of slow cooling of the molten resin can be finely adjusted.
  • the movable pin 364 protruding from the side away from the gate GT is formed of a material having a lower thermal conductivity than the movable pin 64 protruding from the side close to the gate GT, and the molten resin on the side away from the gate GT is formed. It is possible to reduce the easiness of cooling and to perform substantially uniform cooling as the lens OL. Thereby, it is possible to suppress aberration deterioration due to surface shape accuracy error, and it is possible to obtain an optical element suitable for an objective lens for an optical pickup device having an NA of 0.80 or more.
  • FIG. 15A is a partially enlarged cross-sectional view of the fixed mold 41 and the movable mold 42 in the present embodiment, and shows a mold closed state and a mold clamped state.
  • FIG. 15B shows a state in which the lens OL is protruded after the fixed mold 41 and the movable mold 42 are opened.
  • mold 361 shown in FIG. 15 is comprised with the low heat conductive material, and the low heat conductive material which comprises such a base material has 0.05 W / m * K or more and 20 W / m * K.
  • 6-4Ti can be used as a base material.
  • the movable pin 64 is made of a high heat conductive material having a thermal conductivity higher than 20 W / m ⁇ K, specifically, a base material of low carbon steel or stainless steel.
  • the transfer surface for transferring the shape of the flange surface F2 of the flange portion OLb is formed by a transfer portion that combines the tip portion of the outer peripheral die 361 and the tip portion of the movable pin 64. It is formed. That is, the outer peripheral mold 361 and the movable pin 64 constituting the transfer part are formed of materials having different thermal conductivities. As a result, it is possible to adjust the cycle time of the cooling and molding of the molten resin. For example, by adjusting the area of the tip surface of the movable pin 64 that transfers a part of the flange portion OLb, In addition to adjusting the molding cycle time, optical performance such as astigmatism can be controlled.
  • the present invention has been described based on the above embodiments, the present invention is not limited to the above embodiments, and various modifications are possible.
  • the shape of the cavity CV provided in the injection mold composed of the fixed mold 41 and the movable mold 42 is not limited to the illustrated one, and various shapes can be used. That is, the shape of the cavity CV formed by the core portions 52, 52 and the like is merely an example, and can be appropriately changed according to the use of the lens OL.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Since an optical element molding die prepared by assembling a core part (62), the base material of which is composed of a low heat conduction material having a heat conductivity of 20 W/m•K or lower, on a movable die (42) is used, melted resin MM filled in cavity CV between a pair of dies (41, 42) can be gradually cooled to a desired degree. Also, a high degree of transfer of the fine pattern FP of a lens OL can be achieved while preventing increased molding cycle time. In addition, in the demolding step, since a movable pin (64) is used to cause the flange part OLb, which is a part of lens OL other than the lens optical plane, to protrude, the central part OLa of lens OL adhered to the core part (62) can be pressed out and separated so that damage to the fine pattern FP can be prevented during demolding to guarantee good demolding properties.

