WO2011122174A1 - Die - Google Patents

Die Download PDF

Info

Publication number
WO2011122174A1
WO2011122174A1 PCT/JP2011/053805 JP2011053805W WO2011122174A1 WO 2011122174 A1 WO2011122174 A1 WO 2011122174A1 JP 2011053805 W JP2011053805 W JP 2011053805W WO 2011122174 A1 WO2011122174 A1 WO 2011122174A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
mold
insulating layer
layer
heat insulating
Prior art date
Application number
PCT/JP2011/053805
Other languages
French (fr)
Japanese (ja)
Inventor
賢一 石井
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to CN2011800160467A priority Critical patent/CN102821926A/en
Priority to JP2012508143A priority patent/JPWO2011122174A1/en
Publication of WO2011122174A1 publication Critical patent/WO2011122174A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3828Moulds made of at least two different materials having different thermal conductivities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0013Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0015Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms

Definitions

  • the present invention relates to a mold for molding an optical element, and particularly to a mold suitable for molding an objective lens for a high-precision optical pickup device.
  • a laser light source used as a light source for reproducing information recorded on an optical disc and recording information on the optical disc has been shortened.
  • a wavelength 390 such as a blue-violet semiconductor laser is used.
  • a laser light source of ⁇ 420 nm has been put into practical use.
  • 15 to 20 GB of information can be recorded on an optical disk having a diameter of 12 cm when an objective lens having the same numerical aperture (NA) as that of a DVD (Digital Versatile Disc) is used.
  • NA of the objective optical element is increased to 0.85, 23 to 25 GB of information can be recorded on an optical disk having a diameter of 12 cm.
  • a compatible objective lens used in common for each optical disk has already been developed.
  • a compatible objective lens has a problem that it is difficult to mold because a fine diffractive structure is formed on the optical surface.
  • the objective lens used in the BD / DVD / CD compatible optical pickup device has a deeper shape in order to cope with a high NA as compared with the objective lens used in the conventional DVD / CD compatible optical pickup device.
  • the problem of difficulty in molding is very large.
  • Patent Document 1 discloses a technique for disposing a heat insulating layer between a surface processed layer and a base material. Resin filled in the mold in the injection process without the occurrence of mold temperature irregularity, resin flow irregularity, cooling solidification non-uniformity, etc. due to the presence of the heat insulating layer under the surface processed layer Can be kept at a high temperature until the pressure holding process, which is the subsequent shape transfer process, so that a highly accurate mold shape of micron order or less formed on the surface processed layer can be transferred to the molded product with high accuracy. be able to.
  • Patent Document 1 is a technique for forming a diffractive structure on a relatively flat optical element
  • an objective lens for an optical pickup device has a convex optical surface.
  • the thickness of the heat insulating layer will be different between the center and the periphery of the optical surface, thereby making the heat conduction non-uniform, and the resin solidifies faster in the center of the optical surface, There is a possibility that the solidification of the resin will be delayed at the periphery, resulting in a variation in the solidification of the resin, leading to deterioration of the optical characteristics of the molded objective lens.
  • the present invention has been made in view of the problems of the prior art, and an object thereof is to provide a mold capable of molding an objective lens for a high-precision optical pickup device.
  • the mold according to claim 1 is a mold used for molding an objective lens for an optical pickup device, the surface processing layer having a concave curved surface for transferring and molding an optical surface of the objective lens, and the surface A base material having a support surface that is recessed corresponding to the concave curved surface to support the processed layer; and a heat insulating layer disposed between the surface processed layer and the support surface, and the heat insulating layer.
  • the thermal conductivity of is lower than the thermal conductivity of the surface processed layer.
  • a surface processing layer having a concave curved surface for transfer molding of the optical surface of the objective lens, and a base material having a support surface that is recessed corresponding to the concave curved surface to support the surface processing layer.
  • a heat insulating layer disposed between the surface processed layer and the support surface, the thickness of the heat insulating layer can be made uniform, and the thermal conductivity of the heat insulating layer is Since it is lower than the thermal conductivity of the processed layer, the cooling rate of the molding material in contact with the surface processed layer can be made uniform, and the optical surface of the objective lens can be transferred with high accuracy.
  • the mold according to claim 2 is characterized in that, in the invention according to claim 1, the thermal conductivity of the heat insulating layer is lower than the thermal conductivity of the base material. Thereby, the cooling rate of the molding material in contact with the surface processed layer can be made more uniform, and the optical surface of the objective lens can be transferred with high accuracy.
  • the mold according to claim 3 is characterized in that, in the invention according to claim 1, the thermal conductivity of the heat insulating layer is 10.0 W / m ⁇ K or less. As a result, the cooling rate of the molding material in contact with the surface processed layer can be reduced, and the optical surface of the objective lens can be transferred with high accuracy.
  • the mold according to claim 4 is the invention according to any one of claims 1 to 3, wherein the heat insulating layer has a difference between a thickness of a central thickness and a thickness of a peripheral thickness of 0.1 mm. It is characterized by the following. Thereby, the cooling rate of the molding material in contact with the surface processed layer can be made more uniform, and the optical surface of the objective lens can be transferred with high accuracy.
  • the mold according to claim 5 is characterized in that, in the invention according to any one of claims 1 to 4, the thickness of the heat insulating layer is 0.1 to 3 mm.
  • the mold according to claim 6 is characterized in that, in the invention according to any one of claims 1 to 5, the heat insulating layer is formed of ceramics.
  • the mold according to claim 7 is characterized in that, in the invention according to any one of claims 1 to 6, the surface processed layer is formed by electroless nickel plating.
  • the mold according to claim 8 is characterized in that, in the invention according to any one of claims 1 to 7, the objective lens is a BD / DVD / CD compatible objective lens.
  • the mold according to claim 9 is the invention according to any one of claims 1 to 8, wherein the objective lens has a central area, an intermediate area, and a peripheral area, and at least the center is formed by the mold. A fine shape is transferred and formed between the region and the intermediate region. According to the present invention, since the cooling rate of the molding material in contact with the surface processed layer can be made uniform, even when a fine groove corresponding to a fine shape is formed in the surface processed layer, the material is inserted to the back of the fine groove. The penetration transfer property is improved.
  • the objective lens for BD / DVD / CD compatibility refers to an objective lens used in common for BD, DVD, and CD.
  • a typical BD / DVD / CD compatible lens is a so-called deep lens that has a high NA of around NA 0.8, and therefore tends to have a small curvature radius and a thick on-axis, and is compatible with DVD / CD. Since it has a diffractive structure with a finer shape than a lens for use, a high-performance heat insulation is required to allow a resin or glass material to enter the fine shape, and the present invention is particularly effective.