Description

光学素子の製造方法、光学素子成形金型、及び光学素子Optical element manufacturing method, optical element molding die, and optical element
 本発明は、射出成形を利用した光学素子の製造方法、かかる製造方法を実施するための光学素子成形金型、並びにかかる成形金型によって得られる光学素子に関する。 The present invention relates to a method for manufacturing an optical element using injection molding, an optical element molding die for performing the manufacturing method, and an optical element obtained by the molding die.
 近年、従来のDVDよりさらに高密度で、波長400nm以上410nm以下の青紫色レーザを使用し、対物レンズの像側開口数NAが0.80以上であるブルーレイディスク(BD;Blu-Ray Disc)のような高記憶容量のディスクを使用する光ピックアップ装置が実用化されている。このような青紫色レーザを使用する高記憶容量のディスクへの記録又は再生に使用される対物レンズは、従来のDVD用の対物レンズと異なる短波長に対応するだけでなく、従来の対物レンズよりも高いNAが必要とされる。 In recent years, a Blu-ray Disc (BD) that uses a blue-violet laser with a higher density than conventional DVDs and a wavelength of 400 nm or more and 410 nm or less and an image side numerical aperture NA of the objective lens is 0.80 or more. An optical pickup device using such a high storage capacity disk has been put into practical use. The objective lens used for recording or reproducing on a high storage capacity disk using such a blue-violet laser not only supports a short wavelength different from that of the conventional objective lens for DVD, but also more than the conventional objective lens. Higher NA is required.
 更に、この種のBDの他に例えば旧来のDVD及びCDの記録又は再生に共用される互換型の対物レンズにおいては、表面に回折パターンなどの光路差を付与するための微細な凹凸形状を施して複数のディスク規格に対応することが行われる。しかし、かかる対物レンズについては、BDの記録又は再生に青紫色レーザを使用し、且つ必要なNAが0.80以上であることのほか、複数の異なる波長の光束に対応する必要があるため、僅かな形状誤差でも各光束の光利用効率を低下させてしまうという問題がある。 Furthermore, in addition to this type of BD, in a compatible objective lens that is commonly used for recording or reproduction of, for example, conventional DVDs and CDs, the surface is provided with fine uneven shapes for imparting optical path differences such as diffraction patterns. In order to cope with a plurality of disc standards. However, for such an objective lens, it is necessary to use a blue-violet laser for recording or reproduction of BD and to support a plurality of light beams having different wavelengths in addition to a required NA of 0.80 or more. There is a problem that even a slight shape error reduces the light utilization efficiency of each light beam.
 また、BDの記録又は再生に少なくとも使用される対物レンズのように、NAが0.80以上の高NAになると、光学面の偏心がコマ収差に大きく影響するという問題がある。このため、高NAの対物レンズを量産する際に光学面の偏心状態が変動して安定しないと、製品の歩留まり率が下がってしまい、量産性に欠けるといった問題もある。 Also, when the NA becomes a high NA of 0.80 or more like an objective lens used at least for recording or reproduction of BD, there is a problem that the decentering of the optical surface greatly affects the coma aberration. For this reason, when mass producing high NA objective lenses, if the decentered state of the optical surface fluctuates and is not stable, there is a problem that the yield rate of the product is lowered and the mass productivity is lacking.
 上述のような微細な凹凸形状を有し、高精度な転写が求められるレンズ等の光学素子を射出成形により製造する方法として、金型の加熱及び冷却を繰返し金型のキャビティ表面の温度を繰返し昇降する、いわゆるヒートサイクル成形が知られている。このヒートサイクル成形においては、金型を樹脂の溶融温度以上の高温に加熱した状態で樹脂を充填し、樹脂充填後に金型を冷却することにより充填した樹脂を固化し、その後樹脂成形品を取り出すことにより、キャビティ表面形状の樹脂成形品への高転写を実現できる。 As a method of manufacturing an optical element such as a lens having a fine concavo-convex shape as described above and requiring high precision transfer by injection molding, the mold surface is repeatedly heated and cooled, and the mold cavity surface temperature is repeated. A so-called heat cycle molding that moves up and down is known. In this heat cycle molding, the resin is filled with the mold heated to a temperature higher than the melting temperature of the resin, and after filling the resin, the mold is cooled to solidify the filled resin, and then the resin molded product is taken out. As a result, high transfer to a resin molded product having a cavity surface shape can be realized.
 しかしながら、金型の高温加熱及び低温冷却が必要であり、金型への高温媒体及び低温媒体の供給及びその繰返しの切り換えや温度制御など、設備が大型化、複雑化するとともに光学素子の製造コストが高くなる。特に、高温と低温との温度の繰返し昇降が必要なため、光学素子の成形に要する時間、即ちサイクルタイムが非常に長いという問題がある。また、成形サイクルの大幅の延長により生産性が悪化するだけでなく、サイクル内の加熱・冷却による固定金型及び可動金型の膨張・収縮の繰り返しにより、レンズの各光学面を成形する一対の入れ子の相対位置がバラツキ、偏心が安定しないという問題もある。 However, high-temperature heating and low-temperature cooling of the mold is necessary, and the equipment becomes larger and more complicated and the manufacturing cost of the optical element is increased, such as supply of the high-temperature medium and low-temperature medium to the mold, repeated switching, and temperature control. Becomes higher. In particular, since it is necessary to repeatedly raise and lower the temperature between high and low temperatures, there is a problem that the time required for molding the optical element, that is, the cycle time is very long. In addition, the productivity is not only deteriorated due to the substantial extension of the molding cycle, but a pair of molding each optical surface of the lens by repeating expansion and contraction of the stationary mold and the movable mold by heating and cooling in the cycle. There is also a problem that the relative position of the nesting varies and the eccentricity is not stable.
 一方、そのようなヒートサイクル成形によらない製造方法として、熱伝導率が所定以下の低熱伝導材料を母材(基材)とし、その母材の表面に被覆した硬度の低い材料を切削加工して光学素子の微細形状を転写するための成形面を形成した型部材(入れ子)を備えた成形型を用いて成形を行うものが知られている(特許文献1参照)。特許文献1では、成形後に成形型を離間して型開きを行った後、型部材(入れ子)を突き出すことによって光学素子を成形型から離型することが記載されている。
特開2004-284110号公報
On the other hand, as a manufacturing method that does not rely on heat cycle molding, a low thermal conductivity material having a thermal conductivity of a predetermined value or less is used as a base material (base material), and a low hardness material coated on the surface of the base material is cut. There is known a technique in which molding is performed using a molding die provided with a mold member (nesting) on which a molding surface for transferring a fine shape of an optical element is formed (see Patent Document 1). Japanese Patent Application Laid-Open No. 2004-228561 describes that after molding, the mold is separated and the mold is opened, and then the optical element is released from the mold by projecting a mold member (nesting).
JP 2004-284110 A
 しかしながら、特許文献1の製造方法では、低熱伝導材料を母材として構成された型部材(入れ子)を用いているので、型部材に充填された樹脂を所望の程度に徐々に冷却することができ、型部材の微細形状の先端まで樹脂を充分に充填して高精度な転写を可能ならしめるものであるが、型部材(入れ子)によって光学素子を突き出すため、光学面を成形する型部材の摺動により、光学素子を繰り返し成形した際に光学面の偏心状態が安定しないという問題がある。 However, in the manufacturing method of Patent Document 1, since a mold member (nesting) configured using a low heat conductive material as a base material is used, the resin filled in the mold member can be gradually cooled to a desired level. The mold member is sufficiently filled up to the finely shaped tip to enable highly accurate transfer. However, since the optical element is projected by the mold member (nesting), the slide of the mold member for molding the optical surface is performed. There is a problem that the eccentric state of the optical surface is not stable when the optical element is repeatedly molded by the movement.
 また、光学素子を型部材で突き出した後は、成形時に形成されたスプルやランナを取出し部材に把持させて型部材に保持された光学素子を引き剥がすことが一般に行われ、このとき光学素子のゲート側から先に引き剥がされることになるが、低熱伝導材料を母材として構成された型部材によって微細形状がその先端細部まで高精度に転写されているために、その引き剥がしの際に微細形状の先端が崩れて離型性不良を生じるという新たな問題が浮上した。これは、従来のように微細形状の先端まで樹脂が充填されずに先端が大きくダレた形状で成形されたものとは異なり、微細形状の先端細部まで高精度に成形された結果、光学素子を型部材から離型する際に、微細形状の先端が型部材に強く接触することにより引き起こされるものと考えられる。特に上記のような複数のディスク規格に対応した互換型の対物レンズでは、微細形状の高精度転写及び偏心抑制が重要な問題となる。 In addition, after the optical element is protruded by the mold member, the sprue or runner formed at the time of molding is generally gripped by the take-out member and the optical element held by the mold member is peeled off. Although it will be peeled off first from the gate side, the fine shape is transferred to the tip details with high precision by the mold member composed of the low thermal conductive material as the base material. A new problem emerged that the tip of the shape collapsed, resulting in poor releasability. This is different from the conventional case where the tip of the fine shape is not filled with resin and the tip is greatly sagted. It is considered that when the mold member is released from the mold member, the tip of the fine shape strongly contacts the mold member. In particular, in a compatible objective lens compatible with a plurality of disk standards as described above, high-precision transfer of fine shapes and suppression of eccentricity are important problems.
 そこで、本発明は、微細な形状である光路差付与構造など、凹凸形状を備えた光学素子の成形において、成形サイクルタイムを必要以上に長くすることなく、凹凸形状の崩れを防止した良好な離型性を確保して高精度な転写を実現できるとともに、繰り返しの成形においても光学面の偏心状態を安定させて収差を低減できる光学素子の製造方法を提供することを目的とする。 Therefore, the present invention provides a good separation that prevents collapse of the concavo-convex shape without making the molding cycle time longer than necessary in molding an optical element having a concavo-convex shape such as an optical path difference providing structure having a fine shape. An object of the present invention is to provide a method of manufacturing an optical element that can realize high-accuracy transfer while ensuring moldability, and that can stabilize aberration of an optical surface and reduce aberrations even in repeated molding.
 また、本発明は、上記のような光学素子の製造方法を実現するための光学素子成形金型、及び、これによって成形される光学素子を提供することを目的とする。 Another object of the present invention is to provide an optical element molding die for realizing the above-described optical element manufacturing method, and an optical element molded thereby.
 上記課題を解決するため、本発明に係る第1の光学素子の製造方法は、(a)光学面に凹凸形状を備えた光学機能部とフランジ部とを有する光学素子の製造方法であって、(b)凹凸形状を転写するための転写面を備え、20W/m・K以下の熱伝導率を有する低熱伝導材料で基材が構成された入れ子を固定金型と可動金型との少なくとも一方に備えた一対の金型を用いて、射出成形により光学素子を成形する成形工程と、(c)前記固定金型と前記可動金型とを離間するとともに、突き出し部材を用いて成形した光学素子の光学面以外の部分を突き出すことにより、光学素子を離型させる離型工程とを備えることを特徴とする。 In order to solve the above-mentioned problem, a first optical element manufacturing method according to the present invention is (a) an optical element manufacturing method having an optical function part having an uneven shape on an optical surface and a flange part, (B) A nesting having a transfer surface for transferring the concavo-convex shape and having a base material made of a low thermal conductive material having a thermal conductivity of 20 W / m · K or less is at least one of a fixed mold and a movable mold A molding step of molding an optical element by injection molding using a pair of molds provided in the above, and (c) an optical element molded by using a protruding member while separating the fixed mold and the movable mold And a release step of releasing the optical element by protruding a portion other than the optical surface.
 上記製造方法では、成形工程において、凹凸形状を転写するための転写面を備える入れ子であって20W/m・K以下の熱伝導率を有する低熱伝導材料で基材が構成された入れ子を固定金型と可動金型との少なくとも一方に備えた一対の金型を用いるので、一対の金型間のキャビティに充填された樹脂を急冷させることなく所望の程度に徐々に冷却することができ、成形サイクルの時間増大を防止しつつ、光学素子の凹凸形状の高精度な転写を達成できる。また、上記製造方法では、離型工程において、突き出し部材を用いて成形した光学素子の光学面以外の部分を突き出すことによって凹凸形状を備えた入れ子より光学素子を離型させるので、離型時の凹凸形状の崩れを防止して良好な離型性を確保して高精度な転写を実現できる。更に、突き出し部材を用いて凹凸形状を備えた入れ子より離型するので、入れ子を進退させて離型する場合に比較して光学面の偏心精度を高めることもできる。 In the above manufacturing method, in the molding step, a nesting provided with a transfer surface for transferring the concavo-convex shape and having a base made of a low thermal conductive material having a thermal conductivity of 20 W / m · K or less is fixed to a fixed metal. Since a pair of molds provided in at least one of a mold and a movable mold is used, the resin filled in the cavity between the pair of molds can be gradually cooled to a desired level without quenching, and molding It is possible to achieve highly accurate transfer of the uneven shape of the optical element while preventing an increase in cycle time. Further, in the above manufacturing method, in the mold releasing step, the optical element is released from the nest having the uneven shape by protruding a part other than the optical surface of the optical element formed using the protruding member. High-precision transfer can be realized by preventing the collapse of the concavo-convex shape and ensuring good releasability. Further, since the protruding member is used to release the insert from the nest having the concavo-convex shape, the eccentric accuracy of the optical surface can be increased as compared with the case where the insert is moved forward and backward to release.
 また、本発明に係る第2の光学素子の製造方法は、(a)光学面に凹凸形状を備えた光学機能部とフランジ部とを有する光学素子の製造方法であって、(b)凹凸形状を転写するための転写面を備え、前記転写面を形成する表面加工層と基材との間に20W/m・K以下の熱伝導率を有する低熱伝導材料で構成された熱伝導抑制層を有する入れ子を固定金型と可動金型との少なくとも一方に備えた一対の金型を用いて、射出成形により光学素子を成形する成形工程と、(c)前記固定金型と前記可動金型とを離間するとともに、突き出し部材を用いて成形した光学素子の光学面以外の部分を突き出すことにより、光学素子を離型させる離型工程とを備えることを特徴とする。 The second optical element manufacturing method according to the present invention is (a) an optical element manufacturing method having an optical function part having an uneven shape on an optical surface and a flange part, and (b) an uneven shape. A heat conduction suppressing layer composed of a low heat conductive material having a heat conductivity of 20 W / m · K or less between a substrate and a surface processing layer that forms the transfer surface. A molding step of molding an optical element by injection molding using a pair of molds provided with at least one of a fixed mold and a movable mold, and (c) the fixed mold and the movable mold And a releasing step of releasing the optical element by protruding a part other than the optical surface of the optical element formed using the protruding member.
 上記製造方法でも、入れ子に設けた熱伝導抑制層の存在により、一対の金型間のキャビティに充填された樹脂を急冷することなく所望の程度に徐々に冷却することができ、成形サイクルの時間増大を防止しつつ、光学素子の凹凸形状の高精度な転写を達成できる。また、上記製造方法では、突き出し部材を用いて成形した光学素子の光学面以外の部分を突き出すことによって凹凸形状を備えた入れ子より離型させるので、光学面の偏心精度を高めつつ、離型時の凹凸形状の崩れを防止して良好な離型性を確保して高精度な転写を実現できる。 Even in the above manufacturing method, the resin filled in the cavity between the pair of molds can be gradually cooled to a desired level without quenching due to the presence of the heat conduction suppressing layer provided in the insert, and the time of the molding cycle It is possible to achieve highly accurate transfer of the uneven shape of the optical element while preventing the increase. Further, in the above manufacturing method, the part other than the optical surface of the optical element formed by using the protruding member is released from the nest having the concavo-convex shape, so that the decentering accuracy of the optical surface is improved while releasing. It is possible to prevent the collapse of the uneven shape of the film and to secure a good releasability and realize a highly accurate transfer.
 本発明の具体的な態様又は観点では、上記製造方法において、前記フランジ部の形状を転写するための転写部のうち少なくとも一部が、熱伝導率が20W/m・K以下である低熱伝導材料で構成されている。この場合、基材や低熱伝導材料だけでなく周辺側に設けたフランジ部用の転写部(以下、「フランジ形成部」ともいう)を含めて放熱の管理が可能になるので、一対の金型間のキャビティに充填された樹脂の急速な冷却を抑えることができ、光学素子の冷却速度をより精密に調節できる。 In a specific aspect or aspect of the present invention, in the above manufacturing method, at least a part of the transfer portion for transferring the shape of the flange portion has a low thermal conductivity of 20 W / m · K or less. It consists of In this case, not only the base material and the low thermal conductive material but also the transfer part for the flange part provided on the peripheral side (hereinafter also referred to as “flange forming part”) can be managed, so a pair of molds The rapid cooling of the resin filled in the cavity between them can be suppressed, and the cooling rate of the optical element can be adjusted more precisely.
 本発明の別の態様では、前記突き出し部材のうち少なくとも一部が、熱伝導率が20W/m・K以下である低熱伝導材料で構成されている。この場合、突き出し部材による急速な放熱を防止でき、一対の金型間のキャビティに充填された樹脂の急速な冷却を抑えることができる。 In another aspect of the present invention, at least a part of the protruding member is made of a low thermal conductive material having a thermal conductivity of 20 W / m · K or less. In this case, rapid heat dissipation by the protruding member can be prevented, and rapid cooling of the resin filled in the cavity between the pair of molds can be suppressed.
 このように、突き出し部材のうち少なくとも一部を低熱伝導材料で構成する場合に、フランジ部の形状を転写するための転写部のうち少なくとも一部も低熱伝導材料で構成してもよい。一方、フランジ部用の転写部は、低熱伝導材料で構成することなく、突き出し部材を低熱伝導材料で構成することで、高転写を確保しながら成形サイクルの時間が長くなることをより防止することができる。また、このときフランジ部の基材をセラミック等の低熱伝導材料で構成する場合に、フランジ部用の転写部の複雑な形状を加工しづらく、コストが高くなるといったことも回避できるので好ましい。 Thus, when at least a part of the protruding member is made of a low heat conductive material, at least a part of the transfer part for transferring the shape of the flange part may be made of a low heat conductive material. On the other hand, the transfer part for the flange part is not made of a low heat conductive material, and the protrusion member is made of a low heat conductive material, thereby further preventing the molding cycle time from being prolonged while ensuring high transfer. Can do. Further, at this time, when the base material of the flange portion is made of a low heat conductive material such as ceramic, it is preferable because it is difficult to process a complicated shape of the transfer portion for the flange portion and the cost is increased.