  • the central part of the objective lens is shared by BD / DVD / CD, and the central part is shared by BD / DVD, and flare light is formed on the information recording surface of the CD, so a very complicated diffraction structure is required. It can be said that the influence of heat insulation is great.
  • the BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is about 0.05 to 0.125 mm.
  • Is a generic name of a BD series optical disc and includes a BD having only a single information recording layer, a BD having two information recording layers, and the like.
  • DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm.
  • CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm.
  • CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
  • the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing a light beam emitted from the light source onto the information recording surface of the optical disk.
  • the objective lens may be composed of two or more lenses and / or optical elements, or may be composed of a single lens, but is preferably an objective lens composed of a single convex lens.
  • the objective lens may be a glass lens, a plastic lens, or a light path difference providing structure (diffractive structure) with a photocurable resin, a UV curable resin, or a thermosetting resin on the glass lens.
  • a hybrid lens provided with a When the objective lens has a plurality of lenses, a glass lens and a plastic lens may be mixed and used.
  • the objective lens When the objective lens includes a plurality of lenses, it may be a combination of a flat optical element having an optical path difference providing structure and an aspherical lens (which may or may not have an optical path difference providing structure).
  • the objective lens preferably has a refractive surface that is aspheric.
  • the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
  • an objective lens satisfy
  • dt represents the thickness (mm) on the optical axis of the objective lens
  • f represents the focal length of the objective lens in the first light flux.
  • the objective lens is described below. It is preferable that at least one optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region.
  • the central region is preferably a region including the optical axis of the objective lens.
  • a minute region including the optical axis may be an unused region or a special purpose region, and the periphery thereof may be a central region.
  • the central region, the intermediate region, and the peripheral region are preferably provided on the same optical surface. As shown in FIG. 1, the central region CN, the intermediate region MD, and the peripheral region OT are preferably provided concentrically around the optical axis on the same optical surface.
  • the central region, the intermediate region, and the peripheral region are preferably adjacent to each other, but there may be a slight gap between them.
  • the BD light flux that has passed through the central region CN is condensed on the BD information recording surface
  • the DVD light flux is condensed on the DVD information recording surface
  • the CD light flux is on the CD. It is condensed on the information recording surface.
  • the BD light flux that has passed through the intermediate area MD is condensed on the BD information recording surface
  • the DVD light flux is condensed on the DVD information recording surface
  • the CD light flux is condensed on the CD information recording surface.
  • the BD light flux that has not been condensed onto the BD and further passed through the peripheral area OT is condensed on the BD information recording surface, but the DVD light flux is not condensed on the DVD information recording surface, and the CD light flux is The light is not condensed on the information recording surface of the CD.
  • the diffractive structure referred to in this specification is a general term for structures that have a step and have a function of converging or diverging a light beam by diffraction.
  • a plurality of unit shapes are arranged around the optical axis, and a light beam is incident on each unit shape, and the wavefront of the transmitted light is shifted between adjacent annular zones, resulting in new It includes a structure that converges or diverges light by forming a simple wavefront.
  • the diffractive structure preferably has a plurality of steps, and the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the diffractive structures may be superimposed.
  • the width of the step shape of the diffractive structure is X and the height of the step shape is Y
  • 0.50 ⁇ maximum value of (Y / X) ⁇ 1.0 in the entire diffractive structure that is, If the lens material has a deep step shape and the lens material is difficult to enter into the microstructure of the mold, problems such as solidification variation will be greater. Therefore, the effect becomes more remarkable.
  • Y / X is the value of the ratio between the width and height of the step shape.
  • the maximum value of (Y / X) is a U-shaped step shape (such as when the step shape is a staircase shape, or a sawtooth structure superimposed in the opposite direction).
  • a U-shaped step shape such as when the step shape is a staircase shape, or a sawtooth structure superimposed in the opposite direction.
  • the height of the U-shaped step shape is the height of the wall surface with the higher height in the optical axis direction among the two wall surfaces in the optical axis direction forming the U-shaped step shape.
  • the step shape does not have a U-shaped step shape
  • the step shape is obtained based on the value of the ratio between the width X and the height Y of the saw-tooth type step shape.
  • the mold according to the present invention includes a surface processing layer having a concave curved surface for transferring and molding the optical surface of an objective lens for an optical pickup device, and a recess corresponding to the concave curved surface to support the surface processing layer. It has at least a base material having a support surface, and a heat insulating layer disposed between the surface processed layer and the support surface.
  • a bond layer or an intermediate metal layer may be provided in addition to the heat insulating layer between the surface processed layer and the support surface of the base material.
  • the heat insulation layer is preferably a layer having a thermal conductivity of 10.0 W / m ⁇ K or less, and as the material of the heat insulation layer, for example, ceramic materials such as zirconia, alumina, titanium oxide, and chromium oxide may be used. I can do it.
  • the surface processed layer is a layer in which a fine shape is formed by cutting on the outermost surface.
  • an electroless nickel plating or a material containing Cu in electroless nickel plating can be used.
  • stainless steel or the like can be used as the base material fixed to the molding apparatus.
  • FIG. 2 is a diagram showing a manufacturing process of a mold for forming an objective lens for an optical pickup device.
  • FIG. 3 is a cross-sectional view showing a state in which an objective lens is molded using the manufactured mold. However, the diffraction structure and the like are exaggerated.
  • a base material BD is processed from a cylindrical material such as stainless steel by cutting using a tool TL.
  • a support surface BD1 that is recessed in a concave shape is formed on the end surface of the base material BD, and a groove BD2 that extends in the circumferential direction is formed on the peripheral surface of the base material BD.
  • a NiCr bond layer AD is thinly formed on the support surface BD1 of the base material BD by plasma spraying. This has a function of increasing the adhesion between the heat insulating layer HI and the base material BD.
  • a ceramic layer is deposited on the bond layer AD by plasma spraying.
  • Plasma spraying is a technique in which a fine powder such as ceramics, a wire, or the like is introduced into a plasma heat source and sprayed onto a base material to be coated as fine particles in a molten or semi-molten state to form a coating.
  • a plasma heat source is a high-temperature plasma gas in which a molecular gas is heated to a high temperature, dissociated into atoms, and energy is given to emit electrons.
  • the plasma gas injection speed is high, and the sprayed material collides with the base material at a higher speed than conventional arc spraying or flame spraying, so that a high-density coating can be obtained with high adhesion strength.
  • a thermal spraying method for forming a heat shielding film on a high-temperature exposed member described in JP-A No. 2000-301655 can be referred to.
  • the deposited ceramic layer is cut with a tool TL to adjust the shape and form a heat insulating layer HI.
  • a concave curved surface HI1 is formed corresponding to the support surface BD1 (see the solid line in FIG. 2C).
  • the thickness of the heat insulating layer HI is 0.1 mm to 3 mm, and the difference between the central thickness t1 and the peripheral thickness t2 is 0.1 mm or less.
  • the surface processed layer SM is formed by plating so as to cover the entire heat insulating layer HI from the groove BD2 of the base material BD.
  • ceramics is relatively incompatible with plating, but by covering the entire surface with the surface processed layer SM in this way, it is possible to suppress the heat insulating layer HI from being peeled off from the base material BD.
  • the surface processed layer SM covers only a part of the base material BD, which is to reduce the risk of plating defects.
  • the surface processing layer SM is cut with a tool TL to form a concave aspherical curved surface (transfer surface) SM1 corresponding to the support surface BD1, and a concave aspherical surface.
  • the ring-shaped fine groove SV is formed at a position corresponding to at least the central region and the intermediate region of the objective lens formed by the curved surface SM1, and thus the mold M1 is completed.
  • the heat conductivity of the heat insulating layer HI is lower than the heat conductivity of the base material BD and the surface processed layer SM.
  • the mold M1 and the mold M2 manufactured in the same process are clamped so as to face each other as shown in FIG. 3, and resin or glass (molding material) is placed in the internal cavity. ) And then solidifying, the objective lens OBJ having an optical surface to which the shape of the concave aspherical curved surface SM1 of the surface processing layer SM is transferred can be formed.
  • the thermal conductivity of the heat insulating layer HI is lower than the thermal conductivity of the base material BD and the surface processed layer SM, the cooling rate of the temperature of the molding material in contact with the surface processed layer SM becomes uniform, Thereby, the fluidity of the molding material is increased, and the fine shape can be easily entered into the fine groove SV, and solidified in such a state, whereby the fine shape can be transferred with high accuracy.
  • the molded objective lens OBJ can be taken out by releasing the molds M1 and M2.
  • the mold having the heat insulating layer HI may be provided only in the mold M1 for transfer molding the light source side optical surface S1 of the objective lens OBJ.
  • the shape of the base material of the mold M2 on the heat insulating layer side may be a planar shape in the direction perpendicular to the optical axis without being a concave shape along the shape of the surface processed layer.
  • the heat insulating layer may not be provided on the mold M2.
  • Table 1 summarizes the materials and thermal conductivity used in the present embodiment.
  • the object of molding is not limited to a BD / DVD / CD compatible objective lens, and is compatible with two. It can also be applied to other objective lenses.

Abstract

Disclosed is a die that has the following: a surface treatment layer (SM) having a concave, curved surface (SM1) for transfer molding an optical surface of an objective lens (OBJ), a base material (BD) having a supporting surface (BD1) that corresponds to the concave, curved surface (SM1) and which is for supporting the surface treatment layer (SM), and a heat insulating layer (HI) disposed between the surface treatment layer (SM) and the base material (BD). Therefore, it is possible to approach uniformity in the thickness of the heat-insulating layer (HI). Furthermore, because the thermal conductivity of the heat-insulating layer (HI) is lower than that of the surface treatment layer (SM), the cooling speed of the molding material in contact with the surface treatment layer (SM) can be made uniform. Hence, highly accurate transfer of the optical surface of the objective lens (OBJ) can be performed.

Description

金型Mold
 本発明は、光学素子を成形する金型に関し、特に高精度な光ピックアップ装置用の対物レンズの成形に好適な金型に関する。 The present invention relates to a mold for molding an optical element, and particularly to a mold suitable for molding an objective lens for a high-precision optical pickup device.
 近年、光ピックアップ装置において、光ディスクに記録された情報の再生や、光ディスクへの情報の記録のための光源として使用されるレーザ光源の短波長化が進み、例えば、青紫色半導体レーザ等、波長390~420nmのレーザ光源が実用化されている。これら青紫色レーザ光源を使用すると、DVD(Digital Versatile Disc)と同じ開口数(NA)の対物レンズを使用する場合で、直径12cmの光ディスクに対して、15~20GBの情報の記録が可能となり、対物光学素子のNAを0.85にまで高めた場合には、直径12cmの光ディスクに対して、23~25GBの情報の記録が可能となる。 In recent years, in an optical pickup device, a laser light source used as a light source for reproducing information recorded on an optical disc and recording information on the optical disc has been shortened. For example, a wavelength 390 such as a blue-violet semiconductor laser is used. A laser light source of ˜420 nm has been put into practical use. When these blue-violet laser light sources are used, 15 to 20 GB of information can be recorded on an optical disk having a diameter of 12 cm when an objective lens having the same numerical aperture (NA) as that of a DVD (Digital Versatile Disc) is used. When the NA of the objective optical element is increased to 0.85, 23 to 25 GB of information can be recorded on an optical disk having a diameter of 12 cm.
 ところで、BD(Blu-ray Disc)に対して適切に情報の記録/再生ができると言うだけでは、光ディスクプレーヤ/レコーダ(光情報記録再生装置)の製品としての価値は十分なものとはいえない。現在において、多種多様な情報を記録したDVDやCD(Compact Disc)が販売されている現実をふまえると、BDに対して情報の記録/再生ができるだけでは足らず、例えばユーザが所有しているDVDやCDに対しても同様に適切に情報の記録/再生ができるようにすることが、BD用の光ディスクプレーヤ/レコーダとしての商品価値を高めることに通じるのである。このような背景から、BD用の光ディスクプレーヤ/レコーダに搭載される光ピックアップ装置は、BDとDVD、更にはCDの何れに対しても互換性を維持しながら適切に情報を記録/再生できる性能を有することが望まれる。 By the way, simply saying that information can be recorded / reproduced appropriately with respect to BD (Blu-ray Disc) cannot be said to have sufficient value as a product of an optical disc player / recorder (optical information recording / reproducing apparatus). . Considering the reality that DVDs and CDs (Compact Discs) on which a variety of information is recorded are currently being sold, it is not possible to record / reproduce information to / from a BD. For example, DVDs owned by users, Similarly, it is possible to appropriately record / reproduce information on a CD, which leads to an increase in the commercial value of an optical disc player / recorder for BD. From such a background, the optical pickup device mounted on the BD optical disc player / recorder can record / reproduce information appropriately while maintaining compatibility with any of BD, DVD, and CD. It is desirable to have
 このようなBD/DVD/CD互換用光ピックアップ装置において、各光ディスクに共通して用いられる互換用対物レンズが既に開発されている。しかるに、このような互換用の対物レンズは、光学面に微細な回折構造を形成しているため、成形が難しいという問題がある。特に、従前のDVD/CD互換用光ピックアップ装置に用いられる対物レンズに比して、BD/DVD/CD互換用光ピックアップ装置に用いられる対物レンズは、高NAに対応するためレンズが深い形状となり、加えて、より複雑な回折構造を必要とするため、成形の困難性という課題は非常に大きい。より具体的には、微細形状を持つ対物レンズを熱可塑性樹脂で射出成形する場合、溶融樹脂が持つ熱は金型内に射出された瞬間に急速に金型に移動し、キャビティ型又はコア型に接触している樹脂表面は急速に冷却され、固化する。 In such a BD / DVD / CD compatible optical pickup device, a compatible objective lens used in common for each optical disk has already been developed. However, such a compatible objective lens has a problem that it is difficult to mold because a fine diffractive structure is formed on the optical surface. In particular, the objective lens used in the BD / DVD / CD compatible optical pickup device has a deeper shape in order to cope with a high NA as compared with the objective lens used in the conventional DVD / CD compatible optical pickup device. In addition, since a more complicated diffractive structure is required, the problem of difficulty in molding is very large. More specifically, when an objective lens having a fine shape is injection-molded with a thermoplastic resin, the heat of the molten resin quickly moves to the mold as soon as it is injected into the mold, and the cavity mold or core mold The resin surface in contact with is rapidly cooled and solidified.