 本発明のさらに別の態様では、前記突き出し部材は、成形した光学素子の光学面以外の部分を突き出す複数の部材を備え、複数の部材のうち、光学素子を成形する際に形成されるゲートに近い側を突き出す部材とゲートから離れた側を突き出す部材とは、異なる熱伝導率の材料で形成されている。この場合、ゲートに近い側とゲートから離れた側との間で溶融樹脂の徐冷を微調整することができる。 In yet another aspect of the present invention, the projecting member includes a plurality of members projecting portions other than the optical surface of the molded optical element, and the gate formed when molding the optical element among the plurality of members. The member protruding from the near side and the member protruding from the side away from the gate are formed of materials having different thermal conductivities. In this case, the slow cooling of the molten resin can be finely adjusted between the side close to the gate and the side away from the gate.
 この際、ゲートから離れた側を突き出す部材が、ゲートに近い側を突き出す部材よりも熱伝導率が低い材料で形成されると、ゲートから離れた側での溶融樹脂の冷却し易さを低減して光学素子全体としてほぼ均等な冷却を行うことができる。これにより、面形状の精度誤差による収差劣化を抑制することができ、特にNA0.80以上の光ピックアップ装置用の対物レンズに好適な光学素子を得ることができる。 At this time, if the member protruding from the side away from the gate is formed of a material having lower thermal conductivity than the member protruding from the side closer to the gate, the ease of cooling the molten resin on the side away from the gate is reduced. As a result, substantially uniform cooling can be performed for the entire optical element. Thereby, it is possible to suppress aberration deterioration due to surface shape accuracy error, and it is possible to obtain an optical element suitable for an objective lens for an optical pickup device having an NA of 0.80 or more.
 本発明のさらに別の態様では、前記突き出し部材は、前記フランジ部の形状の一部を転写するとともに前記フランジ部の一部を突き出す部材であり、前記フランジ部の形状を転写するための転写部のうち、突き出し部材によって転写される部分を除いた転写部と、突き出し部材とは、異なる熱伝導率の材料で形成されている。この場合、溶融樹脂の冷却や成形サイクルの時間を調整することが可能となり、例えば、フランジ部の一部を転写する突き出し部材の先端面の面積を調整することにより、溶融樹脂の冷却や成形サイクルの時間の調整を行うことができるほか、非点収差等の光学性能のコントロールを行うことができる。 In still another aspect of the present invention, the protruding member is a member that transfers a part of the shape of the flange part and protrudes a part of the flange part, and transfers the shape of the flange part. Of these, the transfer portion excluding the portion transferred by the protruding member and the protruding member are formed of materials having different thermal conductivities. In this case, it is possible to adjust the time of the molten resin cooling or molding cycle. For example, by adjusting the area of the tip surface of the protruding member that transfers a part of the flange portion, the molten resin cooling or molding cycle In addition to adjusting the time, the optical performance such as astigmatism can be controlled.
 本発明のさらに別の態様では、前記可動金型が、低熱伝導材料で構成された基材又は熱伝導抑制層を有する入れ子を備える。この場合、可動金型側に設けた入れ子の転写面によって光学素子に凹凸形状を転写することができ、突き出し部材による離型によりかかる凹凸形状の高転写を達成できる。 In still another aspect of the present invention, the movable mold includes a base made of a low heat conductive material or a nesting having a heat conduction suppressing layer. In this case, the concavo-convex shape can be transferred to the optical element by the nesting transfer surface provided on the movable mold side, and high transfer of the concavo-convex shape can be achieved by releasing with the protruding member.
 本発明のさらに別の態様では、前記固定金型が、低熱伝導材料で構成された基材又は熱伝導抑制層を有する入れ子を備える。この場合、固定金型側に設けた入れ子の転写面によって光学素子に凹凸形状を転写することができ、突き出し部材が固定金型と可動金型との型開きの際に光学素子の凹凸形状の崩れに影響することなく、かかる凹凸形状の高転写を達成できる。 In still another aspect of the present invention, the fixed mold includes a base made of a low heat conductive material or a nesting having a heat conduction suppressing layer. In this case, the concavo-convex shape can be transferred to the optical element by the nesting transfer surface provided on the fixed mold side, and when the protruding member is opened between the fixed mold and the movable mold, the concavo-convex shape of the optical element can be transferred. High transfer of such irregularities can be achieved without affecting the collapse.
 また、本発明のさらに別の態様では、前記光学素子がレンズである。この場合、回折パターン等の微細な凹凸形状を備える高精度で高性能のレンズ、例えば光ピックアップ用の対物レンズを提供することができる。 In still another aspect of the present invention, the optical element is a lens. In this case, a high-precision and high-performance lens having a fine uneven shape such as a diffraction pattern, for example, an objective lens for an optical pickup can be provided.
 本発明に係る第1の光学素子成形金型は、(a)一対の金型により光学素子を成形する光学素子成形金型であって、(b)前記一対の金型のうち少なくとも一方は、凹凸形状を転写するための転写面を備え、20W/m・K以下の熱伝導率を有する低熱伝導材料で基材が構成された入れ子と、(c)前記入れ子を支持する型部材と、(d)前記一対の金型が互いに離間した際に成形した光学素子の光学面以外の部分を突き出すことによって光学素子を離型させる突き出し部材とを備える。 The first optical element molding die according to the present invention is (a) an optical element molding mold for molding an optical element by a pair of molds, and (b) at least one of the pair of molds is: A nesting having a transfer surface for transferring the concavo-convex shape and having a base material made of a low thermal conductive material having a thermal conductivity of 20 W / m · K or less, (c) a mold member for supporting the nesting, d) A protruding member that releases the optical element by protruding a part other than the optical surface of the optical element formed when the pair of molds are separated from each other.
 上記光学素子成形金型は、低熱伝導材料で基材が構成された入れ子を備えるので、一対の金型間のキャビティに充填された樹脂を所望の程度に徐々に冷却することができ、成形サイクルの時間増大を防止しつつ、光学素子の凹凸形状の高転写を達成できる。また、上記光学素子成形金型は、成形した光学素子の光学面以外の部分を突き出すことによって離型させる突き出し部材を備えるので、光学面の偏心精度を高めつつ、離型時の凹凸形状の崩れを防止して良好な離型性を確保して高精度な転写を実現することができる。 Since the optical element molding die includes a nesting in which a base material is composed of a low thermal conductive material, the resin filled in the cavity between the pair of molds can be gradually cooled to a desired level, and a molding cycle can be performed. It is possible to achieve high transfer of the concave and convex shape of the optical element while preventing the increase in time. In addition, since the optical element molding die includes a protruding member that is released by protruding a portion other than the optical surface of the molded optical element, the unevenness of the concave and convex shape at the time of releasing is lost while improving the decentering accuracy of the optical surface. It is possible to achieve high-accuracy transfer while ensuring good releasability.
 本発明に係る第2の光学素子成形金型は、(a)一対の金型により光学素子を成形する光学素子成形金型であって、(b)前記一対の金型のうち少なくとも一方は、凹凸形状を転写するための転写面を備え、前記転写面を形成する表面加工層と基材との間に20W/m・K以下の熱伝導率を有する低熱伝導材料で構成された熱伝導抑制層を有する入れ子と、(c)前記入れ子を支持する型部材と、(d)前記一対の金型が互いに離間した際に成形した光学素子の光学面以外の部分を突き出すことによって光学素子を離型させる突き出し部材とを備える。 The second optical element molding die according to the present invention is (a) an optical element molding die for molding an optical element by a pair of molds, and (b) at least one of the pair of molds is: Heat transfer suppression comprising a transfer surface for transferring irregularities, and comprising a low thermal conductivity material having a thermal conductivity of 20 W / m · K or less between the surface processed layer forming the transfer surface and the substrate A nest having a layer; (c) a mold member that supports the nest; and (d) a portion other than the optical surface of the optical element formed when the pair of molds are separated from each other, thereby separating the optical element. A protruding member to be molded.
 上記光学素子成形金型は、低熱伝導材料で構成された熱伝導抑制層を有する入れ子を備えるので、一対の金型間のキャビティに充填された樹脂を所望の程度に徐々に冷却することができ、成形サイクルの時間増大を防止しつつ、光学素子の凹凸形状の高転写を達成可能にできる。また、上記光学素子成形金型は、光学素子の光学面以外の部分を突き出すことによって離型させる突き出し部材を備えるので、光学面の偏心精度を高めつつ、離型時の凹凸形状の崩れを防止して良好な離型性を確保して高精度な転写を実現できる。 Since the optical element molding die includes a nesting having a heat conduction suppressing layer made of a low heat conductive material, the resin filled in the cavity between the pair of dies can be gradually cooled to a desired level. Further, it is possible to achieve high transfer of the uneven shape of the optical element while preventing the molding cycle time from increasing. In addition, the optical element molding die includes a protruding member that is released by protruding a part other than the optical surface of the optical element, so that the eccentricity of the optical surface is improved and the uneven shape at the time of releasing is prevented from collapsing. As a result, it is possible to secure a good releasability and realize a highly accurate transfer.
 本発明に係る光学素子は、上述の光学素子成形金型を用いて形成されたことを特徴とする。この場合、光学素子は、上述の光学素子成形金型を用いて成形されることにより、良好に転写された凹凸形状を少ない偏心で形成することができる。具体的には、BD用の高精度で高性能な高NAの対物レンズ、或いはBD、DVD及びCDの複数のディスク規格に対応した互換型の高精度で高性能な高NAの対物レンズ等を提供することができる。 The optical element according to the present invention is formed using the optical element molding die described above. In this case, the optical element can be formed by using the above-described optical element molding die, so that the concavo-convex shape transferred well can be formed with less eccentricity. Specifically, high-precision, high-performance, high-NA objective lenses for BD, or compatible high-precision, high-performance, high-NA objective lenses that support multiple disc standards for BD, DVD, and CD, etc. Can be provided.
 以上において、低熱伝導材料は10W/m・K以下の低熱伝導材料であることが、微細な凹凸形状を徐々に冷却して高精度の転写を実現する効果を発揮する上でより好ましい。特にNA0.80以上の高NAの対物レンズのように、大きな曲率の光学面(深い光学面)上に微細な凹凸形状を備えた対物レンズに対しても、高精度の転写を実現できる。また、低熱伝導材料は0.05W/m・K以上であることが好ましい。低熱伝導材料としては、例えば金属、セラミック、樹脂、ガラス等で構成される。 In the above, it is more preferable that the low thermal conductive material is a low thermal conductive material of 10 W / m · K or less in order to exhibit the effect of gradually cooling the fine uneven shape and realizing high-precision transfer. In particular, high-accuracy transfer can be realized even for an objective lens having a fine concavo-convex shape on an optical surface (deep optical surface) having a large curvature, such as an objective lens having a high NA of NA 0.80 or more. Moreover, it is preferable that a low heat conductive material is 0.05 W / m * K or more. Examples of the low heat conductive material include metal, ceramic, resin, glass, and the like.
 また、本明細書において、光学面は、光学面として有効に機能して利用される領域を指す。また、凹凸形状とは、回折パターン等の微細な段差を有する形状など、入射光に対して光路差を付与する機能を有する構造を指すものである。また、入れ子の基材とは、入れ子を構成する本質的な部分(母材)を意味する。 In this specification, an optical surface refers to a region that functions effectively as an optical surface. Further, the concavo-convex shape refers to a structure having a function of imparting an optical path difference to incident light, such as a shape having a fine step such as a diffraction pattern. Moreover, the base material of the nesting means an essential part (base material) constituting the nesting.
 また、本明細書において、表面加工層とは、凹凸形状を設けるための層であり、メッキ層などがコートされた後、表面を所望の形状にダイヤモンドバイト等により加工が施された層を指す。なお、入れ子の表面には、この表面加工層上に更に保護層や離型層を有していてもよい。 Further, in the present specification, the surface processed layer is a layer for providing an uneven shape, and refers to a layer whose surface has been processed into a desired shape with a diamond bite after being coated with a plating layer or the like. . In addition, the surface of the nesting may further have a protective layer or a release layer on the surface processed layer.
 また、突き出し部材は、複数のピン、ブロック、スリーブ状の部材等で構成される。突き出し部材は、型開き方向に沿って光学素子を突き出すことが好ましく、光学面の中心を対称にして略均等な突き出しが行われるように、光学面以外の部分を光学面の周囲にわたって先端が環状の部材で突き出したり、突き出し部材が複数の部材で構成されている場合や突き出し部材の先端が光学面以外の部分に複数箇所で接触する構成とされている場合には、光学面の中心を中心にこれらを対称に配置して突き出したりすることとが更に好ましい。 The protruding member is composed of a plurality of pins, blocks, sleeve-like members, and the like. It is preferable that the protruding member protrudes the optical element along the mold opening direction, and the tip of the portion other than the optical surface is annular over the periphery of the optical surface so that the optical surface is symmetrical and the substantially uniform protrusion is performed. The center of the optical surface is the center when the protruding member is composed of a plurality of members, or when the tip of the protruding member is in contact with a portion other than the optical surface at a plurality of locations. It is more preferable that these are arranged symmetrically and protruded.
固定金型と可動金型とで構成される光学素子成形金型の構造を説明する部分側断面図である。It is a fragmentary sectional side view explaining the structure of the optical element shaping | molding die comprised with a fixed metal mold | die and a movable metal mold | die. 図1の一部の拡大断面図である。It is a partial expanded sectional view of FIG. 図1に示す可動金型のR矢視端面図である。It is an R arrow end view of the movable metal mold | die shown in FIG. 図1の金型によって射出成形されるレンズの拡大側面図である。FIG. 2 is an enlarged side view of a lens that is injection-molded by the mold of FIG. 1. 図1に示す光学素子成形金型を組み込んだ成形装置を説明する正面図である。It is a front view explaining the shaping | molding apparatus incorporating the optical element shaping die shown in FIG. 図5の成形装置の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the shaping | molding apparatus of FIG. 図1に示す光学素子成形金型における離型を説明する概念図である。It is a conceptual diagram explaining the mold release in the optical element shaping die shown in FIG. 第2実施形態の金型及び製造方法を説明する断面図である。It is sectional drawing explaining the metal mold | die and manufacturing method of 2nd Embodiment. 第3実施形態の金型及び製造方法を説明する断面図であるIt is sectional drawing explaining the metal mold | die and manufacturing method of 3rd Embodiment. 第4実施形態の金型及び製造方法を説明する断面図であるIt is sectional drawing explaining the metal mold | die and manufacturing method of 4th Embodiment. 第5実施形態の金型及び製造方法を説明する断面図である。It is sectional drawing explaining the metal mold | die and manufacturing method of 5th Embodiment. 第6実施形態の金型及び製造方法を説明する断面図である。It is sectional drawing explaining the metal mold | die and manufacturing method of 6th Embodiment. 第7実施形態の金型及び製造方法を説明する断面図である。It is sectional drawing explaining the metal mold | die and manufacturing method of 7th Embodiment. 第8実施形態の金型及び製造方法を説明する断面図である。It is sectional drawing explaining the metal mold | die and manufacturing method of 8th Embodiment. 第9実施形態の金型及び製造方法を説明する断面図である。It is sectional drawing explaining the metal mold | die and manufacturing method of 9th Embodiment.
符号の説明Explanation of symbols
 11…可動盤
 12…固定盤
 15…開閉駆動装置
 16…射出装置
 30…制御装置
 41…固定金型
 42…可動金型
 46…金型温度調節機
 51…外周型
 51a…端面
 52,252…コア部
 53…取付板
 56a…光学面成形面
 56b…成形面
 61,361…外周型
 61a…端面
 62,262,461…コア部
 63…取付板
 64…可動ピン
 64,364…可動ピン
 65b…ピン挿通孔
 66a…光学面成形面
 66b…成形面
 67,267…ニッケルリンメッキ層
 68…進退機構
 81…突き出し機構
 100…成形装置
 162c…熱伝導抑制層
 AX…軸
 F1…フランジ面
 F2…フランジ面
 FC…流路空間
 FF…フランジ形成部
 FM…フランジ形成部
 FP…微細形状
 GT…ゲート
 MM…溶融樹脂
 MP…樹脂成形品
 OL…レンズ
 OLa…中心部
 OLb…フランジ部
 SS…微細構造
 Sa…光学面
 Sb…光学面
DESCRIPTION OF SYMBOLS 11 ... Movable board 12 ... Fixed board 15 ... Opening / closing drive device 16 ... Injection apparatus 30 ... Control apparatus 41 ... Fixed mold 42 ... Movable mold 46 ... Mold temperature controller 51 ... Outer peripheral type 51a ... End face 52,252 ... Core Part 53 ... Mounting plate 56a ... Optical surface molding surface 56b ... Molding surface 61, 361 ... Peripheral die 61a ... End surface 62, 262, 461 ... Core part 63 ... Mounting plate 64 ... Movable pin 64, 364 ... Movable pin 65b ... Pin insertion Hole 66a ... Optical surface molding surface 66b ... Molding surface 67,267 ... Nickel phosphorus plating layer 68 ... Advancing / retracting mechanism 81 ... Extrusion mechanism 100 ... Molding device 162c ... Heat conduction suppression layer AX ... Shaft F1 ... Flange surface F2 ... Flange surface FC ... Flow path space FF ... Flange forming part FM ... Flange forming part FP ... Fine shape GT ... Gate MM ... Molten resin MP ... Resin molded product OL ... Lens OLa Center OLB ... flange portion SS ... microstructure Sa ... optical surface Sb ... optical surface
 〔第1実施形態〕
 以下、本発明の第1実施形態である光学素子成形金型と光学素子の製造方法とについて、図面を参照しつつ説明する。
[First Embodiment]
Hereinafter, an optical element molding die and a method for manufacturing an optical element according to a first embodiment of the present invention will be described with reference to the drawings.
 図1は、固定金型と可動金型により構成される光学素子成形金型の構造を説明する部分側断面図であり、図2(A)~図2(C)は、図1のP1部分の拡大断面図であり、図3は、図2(A)に示す可動金型をR方向から見た矢視図である。また、図4は、図1の金型によって射出成形されるレンズの拡大側面図である。 FIG. 1 is a partial sectional side view for explaining the structure of an optical element molding die composed of a fixed die and a movable die. FIGS. 2 (A) to 2 (C) are P1 parts in FIG. FIG. 3 is an arrow view of the movable mold shown in FIG. 2A viewed from the R direction. FIG. 4 is an enlarged side view of a lens that is injection-molded by the mold shown in FIG.
 固定金型41と可動金型42とは、パーティングラインPLを境として開閉可能になっている。両金型41,42に挟まれた空間であるキャビティCVは、成形品である光学素子としてのレンズOL(図4等参照)の形状に対応するものとなっている。レンズOLは、プラスチック製で、光学的機能を有する光学的機能部としての中心部OLaと、中心部OLaから外径方向に延在する環状のフランジ部OLbとを備える。レンズOLは、光ピックアップ装置用の対物レンズであり、BD、DVD及びCDに対して互換可能で、BD用の波長の光束に対してNA0.85を満たすレンズである。 The fixed mold 41 and the movable mold 42 can be opened and closed with the parting line PL as a boundary. A cavity CV, which is a space between both molds 41 and 42, corresponds to the shape of a lens OL (see FIG. 4 and the like) as an optical element that is a molded product. The lens OL is made of plastic and includes a center portion OLa as an optical function portion having an optical function, and an annular flange portion OLb extending from the center portion OLa in the outer diameter direction. The lens OL is an objective lens for an optical pickup device, is compatible with BD, DVD, and CD, and satisfies NA 0.85 with respect to a light beam having a wavelength for BD.