 このため、樹脂を射出した後の形状転写工程である保圧工程(樹脂射出後に所定の時間、圧力を維持する工程)において、十分な転写性が得られない、即ちミクロンオーダー以下の高い精度で金型の形状を成形体に転写することができないという不具合がある。 For this reason, in the pressure-holding step (step of maintaining the pressure for a predetermined time after the resin injection) that is a shape transfer step after the resin is injected, sufficient transferability cannot be obtained, that is, with a high accuracy of micron order or less. There is a problem that the shape of the mold cannot be transferred to the molded body.
 これに対し特許文献1には、表面加工層と母材との間に断熱層を配置する技術が開示されている。表面加工層の下側に断熱層が存在することにより、金型の温度ムラ、樹脂の流動ムラ、冷却固化の不均一などが発生することがなく、射出工程において金型内に充填された樹脂の温度を、その後の形状転写工程である保圧工程まで高温に保つことができるから、表面加工層に形成されたミクロンオーダー以下の極めて精度の高い金型形状を高い精度で成形品に転写することができる。 On the other hand, Patent Document 1 discloses a technique for disposing a heat insulating layer between a surface processed layer and a base material. Resin filled in the mold in the injection process without the occurrence of mold temperature irregularity, resin flow irregularity, cooling solidification non-uniformity, etc. due to the presence of the heat insulating layer under the surface processed layer Can be kept at a high temperature until the pressure holding process, which is the subsequent shape transfer process, so that a highly accurate mold shape of micron order or less formed on the surface processed layer can be transferred to the molded product with high accuracy. be able to.
特許第4135304号明細書Japanese Patent No. 4135304
 しかるに、特許文献1の技術では、比較的平らな光学素子に回折構造を形成する技術であるのに対し、光ピックアップ装置用の対物レンズは、凸状の光学面を有するから、例え断熱層を設けた金型を用いたとしても、光学面の中央と周辺とで断熱層の肉厚が異なることとなり、それにより熱伝導も不均一となって、光学面の中央では樹脂の固化が早まり、周辺では樹脂の固化が遅くなるというように固化のバラツキが生じ、成形された対物レンズの光学特性の劣化を招来する恐れがある。 However, while the technique of Patent Document 1 is a technique for forming a diffractive structure on a relatively flat optical element, an objective lens for an optical pickup device has a convex optical surface. Even if the provided mold is used, the thickness of the heat insulating layer will be different between the center and the periphery of the optical surface, thereby making the heat conduction non-uniform, and the resin solidifies faster in the center of the optical surface, There is a possibility that the solidification of the resin will be delayed at the periphery, resulting in a variation in the solidification of the resin, leading to deterioration of the optical characteristics of the molded objective lens.
 本発明は、かかる従来技術の問題点に鑑みてなされたものであり、高精度な光ピックアップ装置用の対物レンズを成形できる金型を提供することを目的とする。 The present invention has been made in view of the problems of the prior art, and an object thereof is to provide a mold capable of molding an objective lens for a high-precision optical pickup device.
 請求項1に記載の金型は、光ピックアップ装置用の対物レンズを成形するために用いる金型であって、対物レンズの光学面を転写成形する凹状の曲面を有する表面加工層と、前記表面加工層を支持するために前記凹状の曲面に対応して窪んだ支持面を有する母材と、前記表面加工層と前記支持面との間に配置された断熱層とを有し、前記断熱層の熱伝導率は、前記表面加工層の熱伝導率より低いことを特徴とする。 The mold according to claim 1 is a mold used for molding an objective lens for an optical pickup device, the surface processing layer having a concave curved surface for transferring and molding an optical surface of the objective lens, and the surface A base material having a support surface that is recessed corresponding to the concave curved surface to support the processed layer; and a heat insulating layer disposed between the surface processed layer and the support surface, and the heat insulating layer. The thermal conductivity of is lower than the thermal conductivity of the surface processed layer.
 本発明によれば、対物レンズの光学面を転写成形する凹状の曲面を有する表面加工層と、前記表面加工層を支持するために前記凹状の曲面に対応して窪んだ支持面を有する母材と、前記表面加工層と前記支持面との間に配置された断熱層とを有するので、前記断熱層の肉厚を均一に近づけることが出来、更に前記断熱層の熱伝導率は、前記表面加工層の熱伝導率より低いので、前記表面加工層に接触する成形素材の冷却速度を均一化して、対物レンズの光学面の高精度な転写を行うことができる。 According to the present invention, a surface processing layer having a concave curved surface for transfer molding of the optical surface of the objective lens, and a base material having a support surface that is recessed corresponding to the concave curved surface to support the surface processing layer. And a heat insulating layer disposed between the surface processed layer and the support surface, the thickness of the heat insulating layer can be made uniform, and the thermal conductivity of the heat insulating layer is Since it is lower than the thermal conductivity of the processed layer, the cooling rate of the molding material in contact with the surface processed layer can be made uniform, and the optical surface of the objective lens can be transferred with high accuracy.
 請求項2に記載の金型は、請求項1に記載の発明において、前記断熱層の熱伝導率は、前記母材の熱伝導率より低いことを特徴とする。これにより前記表面加工層に接触する成形素材の冷却速度をより一層均一化して、対物レンズの光学面の高精度な転写を行うことができる。 The mold according to claim 2 is characterized in that, in the invention according to claim 1, the thermal conductivity of the heat insulating layer is lower than the thermal conductivity of the base material. Thereby, the cooling rate of the molding material in contact with the surface processed layer can be made more uniform, and the optical surface of the objective lens can be transferred with high accuracy.
 請求項3に記載の金型は、請求項1に記載の発明において、前記断熱層の熱伝導率は、10.0W/m・K以下であることを特徴とする。これにより前記表面加工層に接触する成形素材の冷却速度を遅くして、対物レンズの光学面の高精度な転写を行うことができる。 The mold according to claim 3 is characterized in that, in the invention according to claim 1, the thermal conductivity of the heat insulating layer is 10.0 W / m · K or less. As a result, the cooling rate of the molding material in contact with the surface processed layer can be reduced, and the optical surface of the objective lens can be transferred with high accuracy.
 請求項4に記載の金型は、請求項1~3のいずれかに記載の発明において、前記断熱層は、中央の肉厚の厚みと、周辺の肉厚の厚みとの差が0.1mm以下であることを特徴とする。これにより前記表面加工層に接触する成形素材の冷却速度をより一層均一化して、対物レンズの光学面の高精度な転写を行うことができる。 The mold according to claim 4 is the invention according to any one of claims 1 to 3, wherein the heat insulating layer has a difference between a thickness of a central thickness and a thickness of a peripheral thickness of 0.1 mm. It is characterized by the following. Thereby, the cooling rate of the molding material in contact with the surface processed layer can be made more uniform, and the optical surface of the objective lens can be transferred with high accuracy.
 請求項5に記載の金型は、請求項1~4のいずれかに記載の発明において、前記断熱層の厚みは、0.1~3mmであることを特徴とする。 The mold according to claim 5 is characterized in that, in the invention according to any one of claims 1 to 4, the thickness of the heat insulating layer is 0.1 to 3 mm.
 請求項6に記載の金型は、請求項1~5のいずれかに記載の発明において、前記断熱層はセラミックスから形成されることを特徴とする。 The mold according to claim 6 is characterized in that, in the invention according to any one of claims 1 to 5, the heat insulating layer is formed of ceramics.
 請求項7に記載の金型は、請求項1~6のいずれかに記載の発明において、前記表面加工層は無電解ニッケルメッキから形成されることを特徴とする。 The mold according to claim 7 is characterized in that, in the invention according to any one of claims 1 to 6, the surface processed layer is formed by electroless nickel plating.
 請求項8に記載の金型は、請求項1~7のいずれかに記載の発明において、前記対物レンズは、BD/DVD/CD互換用対物レンズであることを特徴とする。 The mold according to claim 8 is characterized in that, in the invention according to any one of claims 1 to 7, the objective lens is a BD / DVD / CD compatible objective lens.
 請求項9に記載の金型は、請求項1~8のいずれかに記載の発明において、前記対物レンズは、中央領域と、中間領域と、周辺領域とを有し、前記金型により少なくとも中央領域と中間領域とに微細形状を転写形成されたことを特徴とする。本発明によれば、前記表面加工層に接触する成形素材の冷却速度を均一化できるので、前記表面加工層に、微細形状に対応した微細溝を形成した場合でも、微細溝の奥まで素材が入り込み転写性が向上する。 The mold according to claim 9 is the invention according to any one of claims 1 to 8, wherein the objective lens has a central area, an intermediate area, and a peripheral area, and at least the center is formed by the mold. A fine shape is transferred and formed between the region and the intermediate region. According to the present invention, since the cooling rate of the molding material in contact with the surface processed layer can be made uniform, even when a fine groove corresponding to a fine shape is formed in the surface processed layer, the material is inserted to the back of the fine groove. The penetration transfer property is improved.
 本明細書において、BD/DVD/CD互換用対物レンズとは、BDとDVDとCDに対して共通に用いられる対物レンズをいう。一般的なBD/DVD/CD互換用レンズは、NA0.8前後と高NAであり、よって曲率半径が小さめで軸上厚が厚くなりがちな、所謂、深いレンズであり、しかもDVD/CD互換用レンズに比して、より微細形状の回折構造を有するため、樹脂やガラス材料を微細形状内に入り込ませるために、より高性能な断熱が必要であり、本発明が特に効果がある。特に、対物レンズの中央付近はBD/DVD/CD共用であり、中間付近はBD/DVD共用であってCDの情報記録面上でフレア光を形成するため、非常に複雑な回折構造が必要となり、断熱の影響が大きいといえる。 In this specification, the objective lens for BD / DVD / CD compatibility refers to an objective lens used in common for BD, DVD, and CD. A typical BD / DVD / CD compatible lens is a so-called deep lens that has a high NA of around NA 0.8, and therefore tends to have a small curvature radius and a thick on-axis, and is compatible with DVD / CD. Since it has a diffractive structure with a finer shape than a lens for use, a high-performance heat insulation is required to allow a resin or glass material to enter the fine shape, and the present invention is particularly effective. In particular, the central part of the objective lens is shared by BD / DVD / CD, and the central part is shared by BD / DVD, and flare light is formed on the information recording surface of the CD, so a very complicated diffraction structure is required. It can be said that the influence of heat insulation is great.
 ここで、BDとは、波長390~415nm程度の光束、NA0.8~0.9程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.05~0.125mm程度であるBD系列光ディスクの総称であり、単一の情報記録層のみ有するBDや、2層の情報記録層を有するBD等を含むものである。更に、本明細書においては、DVDとは、NA0.60~0.67程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.6mm程度であるDVD系列光ディスクの総称であり、DVD-ROM、DVD-Video、DVD-Audio、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等を含む。また、本明細書においては、CDとは、NA0.45~0.51程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが1.2mm程度であるCD系列光ディスクの総称であり、CD-ROM、CD-Audio、CD-Video、CD-R、CD-RW等を含む。尚、記録密度については、BDの記録密度が最も高く、次いでDVD、CDの順に低くなる。 Here, the BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is about 0.05 to 0.125 mm. Is a generic name of a BD series optical disc, and includes a BD having only a single information recording layer, a BD having two information recording layers, and the like. Further, in this specification, DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm. Including DVD-ROM, DVD-Video, DVD-Audio, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, and the like. In this specification, CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm. Including CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like. As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
 本明細書において、対物レンズとは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系を指す。対物レンズは、二つ以上の複数のレンズ及び/又は光学素子から構成されていてもよいし、単玉のレンズのみからなっていてもよいが、好ましくは単玉の凸レンズからなる対物レンズである。また、対物レンズは、ガラスレンズであってもプラスチックレンズであっても、又は、ガラスレンズの上に光硬化性樹脂、UV硬化性樹脂、又は熱硬化性樹脂などで光路差付与構造(回折構造を含む)を設けたハイブリッドレンズであってもよい。対物レンズが複数のレンズを有する場合は、ガラスレンズとプラスチックレンズを混合して用いてもよい。対物レンズが複数のレンズを有する場合、光路差付与構造を有する平板光学素子と非球面レンズ(光路差付与構造を有していてもいなくてもよい)の組み合わせであってもよい。また、対物レンズは、屈折面が非球面であることが好ましい。また、対物レンズは、光路差付与構造が設けられるベース面が非球面であることが好ましい。 In this specification, the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing a light beam emitted from the light source onto the information recording surface of the optical disk. The objective lens may be composed of two or more lenses and / or optical elements, or may be composed of a single lens, but is preferably an objective lens composed of a single convex lens. . The objective lens may be a glass lens, a plastic lens, or a light path difference providing structure (diffractive structure) with a photocurable resin, a UV curable resin, or a thermosetting resin on the glass lens. A hybrid lens provided with a When the objective lens has a plurality of lenses, a glass lens and a plastic lens may be mixed and used. When the objective lens includes a plurality of lenses, it may be a combination of a flat optical element having an optical path difference providing structure and an aspherical lens (which may or may not have an optical path difference providing structure). The objective lens preferably has a refractive surface that is aspheric. In the objective lens, the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
 また、対物レンズは、以下の条件式(1)を満たすことが好ましい。
1.0≦dt/f≦1.5             (1)
 但し、dtは、対物レンズの光軸上の厚さ(mm)を表し、fは、第1光束における対物レンズの焦点距離を表す。
Moreover, it is preferable that an objective lens satisfy | fills the following conditional expression (1).