 固定金型41は、固定側の入れ子としてのコア部52と、固定側の入れ子を支持して一体に固定することを可能とした構造を有する外周型51と、外周型51及びコア部52を一体に固定する取付板53とを備える。ここで、外周型51と取付板53とは、入れ子としてのコア部52を周囲から保持する型部材である。 The fixed die 41 includes a core portion 52 as a nesting on the fixed side, an outer peripheral die 51 having a structure capable of supporting and fixing the nesting on the fixed side, and the outer peripheral die 51 and the core portion 52. And a mounting plate 53 that is integrally fixed. Here, the outer peripheral mold 51 and the mounting plate 53 are mold members that hold the core 52 as a nesting from the periphery.
 外周型51は、パーティングラインPLを形成する端面51aを有する。また、外周型51の先端には、フランジ形成部FFが設けられており、フランジ形成部FFの表面には、キャビティCVを画成するための成形面56bが形成されている。成形面56bは、レンズOLのフランジ部OLbのフランジ面F1、すなわち一方の環状端面を成形する転写面である。また、外周型51内部には、コア部52を支持する円柱状の貫通孔であるコア挿通孔55が形成されている。 The outer peripheral mold 51 has an end face 51a that forms a parting line PL. Further, a flange forming portion FF is provided at the tip of the outer peripheral mold 51, and a molding surface 56b for defining a cavity CV is formed on the surface of the flange forming portion FF. The molding surface 56b is a transfer surface for molding the flange surface F1 of the flange portion OLb of the lens OL, that is, one annular end surface. In addition, a core insertion hole 55 that is a cylindrical through hole that supports the core portion 52 is formed inside the outer peripheral mold 51.
 コア部52は、コア挿通孔55に嵌合可能な円筒状の外周側面を有しており、コア部52の先端部52bに設けた先端面には、キャビティCVを画成するための光学面成形面56aが設けられている。光学面成形面56aは、凹面であり、レンズOLの中心部OLaの一方の光学面Saを成形する転写面である。 The core portion 52 has a cylindrical outer peripheral side surface that can be fitted into the core insertion hole 55, and an optical surface for defining a cavity CV is provided at the distal end surface provided at the distal end portion 52 b of the core portion 52. A molding surface 56a is provided. The optical surface molding surface 56a is a concave surface and is a transfer surface that molds one optical surface Sa of the center portion OLa of the lens OL.
 なお、固定金型41において、外周型51は、熱伝導率が20W/m・Kより大きい高熱伝導材料、例えばプレハードン鋼すなわち低炭素鋼(熱伝導率:60.0W/m・K)等で構成されている。また、コア部52も、熱伝導率が20W/m・Kより大きい高熱伝導材料、具体的には低炭素鋼やステンレス鋼の母材で構成されている。なお、コア部62のキャビティCV側の端面は、無電解ニッケルメッキ法を用いて形成されるニッケルリンメッキ層で被覆することができ、このニッケルリンメッキ層によって光学面成形面56aを形成することができる。さらに、光学面成形面56aは、樹脂系の材料で形成された薄い離型膜でコートすることもできる。 In the fixed mold 41, the outer peripheral mold 51 is made of a high thermal conductivity material having a thermal conductivity higher than 20 W / m · K, such as pre-hardened steel, that is, low carbon steel (thermal conductivity: 60.0 W / m · K). It is configured. Moreover, the core part 52 is also comprised with the base material of the high heat conductive material whose heat conductivity is larger than 20 W / m * K, specifically, low carbon steel or stainless steel. The end surface of the core portion 62 on the cavity CV side can be covered with a nickel phosphorus plating layer formed by using an electroless nickel plating method, and the optical surface molding surface 56a is formed by this nickel phosphorus plating layer. Can do. Furthermore, the optical surface molding surface 56a can be coated with a thin release film formed of a resin-based material.
 可動金型42は、可動側のコア型としてのコア部62と、可動側のコア型を支持し、かつ一体に固定することを可能とした構造を有する外周型61と、外周型61及びコア部62を一体に固定する取付板63と、レンズOLを突き出して離型する突き出し部材としての可動ピン64と、可動ピン64を固定金型41に対して前進及び後退させるための進退機構68とを備える。ここで、外周型61と取付板63とは、入れ子としてのコア部62を周囲から保持する型部材である。可動金型42は、軸AXに沿って移動可能になっており、固定金型41に対して開閉動作する。 The movable mold 42 includes a core portion 62 as a movable-side core mold, an outer peripheral mold 61 having a structure capable of supporting and fixing the movable-side core mold, and the outer peripheral mold 61 and the core. A mounting plate 63 for fixing the part 62 integrally, a movable pin 64 as a protruding member that protrudes and releases the lens OL, and an advance / retreat mechanism 68 for moving the movable pin 64 forward and backward relative to the fixed mold 41; Is provided. Here, the outer peripheral mold 61 and the mounting plate 63 are mold members that hold the core portion 62 as a nesting from the periphery. The movable mold 42 is movable along the axis AX and opens and closes with respect to the fixed mold 41.
 なお、外周型61は、熱伝導率が20W/m・Kより大きい高熱伝導材料、例えばプレハードン鋼すなわち低炭素鋼等で構成されている。一方、コア部62は、外周型61よりも低熱伝導材料で構成されている。コア部62の母材すなわち基材を構成する低熱伝導材料は、0.05W/m・K以上20W/m・K以下の熱伝導率を有しており、例えば6-4Tiを母材とすることができる。 In addition, the outer periphery type | mold 61 is comprised with the high heat conductive material whose heat conductivity is larger than 20 W / m * K, for example, prehardened steel, ie, low carbon steel. On the other hand, the core portion 62 is made of a lower heat conductive material than the outer peripheral die 61. The base material of the core portion 62, that is, the low thermal conductivity material constituting the base material has a thermal conductivity of 0.05 W / m · K or more and 20 W / m · K or less. For example, 6-4Ti is used as the base material. be able to.
 外周型61は、パーティングラインPLを形成する端面61aを有する。また、外周型61の内部には、コア部62を支持するためのコア挿通孔65と、可動ピン64を支持するためのピン挿通孔65bとが形成されている。ここで、コア挿通孔65は、円柱状の貫通孔であり、ピン挿通孔65bは、より細径の貫通孔である。外周型61の先端には、フランジ形成部FMが設けられており、フランジ形成部FMの表面には、キャビティCVを画成するための成形面66bが形成されている。成形面66bは、レンズOLのフランジ部OLbのフランジ面F2、すなわち一方の環状端面を成形する転写面である。 The outer periphery type | mold 61 has the end surface 61a which forms the parting line PL. In addition, a core insertion hole 65 for supporting the core portion 62 and a pin insertion hole 65 b for supporting the movable pin 64 are formed inside the outer peripheral mold 61. Here, the core insertion hole 65 is a columnar through hole, and the pin insertion hole 65b is a smaller diameter through hole. A flange forming portion FM is provided at the tip of the outer peripheral mold 61, and a molding surface 66b for defining the cavity CV is formed on the surface of the flange forming portion FM. The molding surface 66b is a transfer surface for molding the flange surface F2 of the flange portion OLb of the lens OL, that is, one annular end surface.
 コア部62は、コア挿通孔65に嵌合可能な円筒状の外周側面を有しており、コア部62の先端部62bに設けた先端面には、キャビティCVを画成するための光学面成形面66aが設けられている。光学面成形面66aは、凹面であり、レンズOLの中心部OLaの一方の光学面Sbを成形する転写面である。コア部62のキャビティCV側の端面は、被削性を良くするために、無電解ニッケルメッキ法を用いて形成されるニッケルリンメッキ層67で被覆されており、ニッケルリンメッキ層67の表面加工によって、ニッケルリンメッキ層67の表面として光学面成形面66aが形成されている。さらに、光学面成形面66aは、樹脂系の材料で形成された薄い離型膜でコートすることができる。なお、図面では省略しているが、コア部62の根元側端面と取付板63前面との間にはスペーサを介在させることができる。これにより、コア部62の光学面成形面66aと、これに対向するコア部52の光学面成形面56aとの間隔を調整できるようになっている。 The core portion 62 has a cylindrical outer peripheral side surface that can be fitted into the core insertion hole 65, and an optical surface for defining a cavity CV is provided on the distal end surface provided at the distal end portion 62 b of the core portion 62. A molding surface 66a is provided. The optical surface molding surface 66a is a concave surface and is a transfer surface for molding one optical surface Sb of the center portion OLa of the lens OL. The end surface of the core portion 62 on the cavity CV side is covered with a nickel phosphorous plating layer 67 formed using an electroless nickel plating method in order to improve machinability. Thus, an optical surface molding surface 66 a is formed as the surface of the nickel phosphorus plating layer 67. Furthermore, the optical surface molding surface 66a can be coated with a thin release film formed of a resin-based material. Although not shown in the drawing, a spacer can be interposed between the base side end surface of the core portion 62 and the front surface of the mounting plate 63. Thereby, the space | interval of the optical surface molding surface 66a of the core part 62 and the optical surface molding surface 56a of the core part 52 which opposes this can be adjusted now.
 可動ピン64は、ピン挿通孔65bに挿入されており、ピン挿通孔65b内で軸AXに沿って移動可能になっている。つまり、可動ピン64は、進退機構68に駆動されて、外周型61のピン挿通孔65b内で固定金型41側に前進したり反対側に後退したりすることができる。ピン挿通孔65bの先端は、キャビティCVを画成する成形面66bの一部を構成している。可動ピン64は、図3に示すように、外周型61の環状の成形面66bに沿って等間隔で4本配置されており、レンズOLのフランジ部OLbを軸AXに沿ってバランス良く押し出すことを可能にしている。 The movable pin 64 is inserted into the pin insertion hole 65b and is movable along the axis AX within the pin insertion hole 65b. That is, the movable pin 64 can be driven by the advance / retreat mechanism 68 to advance toward the fixed mold 41 or retract toward the opposite side within the pin insertion hole 65 b of the outer peripheral die 61. The tip of the pin insertion hole 65b constitutes a part of the molding surface 66b that defines the cavity CV. As shown in FIG. 3, four movable pins 64 are arranged at equal intervals along the annular molding surface 66b of the outer peripheral die 61, and push out the flange portion OLb of the lens OL along the axis AX in a balanced manner. Is possible.
 なお、可動ピン64を設ける個数は、4本に限らず、レンズOLのサイズ、許容精度等の仕様に応じて3本以上の様々な本数とすることができる。可動ピン64は、ブロック状の部材とすることができる。また、可動ピン64に代えてフランジ部OLbのフランジ面F2を押し出すことができるスリーブ状の突き出し部材をコア部62の周囲に配置して、軸AXに沿って往復動させることもできる。 Note that the number of movable pins 64 is not limited to four, and may be various numbers of three or more according to specifications such as the size of the lens OL and allowable accuracy. The movable pin 64 can be a block-shaped member. Further, instead of the movable pin 64, a sleeve-like protruding member that can push out the flange surface F2 of the flange portion OLb may be disposed around the core portion 62 and reciprocated along the axis AX.
 進退機構68は、可動ピン64の後方の端部に設けたフランジ状の後端部72と、後端部72と取付板63との間に保持された戻しバネ73と、後端部72を支持して軸方向に進退させるピン駆動板74とを備える。戻しバネ73が可動ピン64を後方に付勢するので、可動ピン64は、後退した状態に保持される付勢力を受け、ピン駆動板74からの力を受けて必要量だけ突き出される。ピン駆動板74は、後述する射出成形機のエジェクタによって駆動されて、軸AXに沿って適当なタイミングで離型に必要な距離だけ変位する。 The advancing / retracting mechanism 68 includes a flange-shaped rear end portion 72 provided at the rear end portion of the movable pin 64, a return spring 73 held between the rear end portion 72 and the mounting plate 63, and the rear end portion 72. And a pin drive plate 74 that supports and moves back and forth in the axial direction. Since the return spring 73 urges the movable pin 64 rearward, the movable pin 64 receives an urging force held in a retracted state, and protrudes by a necessary amount in response to the force from the pin drive plate 74. The pin drive plate 74 is driven by an ejector of an injection molding machine, which will be described later, and is displaced along the axis AX by a distance necessary for mold release at an appropriate timing.
 図5は、本実施形態の製造方法を実施するための成形装置を説明する正面図である。図示の成形装置100は、射出成形を行って樹脂成形品MPを作製する本体部分である射出成形機10と、射出成形機10から樹脂成形品MPを取り出す付属部分である取出し装置20と、成形装置100を構成する各部の動作を統括的に制御する制御装置30とを備える。 FIG. 5 is a front view illustrating a molding apparatus for carrying out the manufacturing method of the present embodiment. The illustrated molding apparatus 100 includes an injection molding machine 10 that is a main body part that performs injection molding to produce a resin molded product MP, a take-out device 20 that is an accessory part that takes out the resin molded product MP from the injection molding machine 10, and molding. And a control device 30 that comprehensively controls the operation of each unit constituting the device 100.
 射出成形機10は、可動盤11と、固定盤12と、型締め盤13と、開閉駆動装置15と、射出装置16とを備える。射出成形機10は、可動盤11と固定盤12との間に可動金型42と固定金型41とを挟持して両金型41,42を型締めすることにより成形を可能にする。 The injection molding machine 10 includes a movable platen 11, a fixed platen 12, a mold clamping plate 13, an opening / closing drive device 15, and an injection device 16. The injection molding machine 10 enables molding by sandwiching a movable mold 42 and a fixed mold 41 between the movable platen 11 and the fixed platen 12 and clamping both molds 41 and 42.
 可動盤11は、スライドガイド15aによって固定盤12に対して進退可能に支持されている。可動盤11は、可動金型42を着脱可能に支持している。なお、可動盤11には、エジェクタ45が組み込まれている。エジェクタ45は、図1に示す進退機構68を動作させる部分である。またエジェクタ45は、可動ピン64を突出し動作させることによって、可動金型42内の樹脂成形品MPを固定金型41側に押し出すものであり、取出し装置20による移送を可能にする。なお、樹脂成形品MPは、図4に示すレンズOLを複数備えるものであり、これら複数のレンズOLは、成形時に付随して形成されるスプルやランナ(不図示)を介して互いに連結されている。 The movable platen 11 is supported by the slide guide 15a so as to be movable back and forth with respect to the fixed platen 12. The movable platen 11 detachably supports the movable mold 42. In addition, an ejector 45 is incorporated in the movable platen 11. The ejector 45 is a part for operating the advance / retreat mechanism 68 shown in FIG. Further, the ejector 45 pushes the movable pin 64 so as to push the resin molded product MP in the movable mold 42 toward the fixed mold 41, and enables the ejector 20 to transfer the resin molded product MP. The resin molded product MP includes a plurality of lenses OL shown in FIG. 4, and the plurality of lenses OL are connected to each other via sprues and runners (not shown) that are formed at the time of molding. Yes.
 固定盤12は、可動盤11に対向して支持フレーム14の中央に固定されており、取出し装置20をその上部に支持する。固定盤12は、固定金型41を着脱可能に支持している。なお、固定盤12は、タイバーを介して型締め盤13に固定されており、成形時の型締めの圧力に耐え得るようになっている。 The fixed platen 12 is fixed to the center of the support frame 14 so as to face the movable platen 11, and supports the take-out device 20 on the top thereof. The stationary platen 12 detachably supports the stationary mold 41. The fixed platen 12 is fixed to the mold clamping machine 13 via a tie bar so that it can withstand the pressure of mold clamping at the time of molding.
 型締め盤13は、支持フレーム14の端部に固定されている。型締め盤13は、型締めに際して、開閉駆動装置15の動力伝達部15dを介して可動盤11をその背後から支持する。 The mold clamping machine 13 is fixed to the end of the support frame 14. The mold clamping machine 13 supports the movable board 11 from the back via the power transmission part 15d of the opening / closing drive device 15 at the time of mold clamping.
 開閉駆動装置15は、スライドガイド15aと、動力伝達部15dと、アクチュエータ15eとを備える。スライドガイド15aは、可動盤11を支持して固定盤12に対する進退方向に関する滑らかな往復移動を可能にしている。動力伝達部15dは、制御装置30の制御下で動作するアクチュエータ15eからの駆動力を受けて伸縮する。これにより、型締め盤13に対して可動盤11が近接したり離間したり自在に進退移動し、結果的に、可動盤11と固定盤12とを互いに近接・離間して固定金型41と可動金型42との型締め及び型開きを行う。 The opening / closing drive device 15 includes a slide guide 15a, a power transmission unit 15d, and an actuator 15e. The slide guide 15a supports the movable platen 11 and enables a smooth reciprocating movement in the advancing and retreating direction with respect to the fixed platen 12. The power transmission unit 15 d expands and contracts by receiving a driving force from an actuator 15 e that operates under the control of the control device 30. As a result, the movable platen 11 moves forward and backward freely with respect to the mold clamping plate 13, and as a result, the movable platen 11 and the fixed platen 12 are moved close to and away from each other, and the fixed mold 41 is moved. Clamping and mold opening with the movable mold 42 are performed.
 射出装置16は、シリンダ16a、原料貯留部16b、スクリュ駆動部16c等を備える。射出装置16は、制御装置30の制御下で適当なタイミングで動作するものであり、樹脂射出ノズル16dから温度制御された状態で溶融樹脂を射出することができる。射出装置16は、固定金型41と可動金型42とを型締めした状態で、固定金型41に設けたスプルの開口に樹脂射出ノズル16dを接触させ、流路空間FC(図1参照)に対してシリンダ16a中の溶融樹脂を所望のタイミングで供給することができる。 The injection device 16 includes a cylinder 16a, a raw material storage unit 16b, a screw drive unit 16c, and the like. The injection device 16 operates at an appropriate timing under the control of the control device 30, and can inject molten resin from the resin injection nozzle 16d in a temperature-controlled state. In the state where the fixed mold 41 and the movable mold 42 are clamped, the injection device 16 brings the resin injection nozzle 16d into contact with the opening of the sprue provided in the fixed mold 41, and the flow path space FC (see FIG. 1). On the other hand, the molten resin in the cylinder 16a can be supplied at a desired timing.
 取出し装置20は、樹脂成形品MPを把持することができるハンド21と、ハンド21を3次元的に移動させる3次元駆動装置22とを備える。取出し装置20は、制御装置30の制御下で適当なタイミングで動作するものであり、固定金型41と可動金型42とを離間させて型開きした後に、可動金型42に残る樹脂成形品MPを把持して外部に搬出する役割を有する。 The take-out device 20 includes a hand 21 that can hold the resin molded product MP and a three-dimensional drive device 22 that moves the hand 21 three-dimensionally. The take-out device 20 operates at an appropriate timing under the control of the control device 30, and after the mold is opened with the fixed mold 41 and the movable mold 42 separated from each other, the resin molded product remaining in the movable mold 42 It has the role of holding the MP and carrying it out.
 制御装置30は、開閉制御部31と、射出装置制御部32と、エジェクタ制御部33と、取出し装置制御部34とを備える。開閉制御部31は、アクチュエータ15eを動作させることによって両金型41,42の型締めや型開きを可能にする。射出装置制御部32は、スクリュ駆動部16c等を動作させることによって両金型41,42間に形成されたキャビティ中に所望の圧力で樹脂を注入させる。エジェクタ制御部33は、エジェクタ45を動作させることによって型開き時に可動金型42に残る樹脂成形品MPを可動金型42内から押し出させる。取出し装置制御部34は、取出し装置20を動作させることによって型開き及び離型後に可動金型42に残る樹脂成形品MPを把持して射出成形機10外に搬出させる。 The control device 30 includes an opening / closing control unit 31, an injection device control unit 32, an ejector control unit 33, and a take-out device control unit 34. The opening / closing control unit 31 enables the molds 41 and 42 to be clamped and opened by operating the actuator 15e. The injection device controller 32 causes the resin to be injected at a desired pressure into the cavity formed between the molds 41 and 42 by operating the screw driver 16c and the like. The ejector control unit 33 operates the ejector 45 to push out the resin molded product MP remaining in the movable mold 42 when the mold is opened from the movable mold 42. The take-out device control unit 34 operates the take-out device 20 to grip the resin molded product MP remaining in the movable mold 42 after mold opening and mold release and carry it out of the injection molding machine 10.
 金型温度調節機46は、両金型41,42中に形成されているジャケット(不図示)に温度制御された熱媒体を循環させる。これにより、成形時に両金型41,42の温度を適切な温度に保つことができる。この際、両金型41,42に埋め込まれた温度センサ(不図示)によって両金型41,42の温度を監視することもできる。 The mold temperature controller 46 circulates a temperature-controlled heat medium through jackets (not shown) formed in the molds 41 and 42. Thereby, the temperature of both metal mold | dies 41 and 42 can be kept at an appropriate temperature at the time of shaping | molding. At this time, the temperature of both molds 41 and 42 can be monitored by a temperature sensor (not shown) embedded in both molds 41 and 42.
 図6は、図5等に示す成形装置100の動作を概念的に説明するフローチャートである。まず、金型温度調節機46により、両金型41,42を成形に適する温度まで加熱する(ステップS10)。これにより、両金型41,42においてキャビティCVを形成する金型部分の表面やその近傍の温度を、例えば射出装置16から供給される溶融樹脂のガラス転移温度よりも50℃低い温度以上であって同ガラス転移温度よりも10℃高い温度以下に加熱保持した状態とする。 FIG. 6 is a flowchart conceptually illustrating the operation of the molding apparatus 100 shown in FIG. First, the mold temperature controller 46 heats both molds 41 and 42 to a temperature suitable for molding (step S10). Thereby, the temperature of the surface of the mold part which forms the cavity CV in both the molds 41 and 42 or the temperature in the vicinity thereof is, for example, 50 ° C. lower than the glass transition temperature of the molten resin supplied from the injection device 16. The temperature is kept below 10 ° C. higher than the glass transition temperature.
 次に、開閉駆動装置15を動作させ、可動盤11を前進させて型閉じを開始させる(ステップS11)。開閉駆動装置15の閉動作を継続することにより、固定金型41と可動金型42とが接触する型当たり位置まで可動盤11が固定盤12側に移動して型閉じが完了し、開閉駆動装置15の閉動作を更に継続することにより、固定金型41と可動金型42とを必要な圧力で締め付ける型締めが行われる(ステップS12)。 Next, the opening / closing drive device 15 is operated to move the movable platen 11 forward to start mold closing (step S11). By continuing the closing operation of the opening / closing drive device 15, the movable platen 11 moves to the fixed platen 12 side to the die contact position where the fixed die 41 and the movable die 42 come into contact with each other, and the die closing is completed. By further continuing the closing operation of the device 15, mold clamping is performed to clamp the fixed mold 41 and the movable mold 42 with necessary pressure (step S12).
 次に、射出成形機10において、射出装置16を動作させて、型締めされた固定金型41と可動金型42との間のキャビティCV中に、必要な圧力で溶融樹脂を注入する射出を行わせる(ステップS13)。そして、射出成形機10は、キャビティCV中の樹脂圧を保つ。 Next, in the injection molding machine 10, the injection device 16 is operated to inject the molten resin into the cavity CV between the fixed mold 41 and the movable mold 42 that are clamped at a required pressure. (Step S13). The injection molding machine 10 maintains the resin pressure in the cavity CV.
 溶融樹脂をキャビティCVに導入した後は、図2(A)に示すように、キャビティCV中の溶融樹脂が放熱によって徐々に冷却されるので、かかる冷却にともなって溶融樹脂が固化し成形が完了するのを待つ(ステップS14)。この際、コア部62の母材を0.05W/m・K以上20W/m・K以下の熱伝導率を有する低熱伝導材料で構成しているので、光学面成形面66aに形成された微細構造SSの奥まで溶融樹脂MMを充填することができる(図7(A)参照)。なお、以上の冷却において、両金型41,42を積極的に冷却しないことが好ましい。これにより、温度制御が複雑になることや高温媒体による再加熱の際にエネルギーの消費が多くなることを防止できる。また次の樹脂成形品を成形するために、キャビティCVに樹脂を充填する際に、射出成形金型を再度加熱することによって成形サイクルの時間が長くなることを防止できる。 After the molten resin is introduced into the cavity CV, as shown in FIG. 2 (A), the molten resin in the cavity CV is gradually cooled by heat dissipation, so that the molten resin is solidified with the cooling and the molding is completed. It waits to do (step S14). At this time, since the base material of the core portion 62 is composed of a low thermal conductivity material having a thermal conductivity of 0.05 W / m · K or more and 20 W / m · K or less, the fineness formed on the optical surface molding surface 66a The molten resin MM can be filled to the back of the structure SS (see FIG. 7A). In addition, in the above cooling, it is preferable not to cool both the molds 41 and 42 actively. Thereby, it is possible to prevent the temperature control from becoming complicated and the energy consumption from being increased during reheating with a high-temperature medium. Further, when the cavity CV is filled with the resin in order to mold the next resin molded product, it is possible to prevent the molding cycle time from becoming long by heating the injection mold again.
 次に、射出成形機10において、図2(B)に示すように、開閉駆動装置15を動作させて、可動盤11を後退させる型開きが行われる(ステップS15)。これに伴って、可動金型42が後退し、固定金型41と可動金型42とが離間する。この結果、樹脂成形品MPすなわちレンズOLは、可動金型42に保持された状態で固定金型41から離型される。 Next, in the injection molding machine 10, as shown in FIG. 2B, the opening / closing drive device 15 is operated to open the mold to retract the movable platen 11 (step S15). Along with this, the movable mold 42 moves backward, and the fixed mold 41 and the movable mold 42 are separated. As a result, the resin molded product MP, that is, the lens OL is released from the fixed mold 41 while being held by the movable mold 42.
 次に、射出成形機10において、図2(C)に示すように、エジェクタ45を動作させて、可動ピン64による樹脂成形品MPの突き出しを行わせる(ステップS16)。具体的には、4つの可動ピン64を同時に突出させて、レンズOLのフランジ部OLbを軸AXに沿ってバランス良く押し出す。この結果、樹脂成形品MPのうちレンズOLが、可動ピン64の先端面に付勢されて固定金型41側に押し出されて、レンズOLである樹脂成形品MPが可動金型42から離型される。この際、レンズOLが軸AXに沿って傾かないで押し出されるので、図7(B)に示すように、レンズOLの光学面Sb上に設けた凹凸形状としての微細形状FPが変形されることなく精密な形状に維持される。なお、図7(C)は、比較のための図であり、コア部62を用いてレンズOLの中心部OLaを突き出した場合を示している。この場合、コア部62を後退させるコア戻り時に、ゲート側から先に離型することになるので、微細形状FPが崩れて、先端に変形部DPが形成されてしまう離型性不良の傾向が生じてしまう。 Next, in the injection molding machine 10, as shown in FIG. 2C, the ejector 45 is operated to cause the resin molded product MP to be ejected by the movable pin 64 (step S16). Specifically, the four movable pins 64 are projected at the same time, and the flange portion OLb of the lens OL is pushed out along the axis AX with good balance. As a result, the lens OL of the resin molded product MP is urged toward the distal end surface of the movable pin 64 and pushed out toward the fixed mold 41, and the resin molded product MP as the lens OL is released from the movable mold 42. Is done. At this time, since the lens OL is pushed out without being inclined along the axis AX, as shown in FIG. 7B, the fine shape FP as the concavo-convex shape provided on the optical surface Sb of the lens OL is deformed. It is maintained in a precise shape. FIG. 7C is a view for comparison, and shows a case where the center portion OLa of the lens OL is projected using the core portion 62. In this case, when the core is moved back to retreat the core portion 62, the mold is released first from the gate side. Therefore, the fine shape FP is collapsed, and there is a tendency for a releasability defect that the deformed portion DP is formed at the tip. It will occur.
 最後に、取出し装置20を動作させて、エジェクタ45に駆動されて動作するピン駆動板74、可動ピン64によって突き出された樹脂成形品MPの適所をハンド21で把持して外部に搬出する(ステップS17)。 Finally, the take-out device 20 is operated, and the pin drive plate 74 driven by the ejector 45 and the resin molded product MP protruding by the movable pin 64 are gripped by the hand 21 and taken out to the outside (step) S17).
 以上説明した第1実施形態の製造方法によれば、成形工程において、0.05W/m・K以上20W/m・K以下の熱伝導率を有する低熱伝導材料で基材が構成されたコア部62を可動金型42に組み付けた光学素子成形金型を用いるので、一対の金型41,42間のキャビティCVに充填された溶融樹脂MMを所望の程度に徐々に冷却することができ、成形サイクルの時間増大を防止しつつ、レンズOLの微細形状FPの高転写を達成できる。また、上記製造方法では、離型工程において、可動ピン64を用いてレンズOLの光学面以外の部分としてのフランジ部OLbを突き出すことによって離型を行うので、コア部62に密着したレンズOLの中心部OLaを軸AX押し出してコア部62から分離することができ、離型時の微細形状FPの崩れを防止して良好な離型性を確保することができる。なお、突き出しに際して可動ピン64を用いるので、コア部62を進退させる場合に比較して光学面Sbの偏心精度を高めることもできる。 According to the manufacturing method of the first embodiment described above, in the molding step, the core portion in which the base material is configured with a low thermal conductive material having a thermal conductivity of 0.05 W / m · K or more and 20 W / m · K or less. Since the optical element molding die in which 62 is assembled to the movable die 42 is used, the molten resin MM filled in the cavity CV between the pair of dies 41 and 42 can be gradually cooled to a desired degree, and molding is performed. High transfer of the fine shape FP of the lens OL can be achieved while preventing an increase in cycle time. In the above manufacturing method, the mold OL is released by protruding the flange portion OLb as a portion other than the optical surface of the lens OL using the movable pin 64 in the mold releasing step. The center portion OLa can be extruded from the core portion 62 by pushing out the axis AX, and the fine shape FP can be prevented from collapsing at the time of release to ensure good release properties. In addition, since the movable pin 64 is used at the time of protrusion, the eccentric accuracy of the optical surface Sb can be increased as compared with the case where the core part 62 is advanced and retracted.
 〔第2実施形態〕
 以下、第2実施形態に係る光学素子成形金型と光学素子の製造方法について説明する。なお、第2実施形態に係る成形金型や製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
[Second Embodiment]
Hereinafter, an optical element molding die and an optical element manufacturing method according to the second embodiment will be described. The molding die and the manufacturing method according to the second embodiment are modifications of the first embodiment, and parts that are not particularly described are the same as those of the first embodiment.
 図8(A)は、本実施形態における固定金型41及び可動金型42の部分拡大断面図であり、型閉じ及び型締め状態を示している。また、図8(B)は、固定金型41及び可動金型42の型開き後にレンズOLを突き出した状態を示している。 FIG. 8A is a partial enlarged cross-sectional view of the fixed mold 41 and the movable mold 42 in the present embodiment, and shows a mold closed state and a mold clamped state. FIG. 8B shows a state in which the lens OL is protruded after the fixed mold 41 and the movable mold 42 are opened.
 図8に示すように、コア部62の先端部62bにおいて、低熱伝導材料で構成された熱伝導抑制層162cが設けられている。熱伝導抑制層162cは、表面加工層であるニッケルリンメッキ層67と、基材である母材部162dとの間に挟まれて、成形中のレンズOLの急速な冷却を防止する役割を有する。 As shown in FIG. 8, a heat conduction suppressing layer 162 c made of a low heat conductive material is provided at the distal end portion 62 b of the core portion 62. The heat conduction suppressing layer 162c is sandwiched between the nickel phosphorus plating layer 67 which is a surface processed layer and the base material portion 162d which is a base material, and has a role of preventing rapid cooling of the lens OL being molded. .
 熱伝導抑制層162cは、具体的には、0.05W/m・K以上20W/m・K以下の熱伝導率を有する低熱伝導材料で構成されており、例えば6-4Ti等の金属材料、ポリイミド等の樹脂材料、ジルコニアやアルミナ等のセラミックスを用いて形成することができる。一方、母材部162dは、熱伝導率が20W/m・Kより大きい高熱伝導材料、具体的には低炭素鋼やステンレス鋼の母材で構成されている。 Specifically, the heat conduction suppressing layer 162c is made of a low heat conductive material having a thermal conductivity of 0.05 W / m · K or more and 20 W / m · K or less. For example, a metal material such as 6-4Ti, It can be formed using a resin material such as polyimide, or a ceramic such as zirconia or alumina. On the other hand, the base material portion 162d is made of a high heat conductive material having a thermal conductivity higher than 20 W / m · K, specifically, a base material of low carbon steel or stainless steel.
 本実施形態においても、第1実施形態と同様に、一対の金型41,42間のキャビティCVに充填された溶融樹脂を所望の程度に徐々に冷却することができ、成形サイクルの時間増大を防止しつつ、レンズOLの微細形状FPの高転写を達成できる。また、本実施形態でも、可動ピン64を用いてレンズOLの光学面以外の部分としてのフランジ部OLbを突き出すことによって離型を行うので、離型時の微細形状FPの崩れを防止して良好な離型性を確保することができる。 Also in this embodiment, similarly to the first embodiment, the molten resin filled in the cavity CV between the pair of molds 41 and 42 can be gradually cooled to a desired level, thereby increasing the time of the molding cycle. It is possible to achieve high transfer of the fine shape FP of the lens OL while preventing it. Also in this embodiment, since the mold release is performed by using the movable pin 64 to project the flange part OLb as a part other than the optical surface of the lens OL, it is possible to prevent the fine shape FP from collapsing during the mold release. Can be secured.
 〔第3実施形態〕
 以下、第3実施形態に係る光学素子成形金型と光学素子の製造方法について説明する。なお、第3実施形態に係る成形金型や製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
[Third Embodiment]
Hereinafter, an optical element molding die and a method for manufacturing the optical element according to the third embodiment will be described. The molding die and the manufacturing method according to the third embodiment are modifications of the first embodiment, and parts that are not particularly described are the same as those of the first embodiment.
 図9(A)は、本実施形態における固定金型41及び可動金型42の部分拡大断面図であり、型閉じ及び型締め状態を示している。また、図9(B)は、固定金型41及び可動金型42の型開き状態を示し、図9(C)は、可動金型42から光学素子としてのレンズOLを突き出した状態を示している。 FIG. 9A is a partially enlarged cross-sectional view of the fixed mold 41 and the movable mold 42 in the present embodiment, and shows a mold closed state and a mold clamped state. FIG. 9B shows the open state of the fixed mold 41 and the movable mold 42, and FIG. 9C shows the state in which the lens OL as an optical element protrudes from the movable mold 42. Yes.
 図9に示すように、固定金型41のコア部252のキャビティCV側の端面は、ニッケルリンメッキ層267で被覆されており、ニッケルリンメッキ層267の表面加工によって、凹凸形状である微細構造SSを設けた光学面成形面56aが転写面として形成されている。 As shown in FIG. 9, the cavity CV side end surface of the core portion 252 of the fixed mold 41 is covered with a nickel phosphorous plating layer 267, and the fine structure having an uneven shape by surface processing of the nickel phosphorous plating layer 267. An optical surface molding surface 56a provided with SS is formed as a transfer surface.
 これに対応して、固定金型41において、コア部252の基材が低熱伝導材料で構成されており、対向する可動金型42において、コア部262の基材が高熱伝導材料で構成されている。固定金型41側のコア部252の母材、すなわち基材を構成する低熱伝導材料は、熱伝導率が0.05W/m・K以上20W/m・K以下の熱伝導率を有しており、例えば6-4Tiを母材とすることができる。一方、可動金型42側のコア部262の母材、すなわち基材を構成する高熱伝導材料は、熱伝導率が20W/m・Kより大きい高熱伝導材料、例えばプレハードン鋼、すなわち低炭素鋼等で構成されている。 Correspondingly, in the fixed mold 41, the base material of the core part 252 is made of a low heat conductive material, and in the movable mold 42 facing, the base material of the core part 262 is made of a high heat conductive material. Yes. The base material of the core portion 252 on the fixed mold 41 side, that is, the low thermal conductivity material constituting the base material has a thermal conductivity of 0.05 W / m · K or more and 20 W / m · K or less. For example, 6-4Ti can be used as a base material. On the other hand, the base material of the core part 262 on the movable mold 42 side, that is, the high thermal conductivity material constituting the base material is a high thermal conductivity material having a thermal conductivity higher than 20 W / m · K, such as pre-hardened steel, that is, low carbon steel, etc. It consists of
 本実施形態の場合、型開き時は、図9(B)に示すように、可動金型42が後退し、固定金型41と可動金型42とが離間する。この際、レンズOLは、可動金型42に保持された状態で固定金型41から離型される。その後、図9(C)に示すように、可動ピン64によってレンズOLの突き出しを行わせることで、レンズOLが可動金型42からも離型される。 In the case of this embodiment, when the mold is opened, as shown in FIG. 9 (B), the movable mold 42 moves backward, and the fixed mold 41 and the movable mold 42 are separated from each other. At this time, the lens OL is released from the fixed mold 41 while being held by the movable mold 42. Thereafter, as shown in FIG. 9C, the lens OL is projected from the movable mold 42 by causing the movable pin 64 to project the lens OL.
 本実施形態においても、一対の金型41,42間のキャビティCVに充填された溶融樹脂を所望の程度に徐々に冷却することができ、成形サイクルの時間増大を防止しつつ、レンズOLの中心部OLaの微細形状FPの高転写を達成できる。また、本実施形態では、微細構造SSを転写するための光学面成形面56aを有するコア部252を備えた固定金型41からレンズOLを離型する構成であるとともに、凹凸形状を備えたコア部252によってレンズOLを突き出す構造ではないため、繰返し成形しても中心部OLaの光学面の偏心状態が変動し難く、安定した光学性能を容易に維持することができる。また、固定金型41と可動金型42とが離間する際にコア部252が離間方向外にずれたり振動したりして微細形状FPを損傷させることを防止できる。これにより、コマ収差を抑制できるとともに高精度の転写を実現した高NAの対物レンズ等のレンズOLを得ることができる。 Also in the present embodiment, the molten resin filled in the cavity CV between the pair of molds 41 and 42 can be gradually cooled to a desired level, and the center of the lens OL can be prevented while increasing the molding cycle time. High transfer of the fine shape FP of the portion OLa can be achieved. In the present embodiment, the lens OL is released from the fixed mold 41 including the core portion 252 having the optical surface molding surface 56a for transferring the microstructure SS, and the core having the uneven shape. Since the lens OL is not protruded by the portion 252, the decentered state of the optical surface of the center portion OLa hardly changes even if it is repeatedly molded, and stable optical performance can be easily maintained. Further, when the fixed mold 41 and the movable mold 42 are separated from each other, it is possible to prevent the core portion 252 from being displaced or vibrated out of the separation direction and damaging the fine shape FP. As a result, it is possible to obtain a lens OL such as a high NA objective lens that can suppress coma and realize high-accuracy transfer.
 〔第4実施形態〕
 以下、第4実施形態に係る光学素子成形金型と光学素子の製造方法について説明する。なお、第4実施形態に係る成形金型や製造方法は、第3実施形態を変形したものであり、特に説明しない部分については、第3実施形態と同様であるものとする。
[Fourth Embodiment]
The optical element molding die and the optical element manufacturing method according to the fourth embodiment will be described below. Note that the molding die and the manufacturing method according to the fourth embodiment are modifications of the third embodiment, and parts that are not particularly described are the same as those of the third embodiment.