1.0 ≦ dt / f ≦ 1.5 (1)
However, dt represents the thickness (mm) on the optical axis of the objective lens, and f represents the focal length of the objective lens in the first light flux.
 対物レンズについて、以下に記載する。対物レンズの少なくとも一つの光学面が、中央領域と、中央領域の周りの中間領域と、中間領域の周りの周辺領域とを少なくとも有すると好ましい。中央領域は、対物レンズの光軸を含む領域であることが好ましいが、光軸を含む微小な領域を未使用領域や特殊な用途の領域とし、その周りを中央領域としてもよい。中央領域、中間領域、及び周辺領域は同一の光学面上に設けられていることが好ましい。図1に示されるように、中央領域CN、中間領域MD、周辺領域OTは、同一の光学面上に、光軸を中心とする同心円状に設けられていることが好ましい。中央領域、中間領域、周辺領域はそれぞれ隣接していることが好ましいが、間に僅かに隙間があっても良い。 The objective lens is described below. It is preferable that at least one optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region. The central region is preferably a region including the optical axis of the objective lens. However, a minute region including the optical axis may be an unused region or a special purpose region, and the periphery thereof may be a central region. The central region, the intermediate region, and the peripheral region are preferably provided on the same optical surface. As shown in FIG. 1, the central region CN, the intermediate region MD, and the peripheral region OT are preferably provided concentrically around the optical axis on the same optical surface. The central region, the intermediate region, and the peripheral region are preferably adjacent to each other, but there may be a slight gap between them.
 BD/DVD/CD互換用対物レンズの場合、少なくとも中央領域と中間領域とに回折構造を設けるのが好ましい。これにより光ピックアップ装置において、中央領域CNを通過したBD用の光束はBDの情報記録面に集光され、DVD用の光束はDVDの情報記録面に集光され、CD用の光束はCDの情報記録面に集光される。又、中間領域MDを通過したBD用の光束はBDの情報記録面に集光され、DVD用の光束はDVDの情報記録面に集光されるが、CD用の光束はCDの情報記録面に集光されない、更に周辺領域OTを通過したBD用の光束はBDの情報記録面に集光されるが、DVD用の光束はDVDの情報記録面に集光されず、CD用の光束はCDの情報記録面に集光されない。 In the case of a BD / DVD / CD compatible objective lens, it is preferable to provide a diffractive structure at least in the central region and the intermediate region. Thus, in the optical pickup device, the BD light flux that has passed through the central region CN is condensed on the BD information recording surface, the DVD light flux is condensed on the DVD information recording surface, and the CD light flux is on the CD. It is condensed on the information recording surface. Further, the BD light flux that has passed through the intermediate area MD is condensed on the BD information recording surface, and the DVD light flux is condensed on the DVD information recording surface, while the CD light flux is condensed on the CD information recording surface. The BD light flux that has not been condensed onto the BD and further passed through the peripheral area OT is condensed on the BD information recording surface, but the DVD light flux is not condensed on the DVD information recording surface, and the CD light flux is The light is not condensed on the information recording surface of the CD.
 また、本明細書でいう回折構造とは、段差を有し、回折によって光束を収束あるいは発散させる作用を持たせる構造の総称である。例えば、単位形状が光軸を中心として複数並ぶことによって構成されており、それぞれの単位形状に光束が入射し、透過した光の波面が、隣り合う輪帯毎にズレを起こし、その結果、新たな波面を形成することによって光を収束あるいは発散させるような構造を含むものである。回折構造は、好ましくは段差を複数有し、段差は光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。回折構造は重畳されていても良い。例えば、鋸歯型(ブレーズ型)の形状や、階段型の形状や、これらを重畳した形状などがあり得る。尚、特に、回折構造の段差形状の幅をXとし、段差形状の高さをYとして、0.50≦回折構造全体における(Y/X)の最大値≦1.0を満たす場合、即ち、深い段差形状を有し、レンズ材料が金型の微細構造に入り込みにくい場合、固化バラつき等の課題がより大きなものとなるが、そのようなレンズであっても本発明によれば良好にレンズ成形を行えるため、その効果がより顕著なものとなる。ここで、Y/Xは、段差形状の幅と高さの比の値である。(Y/X)の最大値は、段差形状が階段型の場合や、鋸歯型の構造を逆向きに重ね合わせた形状など、コの字型の段差形状(光軸方向の壁面と光軸垂直方向の壁面と光軸方向の壁面とで構成されるコの字型)を有する場合は、コの字型の段差形状の幅Xと高さYの比の値を基準にして求める。尚、コの字型の段差形状の高さは、コの字型の段差形状を形成する光軸方向の2つの壁面のうち、光軸方向の高さが高い方の壁面の高さをYとする。段差形状がコの字型の段差形状を有していない場合、例えば鋸歯型の段差形状の場合は、鋸歯型の段差形状の幅Xと高さYの比の値を基準にして求める。 In addition, the diffractive structure referred to in this specification is a general term for structures that have a step and have a function of converging or diverging a light beam by diffraction. For example, a plurality of unit shapes are arranged around the optical axis, and a light beam is incident on each unit shape, and the wavefront of the transmitted light is shifted between adjacent annular zones, resulting in new It includes a structure that converges or diverges light by forming a simple wavefront. The diffractive structure preferably has a plurality of steps, and the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis. The diffractive structures may be superimposed. For example, there may be a sawtooth (blazed) shape, a staircase shape, or a shape in which these are superimposed. In particular, when the width of the step shape of the diffractive structure is X and the height of the step shape is Y, 0.50 ≦ maximum value of (Y / X) ≦ 1.0 in the entire diffractive structure, that is, If the lens material has a deep step shape and the lens material is difficult to enter into the microstructure of the mold, problems such as solidification variation will be greater. Therefore, the effect becomes more remarkable. Here, Y / X is the value of the ratio between the width and height of the step shape. The maximum value of (Y / X) is a U-shaped step shape (such as when the step shape is a staircase shape, or a sawtooth structure superimposed in the opposite direction). In the case of having a U-shaped wall composed of a wall surface in the direction and a wall surface in the optical axis direction), it is obtained based on the ratio value of the width X and height Y of the U-shaped step shape. In addition, the height of the U-shaped step shape is the height of the wall surface with the higher height in the optical axis direction among the two wall surfaces in the optical axis direction forming the U-shaped step shape. And In the case where the step shape does not have a U-shaped step shape, for example, in the case of a saw-tooth type step shape, the step shape is obtained based on the value of the ratio between the width X and the height Y of the saw-tooth type step shape.