 図10(A)は、本実施形態における固定金型41及び可動金型42の部分拡大断面図であり、型閉じ及び型締め状態を示している。また、図10(B)は、固定金型41及び可動金型42の型開き状態を示し、図10(C)は、可動金型42からレンズOLを突き出した状態を示している。 FIG. 10A is a partial enlarged cross-sectional view of the fixed mold 41 and the movable mold 42 in the present embodiment, and shows a mold closed state and a mold clamped state. 10B shows the open state of the fixed mold 41 and the movable mold 42, and FIG. 10C shows the state where the lens OL protrudes from the movable mold 42. FIG.
 図10で示す固定金型41において、コア部252の基材が低熱伝導材料で構成されており、対向する可動金型42において、コア部262の基材が高熱伝導材料で構成されている。また、固定金型41のコア部252のキャビティCV側の端面は、ニッケルリンメッキ層267で被覆されている。 In the fixed mold 41 shown in FIG. 10, the base material of the core portion 252 is made of a low heat conductive material, and in the movable mold 42 facing the base material of the core portion 262, the high heat conductive material is made. Further, the end surface on the cavity CV side of the core portion 252 of the fixed mold 41 is covered with a nickel phosphorus plating layer 267.
 さらに、固定金型41の外周型51には、適当な配列で複数の突き出し機構81が埋め込むように設けられている。各突き出し機構81は、突き出し部材である可動ピン81aと、可動ピン81aを可動金型42側に付勢するバネ81bと、可動ピン81aを端面51aよりも奥に収納可能な収納穴81cとを備える。 Furthermore, a plurality of protruding mechanisms 81 are provided in the outer peripheral mold 51 of the fixed mold 41 so as to be embedded in an appropriate arrangement. Each protrusion mechanism 81 includes a movable pin 81a that is a protrusion member, a spring 81b that urges the movable pin 81a toward the movable mold 42, and a storage hole 81c that can store the movable pin 81a behind the end surface 51a. Prepare.
 本実施形態の場合も、型開き時は、図10(B)に示すように、可動金型42が後退し、固定金型41と可動金型42とが離間する。この際、レンズOLは、可動金型42に保持された状態で固定金型41から離型される。レンズOLが突き出し機構81によって可動金型42側に押し出されるので、レンズOLの離型が安定し確実になる。その後、図10(C)に示すように、可動ピン64によってレンズOLの突き出しを行わせることで、レンズOLが可動金型42からも離型される。 Also in this embodiment, when the mold is opened, as shown in FIG. 10 (B), the movable mold 42 moves backward, and the fixed mold 41 and the movable mold 42 are separated from each other. At this time, the lens OL is released from the fixed mold 41 while being held by the movable mold 42. Since the lens OL is pushed out to the movable mold 42 side by the protrusion mechanism 81, the release of the lens OL becomes stable and reliable. Thereafter, as shown in FIG. 10C, the lens OL is protruded from the movable mold 42 by causing the movable pin 64 to project the lens OL.
 本実施形態も、第3実施形態と同様に、一対の金型41,42間のキャビティCVに充填された溶融樹脂を所望の程度に徐々に冷却することができ、成形サイクルの時間増大を防止しつつ、レンズOLの中心部OLaの微細形状FPの高転写を達成できる。さらに、レンズOLの中心部OLaの光学面の偏心状態が変動し難く、安定した光学性能を容易に維持することができ、コア部252が離間方向外にずれたり振動したりして微細形状FPを損傷させることを防止できる。また、本実施形態では、可動ピン81a等を用いてレンズOLの光学面以外の部分としてのフランジ部OLbをコア部252から突き出すことによって離型を行うので、離型時に微細構造SSに対応する微細形状FPの崩れをより確実に防止して良好な離型性を確保することができる。 In the present embodiment, similarly to the third embodiment, the molten resin filled in the cavity CV between the pair of molds 41 and 42 can be gradually cooled to a desired level, thereby preventing an increase in molding cycle time. However, high transfer of the fine shape FP of the central portion OLa of the lens OL can be achieved. Further, the decentered state of the optical surface of the center portion OLa of the lens OL is difficult to change, stable optical performance can be easily maintained, and the core portion 252 shifts or vibrates out of the separation direction, thereby causing a fine shape FP. Can be prevented from being damaged. Further, in the present embodiment, the mold part is released by protruding the flange part OLb as a part other than the optical surface of the lens OL from the core part 252 using the movable pin 81a and the like, so that it corresponds to the microstructure SS at the time of mold release. It is possible to more reliably prevent the fine shape FP from collapsing and to ensure good releasability.
 〔第5実施形態〕
 以下、第5実施形態に係る光学素子成形金型と光学素子の製造方法について説明する。なお、第5実施形態に係る成形金型や製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
[Fifth Embodiment]
Hereinafter, an optical element molding die and a method for manufacturing the optical element according to the fifth embodiment will be described. The molding die and the manufacturing method according to the fifth embodiment are modifications of the first embodiment, and parts that are not particularly described are the same as those of the first embodiment.
 図11(A)は、本実施形態における固定金型41及び可動金型42の部分拡大断面図であり、型閉じ及び型締め状態を示している。また、図11(B)は、固定金型41及び可動金型42の型開き後にレンズOLを突き出した状態を示している。 FIG. 11A is a partially enlarged cross-sectional view of the fixed mold 41 and the movable mold 42 in the present embodiment, and shows a mold closed state and a mold clamped state. FIG. 11B shows a state in which the lens OL is protruded after the fixed mold 41 and the movable mold 42 are opened.
 図11に示す外周型361及び可動ピン364の基材が低熱伝導材料で構成されており、このような基材を構成する低熱伝導材料は、熱伝導率が0.05W/m・K以上20W/m・K以下の熱伝導率を有しており、例えば6-4Tiを基材とすることができる。本実施形態において、フランジ部OLbのフランジ面F2の形状を転写するための転写面、すなわち成形面66bは、外周型361の先端部と可動ピン364の先端部とを合わせた転写部によって形成される。 The base material of the outer periphery type | mold 361 and the movable pin 364 shown in FIG. 11 is comprised with the low heat conductive material, and the low heat conductive material which comprises such a base material has thermal conductivity 0.05W / m * K or more and 20W. For example, 6-4Ti can be used as a base material. In the present embodiment, the transfer surface for transferring the shape of the flange surface F2 of the flange portion OLb, that is, the molding surface 66b, is formed by a transfer portion that combines the distal end portion of the outer peripheral die 361 and the distal end portion of the movable pin 364. The
 本実施形態の場合、外周型361や可動ピン364までが放熱を阻止する傾向を持つので、一対の金型41,42間のキャビティCVに充填された溶融樹脂をより徐々に冷却することができ、微細構造SSに対応する微細形状FPの高転写をより確実に達成できる。 In the case of this embodiment, since the outer peripheral mold 361 and the movable pin 364 tend to block heat dissipation, the molten resin filled in the cavity CV between the pair of molds 41 and 42 can be cooled gradually. High transfer of the fine shape FP corresponding to the fine structure SS can be achieved more reliably.
 〔第6実施形態〕
 以下、第6実施形態に係る光学素子成形金型と光学素子の製造方法について説明する。なお、第6実施形態に係る成形金型や製造方法は、第5実施形態を変形したものであり、特に説明しない部分については、第5実施形態と同様であるものとする。
[Sixth Embodiment]
Hereinafter, an optical element molding die and a method for manufacturing the optical element according to the sixth embodiment will be described. The molding die and the manufacturing method according to the sixth embodiment are modifications of the fifth embodiment, and parts that are not particularly described are the same as those of the fifth embodiment.
 図12(A)は、本実施形態における固定金型41及び可動金型42の部分拡大断面図であり、型閉じ及び型締め状態を示している。また、図12(B)は、固定金型41及び可動金型42の型開き後にレンズOLを突き出した状態を示している。 FIG. 12A is a partially enlarged cross-sectional view of the fixed mold 41 and the movable mold 42 in the present embodiment, and shows a mold closed state and a mold clamped state. FIG. 12B shows a state in which the lens OL is protruded after the fixed mold 41 and the movable mold 42 are opened.
 図12に示す外周型461の先端部461a及び可動ピン364の基材が低熱伝導材料で構成されており、このような基材を構成する低熱伝導材料は、熱伝導率が0.05W/m・K以上20W/m・K以下の熱伝導率を有しており、例えば6-4Tiを基材とすることができる。なお、外周型461の本体部分361bは、熱伝導率が20W/m・Kより大きい高熱伝導材料、具体的には低炭素鋼やステンレス鋼の母材で構成されている。ここで、外周型461の先端部461aと可動ピン364とによって形成される転写部は、フランジ部OLbのフランジ面F2の形状を転写するための転写面、すなわち成形面66bを成形する。 The base material of the tip 461a of the outer peripheral mold 461 and the movable pin 364 shown in FIG. 12 is made of a low heat conductive material, and the low heat conductive material constituting such a base material has a heat conductivity of 0.05 W / m. It has a thermal conductivity of not less than K and not more than 20 W / m · K. For example, 6-4Ti can be used as a base material. The main body portion 361b of the outer peripheral mold 461 is made of a high heat conductive material having a thermal conductivity higher than 20 W / m · K, specifically, a base material of low carbon steel or stainless steel. Here, the transfer portion formed by the tip portion 461a of the outer peripheral mold 461 and the movable pin 364 forms a transfer surface for transferring the shape of the flange surface F2 of the flange portion OLb, that is, a forming surface 66b.
 〔第7実施形態〕
 以下、第7実施形態に係る光学素子成形金型と光学素子の製造方法について説明する。なお、第7実施形態に係る成形金型や製造方法は、第5実施形態を変形したものであり、特に説明しない部分については、第5実施形態と同様であるものとする。
[Seventh Embodiment]
Hereinafter, an optical element molding die and a method for manufacturing the optical element according to the seventh embodiment will be described. Note that the molding die and the manufacturing method according to the seventh embodiment are modifications of the fifth embodiment, and parts that are not particularly described are the same as those of the fifth embodiment.
 図13(A)は、本実施形態における固定金型41及び可動金型42の部分拡大断面図であり、型閉じ及び型締め状態を示している。また、図13(B)は、固定金型41及び可動金型42の型開き後にレンズOLを突き出した状態を示している。 FIG. 13A is a partially enlarged cross-sectional view of the fixed mold 41 and the movable mold 42 in the present embodiment, and shows a mold closed state and a mold clamped state. FIG. 13B shows a state in which the lens OL is protruded after the fixed mold 41 and the movable mold 42 are opened.
 図13に示す各可動ピン364の基材が低熱伝導材料で構成されており、このような基材を構成する低熱伝導材料は、熱伝導率が0.05W/m・K以上20W/m・K以下の熱伝導率を有しており、例えば6-4Tiを基材とすることができる。なお、外周型61は、熱伝導率が20W/m・Kより大きい高熱伝導材料、具体的には低炭素鋼やステンレス鋼の母材で構成されている。 The base material of each movable pin 364 shown in FIG. 13 is made of a low heat conductive material, and the low heat conductive material constituting such a base material has a thermal conductivity of 0.05 W / m · K or more and 20 W / m · For example, 6-4Ti can be used as a base material. In addition, the outer periphery type | mold 61 is comprised with the high heat conductive material with a heat conductivity larger than 20 W / m * K, specifically, the preform | base_material of low carbon steel or stainless steel.
 なお、本実施形態において、フランジ部OLbのフランジ面F2の形状を転写するための転写面、すなわち成形面66bは、外周型61の先端部と可動ピン364の先端部とを合わせた転写部によって形成される。つまり、転写部を構成する外周型61と可動ピン364とは、異なる熱伝導率の材料で形成されている。この場合、溶融樹脂の冷却や成形のサイクル時間を調整することが可能となり、例えば、フランジ部OLbの一部を転写する可動ピン364の先端面の面積を調整することにより、溶融樹脂の冷却や成形のサイクル時間の調整を行うことができるほか、非点収差等の光学性能のコントロールを行うことができる。 In the present embodiment, the transfer surface for transferring the shape of the flange surface F2 of the flange portion OLb, that is, the molding surface 66b, is formed by a transfer portion that combines the tip portion of the outer peripheral die 61 and the tip portion of the movable pin 364. It is formed. In other words, the outer peripheral mold 61 and the movable pin 364 constituting the transfer part are formed of materials having different thermal conductivities. In this case, it is possible to adjust the cycle time of the molten resin cooling and molding. For example, by adjusting the area of the front end surface of the movable pin 364 that transfers a part of the flange portion OLb, In addition to adjusting the molding cycle time, optical performance such as astigmatism can be controlled.
 〔第8実施形態〕
 以下、第8実施形態に係る光学素子成形金型と光学素子の製造方法について説明する。なお、第8実施形態に係る成形金型や製造方法は、第5実施形態を変形したものであり、特に説明しない部分については、第5実施形態と同様であるものとする。
[Eighth Embodiment]
Hereinafter, an optical element molding die and an optical element manufacturing method according to the eighth embodiment will be described. The molding die and the manufacturing method according to the eighth embodiment are modifications of the fifth embodiment, and parts that are not particularly described are the same as those of the fifth embodiment.
 図14(A)は、本実施形態における固定金型41及び可動金型42の部分拡大断面図であり、型閉じ及び型締め状態を示している。また、図14(B)は、固定金型41及び可動金型42の型開き後にレンズOLを突き出した状態を示している。 FIG. 14A is a partially enlarged cross-sectional view of the fixed mold 41 and the movable mold 42 in the present embodiment, and shows a mold closed state and a mold clamped state. FIG. 14B shows a state in which the lens OL is protruded after the fixed mold 41 and the movable mold 42 are opened.
 図14に示す複数の可動ピン64,364のうち一部の可動ピン364の基材が低熱伝導材料で構成されており、このような基材を構成する低熱伝導材料は、熱伝導率が0.05W/m・K以上20W/m・K以下の熱伝導率を有しており、例えば6-4Tiを基材とすることができる。なお、その他の可動ピン64や外周型61は、熱伝導率が20W/m・Kより大きい高熱伝導材料、具体的には低炭素鋼やステンレス鋼の母材で構成されている。 Of the plurality of movable pins 64 and 364 shown in FIG. 14, the base material of some of the movable pins 364 is made of a low thermal conductive material, and the low thermal conductive material constituting such a base material has a thermal conductivity of 0. It has a thermal conductivity of 0.05 W / m · K or more and 20 W / m · K or less. For example, 6-4Ti can be used as a base material. The other movable pins 64 and the outer peripheral mold 61 are made of a high heat conductive material having a thermal conductivity higher than 20 W / m · K, specifically, a base material of low carbon steel or stainless steel.
 なお、以上の第8実施形態の場合、レンズOLから延びるゲートGTから離れた可動ピン364を低熱伝導材料で形成しており、レンズOLのうちゲートGTに近い側とゲートGTから離れた側との間で溶融樹脂の徐冷の程度を微調整することができる。この際、ゲートGTから離れた側を突き出す可動ピン364がゲートGTに近い側を突き出す可動ピン64よりも熱伝導率が低い材料で形成しており、ゲートGTから離れた側での溶融樹脂の冷却し易さを低減してレンズOLとしてほぼ均等な冷却を行うことができる。これにより、面形状の精度誤差による収差劣化を抑制することができ、特にNA0.80以上の光ピックアップ装置用の対物レンズに好適な光学素子を得ることができる。 In the case of the above-described eighth embodiment, the movable pin 364 that is separated from the gate GT extending from the lens OL is formed of a low thermal conductive material, and the side of the lens OL that is close to the gate GT and the side that is away from the gate GT. The degree of slow cooling of the molten resin can be finely adjusted. At this time, the movable pin 364 protruding from the side away from the gate GT is formed of a material having a lower thermal conductivity than the movable pin 64 protruding from the side close to the gate GT, and the molten resin on the side away from the gate GT is formed. It is possible to reduce the easiness of cooling and to perform substantially uniform cooling as the lens OL. Thereby, it is possible to suppress aberration deterioration due to surface shape accuracy error, and it is possible to obtain an optical element suitable for an objective lens for an optical pickup device having an NA of 0.80 or more.
 〔第9実施形態〕
 以下、第9実施形態に係る光学素子成形金型と光学素子の製造方法について説明する。なお、第9実施形態に係る成形金型や製造方法は、第5実施形態を変形したものであり、特に説明しない部分については、第5実施形態と同様であるものとする。
[Ninth Embodiment]
Hereinafter, an optical element mold according to the ninth embodiment and a method for manufacturing the optical element will be described. The molding die and the manufacturing method according to the ninth embodiment are modifications of the fifth embodiment, and parts that are not particularly described are the same as those of the fifth embodiment.
 図15(A)は、本実施形態における固定金型41及び可動金型42の部分拡大断面図であり、型閉じ及び型締め状態を示している。また、図15(B)は、固定金型41及び可動金型42の型開き後にレンズOLを突き出した状態を示している。 FIG. 15A is a partially enlarged cross-sectional view of the fixed mold 41 and the movable mold 42 in the present embodiment, and shows a mold closed state and a mold clamped state. FIG. 15B shows a state in which the lens OL is protruded after the fixed mold 41 and the movable mold 42 are opened.
 図15に示す外周型361の基材が低熱伝導材料で構成されており、このような基材を構成する低熱伝導材料は、熱伝導率が0.05W/m・K以上20W/m・K以下の熱伝導率を有しており、例えば6-4Tiを基材とすることができる。なお、可動ピン64は、熱伝導率が20W/m・Kより大きい高熱伝導材料、具体的には低炭素鋼やステンレス鋼の母材で構成されている。 The base material of the outer periphery type | mold 361 shown in FIG. 15 is comprised with the low heat conductive material, and the low heat conductive material which comprises such a base material has 0.05 W / m * K or more and 20 W / m * K. For example, 6-4Ti can be used as a base material. The movable pin 64 is made of a high heat conductive material having a thermal conductivity higher than 20 W / m · K, specifically, a base material of low carbon steel or stainless steel.
 なお、本実施形態において、フランジ部OLbのフランジ面F2の形状を転写するための転写面、すなわち成形面66bは、外周型361の先端部と可動ピン64の先端部とを合わせた転写部によって形成される。つまり、転写部を構成する外周型361と可動ピン64とは、異なる熱伝導率の材料で形成されている。その結果、溶融樹脂の冷却や成形のサイクル時間を調整することが可能となり、例えば、フランジ部OLbの一部を転写する可動ピン64の先端面の面積を調整することにより、溶融樹脂の冷却や成形のサイクル時間の調整を行うことができるほか、非点収差等の光学性能のコントロールを行うことができる。 In the present embodiment, the transfer surface for transferring the shape of the flange surface F2 of the flange portion OLb, that is, the molding surface 66b is formed by a transfer portion that combines the tip portion of the outer peripheral die 361 and the tip portion of the movable pin 64. It is formed. That is, the outer peripheral mold 361 and the movable pin 64 constituting the transfer part are formed of materials having different thermal conductivities. As a result, it is possible to adjust the cycle time of the cooling and molding of the molten resin. For example, by adjusting the area of the tip surface of the movable pin 64 that transfers a part of the flange portion OLb, In addition to adjusting the molding cycle time, optical performance such as astigmatism can be controlled.
 以上実施形態に即して本発明を説明したが、本発明は、上記実施形態に限定されるものではなく、様々な変形が可能である。例えば、固定金型41及び可動金型42で構成される射出成形金型に設けるキャビティCVの形状は、図示のものに限らず、様々な形状とすることができる。すなわち、コア部52,52等によって形成されるキャビティCVの形状は、単なる例示であり、レンズOLの用途等に応じて適宜変更することができる。 Although the present invention has been described based on the above embodiments, the present invention is not limited to the above embodiments, and various modifications are possible. For example, the shape of the cavity CV provided in the injection mold composed of the fixed mold 41 and the movable mold 42 is not limited to the illustrated one, and various shapes can be used. That is, the shape of the cavity CV formed by the core portions 52, 52 and the like is merely an example, and can be appropriately changed according to the use of the lens OL.