 本発明の金型は、光ピックアップ装置用の対物レンズの光学面を転写成形する凹状の曲面を有する表面加工層と、前記表面加工層を支持するために前記凹状の曲面に対応して窪んだ支持面を有する母材と、前記表面加工層と前記支持面との間に配置された断熱層とを少なくとも有する。例えば、前記表面加工層と母材の支持面との間に、断熱層に加えて、ボンド層や中間金属層(特開2008-24000号公報参照)を設けても良い。 The mold according to the present invention includes a surface processing layer having a concave curved surface for transferring and molding the optical surface of an objective lens for an optical pickup device, and a recess corresponding to the concave curved surface to support the surface processing layer. It has at least a base material having a support surface, and a heat insulating layer disposed between the surface processed layer and the support surface. For example, a bond layer or an intermediate metal layer (see Japanese Patent Laid-Open No. 2008-24000) may be provided in addition to the heat insulating layer between the surface processed layer and the support surface of the base material.
 断熱層は、熱伝導率が10.0W/m・K以下の層であると好ましく、断熱層の材料として、例えばセラミックス系材料であるジルコニア、アルミナ、酸化チタン、酸化クロム等を使用することが出来る。 The heat insulation layer is preferably a layer having a thermal conductivity of 10.0 W / m · K or less, and as the material of the heat insulation layer, for example, ceramic materials such as zirconia, alumina, titanium oxide, and chromium oxide may be used. I can do it.
 表面加工層は、最も表面で切削加工により微細形状が形成される層である。例えば、無電解ニッケルメッキや無電解ニッケルメッキにCuを含有(特開2008-24000号公報参照)した材料を使用することが出来る。 The surface processed layer is a layer in which a fine shape is formed by cutting on the outermost surface. For example, an electroless nickel plating or a material containing Cu in electroless nickel plating (see Japanese Patent Application Laid-Open No. 2008-24000) can be used.
 例えば成形装置に固定される母材は、ステンレス鋼等を用いることができる。 For example, stainless steel or the like can be used as the base material fixed to the molding apparatus.
 本発明によれば、高精度な光ピックアップ装置用の対物レンズを成形できる金型を提供することができる。 According to the present invention, it is possible to provide a mold capable of forming a highly accurate objective lens for an optical pickup device.
対物レンズを、光軸方向に見た図である。It is the figure which looked at the objective lens to the optical axis direction. 光ピックアップ装置用の対物レンズを成形するための金型の製造工程を示す図である。It is a figure which shows the manufacturing process of the metal mold | die for shape | molding the objective lens for optical pick-up apparatuses. 製造した金型を用いて対物レンズを成形する状態を示す断面図である。It is sectional drawing which shows the state which shape | molds an objective lens using the manufactured metal mold | die.
 以下、図面を参照して本発明の実施の形態について説明する。図2は、光ピックアップ装置用の対物レンズを成形するための金型の製造工程を示す図である。図3は、製造した金型を用いて対物レンズを成形する状態を示す断面図である。但し、回折構造等は誇張して描いている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 is a diagram showing a manufacturing process of a mold for forming an objective lens for an optical pickup device. FIG. 3 is a cross-sectional view showing a state in which an objective lens is molded using the manufactured mold. However, the diffraction structure and the like are exaggerated.
 図2(a)において、まずステンレス鋼等の円筒状素材から、工具TLを用いて切削加工により、母材BDを加工する。このとき、母材BDの端面には、凹状に窪んだ支持面BD1が形成され、母材BDの周面には、周方向に延在する溝BD2が形成される。 2A, first, a base material BD is processed from a cylindrical material such as stainless steel by cutting using a tool TL. At this time, a support surface BD1 that is recessed in a concave shape is formed on the end surface of the base material BD, and a groove BD2 that extends in the circumferential direction is formed on the peripheral surface of the base material BD.
 次いで、図2(b)に示すように、母材BDの支持面BD1に、プラズマ溶射によりNiCrによるボンド層ADを薄く形成する。これは断熱層HIと母材BDとの固着力を高める機能を有する。更に、図2(c)に一点鎖線で示すように、ボンド層AD上にプラズマ溶射によりセラミックス層を堆積させる。プラズマ溶射は、セラミックス等の微粉末、ワイヤ等をプラズマ熱源中に投入し、溶融または半溶融状態の微粒子として被覆対象の母材に吹き付け、皮膜を形成させる技術である。プラズマ熱源とは、分子ガスを高温にし、原子に解離させ、さらにエネルギーを与えて電子を放出させた高温のプラズマガスである。このプラズマガスの噴射速度は大きく、従来のアーク溶射やフレーム溶射に比べて、溶射材料が高速で母材に衝突するため、密着強度が高く、高密度な被膜を得ることが出来る。詳しくは、特開2000-301655号公報に記載の高温被曝部材に熱遮蔽皮膜を形成する溶射方法を参照することが出来る。 Next, as shown in FIG. 2B, a NiCr bond layer AD is thinly formed on the support surface BD1 of the base material BD by plasma spraying. This has a function of increasing the adhesion between the heat insulating layer HI and the base material BD. Further, as indicated by a dashed line in FIG. 2C, a ceramic layer is deposited on the bond layer AD by plasma spraying. Plasma spraying is a technique in which a fine powder such as ceramics, a wire, or the like is introduced into a plasma heat source and sprayed onto a base material to be coated as fine particles in a molten or semi-molten state to form a coating. A plasma heat source is a high-temperature plasma gas in which a molecular gas is heated to a high temperature, dissociated into atoms, and energy is given to emit electrons. The plasma gas injection speed is high, and the sprayed material collides with the base material at a higher speed than conventional arc spraying or flame spraying, so that a high-density coating can be obtained with high adhesion strength. For details, a thermal spraying method for forming a heat shielding film on a high-temperature exposed member described in JP-A No. 2000-301655 can be referred to.