Claims (13)

  1.  光学面に凹凸形状を備えた光学機能部とフランジ部とを有する光学素子の製造方法であって、
     凹凸形状を転写するための転写面を備え、20W/m・K以下の熱伝導率を有する低熱伝導材料で基材が構成された入れ子を固定金型と可動金型との少なくとも一方に備えた一対の金型を用いて、射出成形により光学素子を成形する成形工程と、
     前記固定金型と前記可動金型とを離間するとともに、突き出し部材を用いて成形した光学素子の光学面以外の部分を突き出すことにより、光学素子を離型させる離型工程と、
    を備えることを特徴とする光学素子の製造方法。
    A method of manufacturing an optical element having an optical function part having a concave and convex shape on the optical surface and a flange part,
    A transfer surface for transferring the concavo-convex shape is provided, and a nesting in which a base material is composed of a low thermal conductive material having a thermal conductivity of 20 W / m · K or less is provided in at least one of a fixed mold and a movable mold. A molding step of molding an optical element by injection molding using a pair of molds;
    A mold release step of separating the optical element by separating the fixed mold and the movable mold and projecting a part other than the optical surface of the optical element molded using a projecting member;
    An optical element manufacturing method comprising:
  2.  光学面に凹凸形状を備えた光学機能部とフランジ部とを有する光学素子の製造方法であって、
     凹凸形状を転写するための転写面を備え、前記転写面を形成する表面加工層と基材との間に20W/m・K以下の熱伝導率を有する低熱伝導材料で構成された熱伝導抑制層を有する入れ子を固定金型と可動金型との少なくとも一方に備えた一対の金型を用いて、射出成形により光学素子を成形する成形工程と、
     前記固定金型と前記可動金型とを離間するとともに、突き出し部材を用いて成形した光学素子の光学面以外の部分を突き出すことにより、光学素子を離型させる離型工程と、
    を備えることを特徴とする光学素子の製造方法。
    A method of manufacturing an optical element having an optical function part having a concave and convex shape on the optical surface and a flange part,
    Heat transfer suppression comprising a transfer surface for transferring irregularities, and comprising a low thermal conductivity material having a thermal conductivity of 20 W / m · K or less between the surface processed layer forming the transfer surface and the substrate A molding step of molding an optical element by injection molding using a pair of molds provided with at least one of a fixed mold and a movable mold with a nesting having a layer;
    A mold release step of separating the optical element by separating the fixed mold and the movable mold and projecting a part other than the optical surface of the optical element molded using a projecting member;
    An optical element manufacturing method comprising:
  3.  前記フランジ部の形状を転写するための転写部のうち少なくとも一部は、熱伝導率が20W/m・K以下である低熱伝導材料で構成されていることを特徴とする請求の範囲第1項又は第2項に記載の光学素子の製造方法。 2. The first aspect of the invention is characterized in that at least a part of the transfer portion for transferring the shape of the flange portion is made of a low thermal conductivity material having a thermal conductivity of 20 W / m · K or less. Or the manufacturing method of the optical element of a 2nd term | claim.
  4.  前記突き出し部材のうち少なくとも一部は、熱伝導率が20W/m・K以下である低熱伝導材料で構成されていることを特徴とする請求の範囲第1項から第3項までのいずれか一項に記載の光学素子の製造方法。 At least one part of the said protrusion member is comprised with the low heat conductive material whose heat conductivity is 20 W / m * K or less, The any one of Claim 1 to 3 characterized by the above-mentioned. The manufacturing method of the optical element of description.
  5.  前記突き出し部材は、成形した光学素子の前記光学面以外の部分を突き出す複数の部材を備え、
     前記複数の部材のうち、光学素子を成形する際に形成されるゲートに近い側を突き出す部材と前記ゲートから離れた側を突き出す部材とは、異なる熱伝導率の材料で形成されていることを特徴とする請求の範囲第1項又は第2項に記載の光学素子の製造方法。
    The projecting member includes a plurality of members that project parts other than the optical surface of the molded optical element,
    Of the plurality of members, the member protruding from the side close to the gate formed when the optical element is molded and the member protruding from the side away from the gate are formed of materials having different thermal conductivities. The method for manufacturing an optical element according to claim 1 or 2, wherein the optical element is manufactured according to claim 1.
  6.  前記ゲートから離れた側を突き出す部材は、前記ゲートに近い側を突き出す部材よりも熱伝導率が低い材料で形成されていることを特徴とする請求の範囲第5項に記載の光学素子の製造方法。 The optical element manufacturing method according to claim 5, wherein the member protruding from the side away from the gate is formed of a material having a lower thermal conductivity than the member protruding from the side close to the gate. Method.
  7.  前記突き出し部材は、前記フランジ部の形状の一部を転写するとともに前記フランジ部の一部を突き出す部材であり、
     前記フランジ部の形状を転写するための転写部のうち、前記突き出し部材によって転写される部分を除いた転写部と前記突き出し部材とは、異なる熱伝導率の材料で形成されていることを特徴とする請求の範囲第1項又は第2項に記載の光学素子の製造方法。
    The protruding member is a member that transfers a part of the shape of the flange part and protrudes a part of the flange part,
    Of the transfer part for transferring the shape of the flange part, the transfer part excluding the part transferred by the protrusion member and the protrusion member are formed of materials having different thermal conductivity. A method for manufacturing an optical element according to claim 1 or 2.
  8.  前記可動金型は、低熱伝導材料で構成された前記基材又は熱伝導抑制層を有する前記入れ子を備えることを特徴とする請求の範囲第1項から第7項までのいずれか一項に記載の光学素子の製造方法。 The said movable metal mold | die is equipped with the said nest | insert which has the said base material or heat conduction suppression layer comprised with the low heat conductive material, The range of any one of Claim 1 to 7 characterized by the above-mentioned. Of manufacturing the optical element.
  9.  前記固定金型は、低熱伝導材料で構成された前記基材又は熱伝導抑制層を有する前記入れ子を備えることを特徴とする請求の範囲第1項から第8項までのいずれか一項に記載の光学素子の製造方法。 The said fixed metal mold | die is equipped with the said nest | insert which has the said base material or heat conduction suppression layer comprised with the low heat conductive material, The range of any one of Claim 1 to 8 characterized by the above-mentioned. Of manufacturing the optical element.
  10.  前記光学素子は、レンズであることを特徴とする請求の範囲第1項から第9項までのいずれか一項に記載の光学素子の製造方法。 The method of manufacturing an optical element according to any one of claims 1 to 9, wherein the optical element is a lens.
  11.  一対の金型により光学素子を成形する光学素子成形金型であって、
     前記一対の金型のうち少なくとも一方は、
     凹凸形状を転写するための転写面を備え、20W/m・K以下の熱伝導率を有する低熱伝導材料で基材が構成された入れ子と、
     前記入れ子を支持する型部材と、
     前記一対の金型が互いに離間した際に成形した光学素子の光学面以外の部分を突き出すことによって光学素子を離型させる突き出し部材と、
    を備えたことを特徴とする光学素子成形金型。
    An optical element molding die for molding an optical element by a pair of molds,
    At least one of the pair of molds is
    A nesting comprising a transfer surface for transferring the concavo-convex shape, and a base material composed of a low thermal conductive material having a thermal conductivity of 20 W / m · K or less,
    A mold member for supporting the insert;
    A protruding member for releasing the optical element by protruding a portion other than the optical surface of the optical element formed when the pair of molds are separated from each other;
    An optical element molding die comprising:
  12.  一対の金型により光学素子を成形する光学素子成形金型であって、
     前記一対の金型のうち少なくとも一方は、
     凹凸形状を転写するための転写面を備え、前記転写面を形成する表面加工層と基材との間に20W/m・K以下の熱伝導率を有する低熱伝導材料で構成された熱伝導抑制層を有する入れ子と、
     前記入れ子を支持する型部材と、
     前記一対の金型が互いに離間した際に成形した光学素子の光学面以外の部分を突き出すことによって光学素子を離型させる突き出し部材と、
    を備えたことを特徴とする光学素子成形金型。
    An optical element molding die for molding an optical element by a pair of molds,
    At least one of the pair of molds is
    Heat transfer suppression comprising a transfer surface for transferring irregularities, and comprising a low thermal conductivity material having a thermal conductivity of 20 W / m · K or less between the surface processed layer forming the transfer surface and the substrate Nesting with layers,
    A mold member for supporting the insert;
    A protruding member for releasing the optical element by protruding a portion other than the optical surface of the optical element formed when the pair of molds are separated from each other;
    An optical element molding die comprising:
  13.  請求の範囲第11項又は第12項に記載の光学素子成形金型を用いて形成されたことを特徴とする光学素子。 An optical element formed using the optical element molding die according to claim 11 or 12.
PCT/JP2009/054416 2008-03-31 2009-03-09 Optical element manufacturing method, optical element molding die, and optical element WO2009122862A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801109827A CN101980848A (en) 2008-03-31 2009-03-09 Optical element manufacturing method, optical element molding die, and optical element
JP2010505509A JPWO2009122862A1 (en) 2008-03-31 2009-03-09 Optical element manufacturing method, optical element molding die, and optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008092885 2008-03-31
JP2008-092885 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009122862A1 true WO2009122862A1 (en) 2009-10-08

Family

ID=41135249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054416 WO2009122862A1 (en) 2008-03-31 2009-03-09 Optical element manufacturing method, optical element molding die, and optical element

Country Status (3)

Country Link
JP (1) JPWO2009122862A1 (en)
CN (1) CN101980848A (en)
WO (1) WO2009122862A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102081173A (en) * 2009-11-30 2011-06-01 鸿富锦精密工业(深圳)有限公司 Lens and die for manufacturing lens
WO2011122174A1 (en) * 2010-03-30 2011-10-06 コニカミノルタオプト株式会社 Die
CN103302818A (en) * 2012-03-14 2013-09-18 高准精密工业股份有限公司 Die stripping thrustor for optical member
JP2013185659A (en) * 2012-03-08 2013-09-19 Ntn Corp Spherical spacer, bearing, linear motion device and method for manufacturing spherical spacer
WO2013153940A1 (en) * 2012-04-09 2013-10-17 コニカミノルタ株式会社 Method for producing optical component
WO2015046074A1 (en) * 2013-09-24 2015-04-02 オリンパス株式会社 Injection molding method and injection molding die
JP5765333B2 (en) * 2010-03-31 2015-08-19 コニカミノルタ株式会社 Mold, injection molding machine, and objective optical element manufacturing method
JP2016215556A (en) * 2015-05-25 2016-12-22 キヤノン株式会社 Production method of liquid discharge head
US20230339161A1 (en) * 2021-03-09 2023-10-26 Lg Chem, Ltd. Injection mold

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624913A (en) * 2012-08-24 2014-03-12 玉晶光电(厦门)有限公司 Plastic eyeglass capable of improving eccentricity and manufacturing method thereof
KR101558056B1 (en) * 2013-11-21 2015-10-06 삼성전기주식회사 Mold device for forming lens
WO2015141814A1 (en) * 2014-03-20 2015-09-24 コニカミノルタ株式会社 Molding die for optical element, and method for manufacturing optical element
JP2019012112A (en) * 2017-06-29 2019-01-24 日本電産サンキョー株式会社 Manufacturing method of plastic lens
CN113510885A (en) * 2021-05-12 2021-10-19 苏州天群精密机械有限公司 Contact lens production mold adopting ejector pins for demolding

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271717A (en) * 1986-05-21 1987-11-26 Hitachi Ltd Mold for plastic molding
JPH0768614A (en) * 1993-09-03 1995-03-14 Olympus Optical Co Ltd Injection molding die and injection molding method for optical element
JPH08309873A (en) * 1995-05-17 1996-11-26 Canon Inc Resin molded optical part and mold thereof
JP2002096335A (en) * 2000-09-25 2002-04-02 Minolta Co Ltd Mold for molding optical element and method for molding optical element
JP2004284110A (en) * 2003-03-20 2004-10-14 Konica Minolta Holdings Inc Optical element manufacturing apparatus
JP2006044245A (en) * 2004-06-29 2006-02-16 Konica Minolta Opto Inc Mold for injection molding and injection molding method
JP2006044244A (en) * 2004-06-29 2006-02-16 Konica Minolta Opto Inc Mold for injection molding and injection molding method
JP2007196665A (en) * 2005-12-26 2007-08-09 Konica Minolta Opto Inc Mold for resin molding, objective lens for optical pickup device and manufacturing method of optical element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3096066B2 (en) * 1996-01-18 2000-10-10 ホーヤ株式会社 Method for manufacturing lens, injection mold for lens molding, and lens molded product
CN1182664A (en) * 1997-10-10 1998-05-27 温州市凯达眼镜实业公司 Method for injection moulding plastic nearsight lens
CN2458150Y (en) * 2001-02-28 2001-11-07 平阳县凯达包装机械厂 Multi-cavity variable secondary mould closing optical lens injection mould

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271717A (en) * 1986-05-21 1987-11-26 Hitachi Ltd Mold for plastic molding
JPH0768614A (en) * 1993-09-03 1995-03-14 Olympus Optical Co Ltd Injection molding die and injection molding method for optical element
JPH08309873A (en) * 1995-05-17 1996-11-26 Canon Inc Resin molded optical part and mold thereof
JP2002096335A (en) * 2000-09-25 2002-04-02 Minolta Co Ltd Mold for molding optical element and method for molding optical element
JP2004284110A (en) * 2003-03-20 2004-10-14 Konica Minolta Holdings Inc Optical element manufacturing apparatus
JP2006044245A (en) * 2004-06-29 2006-02-16 Konica Minolta Opto Inc Mold for injection molding and injection molding method
JP2006044244A (en) * 2004-06-29 2006-02-16 Konica Minolta Opto Inc Mold for injection molding and injection molding method
JP2007196665A (en) * 2005-12-26 2007-08-09 Konica Minolta Opto Inc Mold for resin molding, objective lens for optical pickup device and manufacturing method of optical element

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102081173A (en) * 2009-11-30 2011-06-01 鸿富锦精密工业(深圳)有限公司 Lens and die for manufacturing lens
WO2011122174A1 (en) * 2010-03-30 2011-10-06 コニカミノルタオプト株式会社 Die
CN102821926A (en) * 2010-03-30 2012-12-12 柯尼卡美能达先进多层薄膜株式会社 Die
JPWO2011122174A1 (en) * 2010-03-30 2013-07-08 コニカミノルタ株式会社 Mold
JP5765333B2 (en) * 2010-03-31 2015-08-19 コニカミノルタ株式会社 Mold, injection molding machine, and objective optical element manufacturing method
JP2013185659A (en) * 2012-03-08 2013-09-19 Ntn Corp Spherical spacer, bearing, linear motion device and method for manufacturing spherical spacer
CN103302818A (en) * 2012-03-14 2013-09-18 高准精密工业股份有限公司 Die stripping thrustor for optical member
CN103302818B (en) * 2012-03-14 2016-01-20 高准精密工业股份有限公司 Optical component mold releasability thrustor
WO2013153940A1 (en) * 2012-04-09 2013-10-17 コニカミノルタ株式会社 Method for producing optical component
JPWO2013153940A1 (en) * 2012-04-09 2015-12-17 コニカミノルタ株式会社 Manufacturing method of optical components
WO2015046074A1 (en) * 2013-09-24 2015-04-02 オリンパス株式会社 Injection molding method and injection molding die
JPWO2015046074A1 (en) * 2013-09-24 2017-03-09 オリンパス株式会社 Injection molding method and injection mold
US10022926B2 (en) 2013-09-24 2018-07-17 Olympus Corporation Injection molding method and injection molding die
JP2016215556A (en) * 2015-05-25 2016-12-22 キヤノン株式会社 Production method of liquid discharge head
US10307967B2 (en) 2015-05-25 2019-06-04 Canon Kabushiki Kaisha Method for manufacturing liquid-ejecting head
US20230339161A1 (en) * 2021-03-09 2023-10-26 Lg Chem, Ltd. Injection mold
EP4186675A4 (en) * 2021-03-09 2024-03-13 Lg Chem, Ltd. Injection mold

Also Published As

Publication number Publication date
JPWO2009122862A1 (en) 2011-07-28
CN101980848A (en) 2011-02-23

Similar Documents

Publication Publication Date Title
WO2009122862A1 (en) Optical element manufacturing method, optical element molding die, and optical element
JP5713021B2 (en) Optical element manufacturing method
WO2010061728A1 (en) Optical element manufacturing method and molding die
JP5267253B2 (en) Lens molding die and lens manufacturing method
CN103370182B (en) The manufacture method of optical element and optical element
JP2010082838A (en) Lens manufacturing method
JP4808089B2 (en) Optical element molding method
JPWO2008117576A1 (en) Injection molding machine, optical element, and optical pickup device
JPWO2011037038A1 (en) Mold and molding method
JP2010083025A (en) Method for manufacturing optical element and metallic mold for molding optical element
JP2009241297A (en) Method for manufacturing optical element, optical element molding mold, and optical element
JP4569744B2 (en) Optical element molding method
JPH09295319A (en) Mold for molding disk substrate
WO2013047274A1 (en) Mold and method for producing optical element
JP2008234724A (en) Compound objective lens forming mold, compound objective lens, and optical pickup device
JP2012206338A (en) Method for manufacturing of optical element
JP2014061601A (en) Method for manufacturing optical element
JP2012158088A (en) Method of manufacturing optical element, and molding die
WO2013047289A1 (en) Optical element manufacturing method, and forming mold
JP2014061597A (en) Molding device and method for manufacturing optical element
WO2011040180A1 (en) Molding die
WO2013146871A1 (en) Method and device for manufacturing thermoplastic resin product
JP2008087407A (en) Injection-molding method
JP4576838B2 (en) Molding method
JP2013169691A (en) Molding equipment, and method for manufacturing optical element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110982.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09728371

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505509

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09728371

Country of ref document: EP

Kind code of ref document: A1