 その後、堆積したセラミックス層を、工具TLで切削して形を整え断熱層HIを形成する。このとき、支持面BD1に対応して凹状の曲面HI1を形成する(図2(c)の実線参照)。断熱層HIの肉厚は、0.1mm~3mmであり、中央の肉厚t1と周辺の肉厚t2との差は0.1mm以下である。 Then, the deposited ceramic layer is cut with a tool TL to adjust the shape and form a heat insulating layer HI. At this time, a concave curved surface HI1 is formed corresponding to the support surface BD1 (see the solid line in FIG. 2C). The thickness of the heat insulating layer HI is 0.1 mm to 3 mm, and the difference between the central thickness t1 and the peripheral thickness t2 is 0.1 mm or less.
 更に、図2(d)に示すように、母材BDの溝BD2から断熱層HI全体を覆うようにして、メッキ処理により表面加工層SMを形成する。一般的にセラミックスはメッキとの相性が比較的悪いが、このように表面加工層SMで全体を覆うことで、断熱層HIが母材BDから剥がれることを抑制できる。一方、表面加工層SMは、母材BDの一部しか覆っていないが、これは、メッキ不良のリスクを低減するためである。 Further, as shown in FIG. 2 (d), the surface processed layer SM is formed by plating so as to cover the entire heat insulating layer HI from the groove BD2 of the base material BD. In general, ceramics is relatively incompatible with plating, but by covering the entire surface with the surface processed layer SM in this way, it is possible to suppress the heat insulating layer HI from being peeled off from the base material BD. On the other hand, the surface processed layer SM covers only a part of the base material BD, which is to reduce the risk of plating defects.
 その後、図2(e)に示すように、工具TLにて表面加工層SMを切削し、支持面BD1に対応して凹状の非球面曲面(転写面)SM1を形成すると共に、凹状の非球面曲面SM1により成形する対物レンズの少なくとも中央領域と中間領域とに対応する位置に、輪帯状の微細溝SVを形成する、以上により、金型M1が完成する。金型M1において、断熱層HIの熱伝導率は、母材BD及び表面加工層SMの熱伝導率より低くなっている。 Thereafter, as shown in FIG. 2E, the surface processing layer SM is cut with a tool TL to form a concave aspherical curved surface (transfer surface) SM1 corresponding to the support surface BD1, and a concave aspherical surface. The ring-shaped fine groove SV is formed at a position corresponding to at least the central region and the intermediate region of the objective lens formed by the curved surface SM1, and thus the mold M1 is completed. In the mold M1, the heat conductivity of the heat insulating layer HI is lower than the heat conductivity of the base material BD and the surface processed layer SM.
 かかる金型M1と、同様な工程で製造された金型M2(但し微細溝を有しない)とを、図3に示すように対向させて型締めし、内部のキャビティに樹脂又はガラス(成形素材)を充填した後、固化させることにより、表面加工層SMの凹状の非球面曲面SM1の形状を転写した光学面を有する対物レンズOBJを形成できる。このとき、断熱層HIの熱伝導率は、母材BD及び表面加工層SMの熱伝導率より低くなっているので、表面加工層SMに接する成形素材の温度の冷却速度が一様になり、これにより成形素材の流動性が高まって微細溝SV内へも容易に進入し、かかる状態で固化することで、微細形状を高精度に転写できる。その後、金型M1,M2を離型させることで、成形された対物レンズOBJを取り出すことができる。 The mold M1 and the mold M2 manufactured in the same process (but not having a fine groove) are clamped so as to face each other as shown in FIG. 3, and resin or glass (molding material) is placed in the internal cavity. ) And then solidifying, the objective lens OBJ having an optical surface to which the shape of the concave aspherical curved surface SM1 of the surface processing layer SM is transferred can be formed. At this time, since the thermal conductivity of the heat insulating layer HI is lower than the thermal conductivity of the base material BD and the surface processed layer SM, the cooling rate of the temperature of the molding material in contact with the surface processed layer SM becomes uniform, Thereby, the fluidity of the molding material is increased, and the fine shape can be easily entered into the fine groove SV, and solidified in such a state, whereby the fine shape can be transferred with high accuracy. Thereafter, the molded objective lens OBJ can be taken out by releasing the molds M1 and M2.
 本発明の効果は、特に曲率半径が小さな転写面を有する金型において有効である。従って、かかる断熱層HIを有する金型は、対物レンズOBJの光源側光学面S1を転写成形する金型M1にのみ設けても良い。例えば、金型M2の母材の断熱層側の形状は、表面加工層の形状に沿った凹型とすることなく、光軸直交方向の平面状の形状としてもよい。または、金型M2には断熱層を設けなくてもよい。 The effect of the present invention is particularly effective in a mold having a transfer surface with a small curvature radius. Therefore, the mold having the heat insulating layer HI may be provided only in the mold M1 for transfer molding the light source side optical surface S1 of the objective lens OBJ. For example, the shape of the base material of the mold M2 on the heat insulating layer side may be a planar shape in the direction perpendicular to the optical axis without being a concave shape along the shape of the surface processed layer. Alternatively, the heat insulating layer may not be provided on the mold M2.
 表1に、本実施の形態で使用した素材と熱伝導率とをまとめて示す。 Table 1 summarizes the materials and thermal conductivity used in the present embodiment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、簡素な構成ながら、光ピックアップ装置用の対物レンズを成形できる金型を提供することができるが、成形の対象はBD/DVD/CD互換用対物レンズに限らず、2互換の対物レンズにも適用できる。 According to the present invention, it is possible to provide a mold capable of molding an objective lens for an optical pickup device with a simple configuration. However, the object of molding is not limited to a BD / DVD / CD compatible objective lens, and is compatible with two. It can also be applied to other objective lenses.
 AD ボンド層
 BD 母材
 BD1 支持面
 BD2 溝
 HI 断熱層
 HI1 曲面
 M1 金型
 M2 金型
 OBJ 対物レンズ
 SM 表面加工層
 SM1 曲面
 SV 微細溝
 TL 工具
AD Bond layer BD Base material BD1 Support surface BD2 Groove HI Heat insulation layer HI1 Curved surface M1 Mold M2 Mold OBJ Objective lens SM Surface processed layer SM1 Curved surface SV Fine groove TL Tool

Claims (9)

  1.  光ピックアップ装置用の対物レンズを成形するために用いる金型であって、対物レンズの光学面を転写成形する凹状の曲面を有する表面加工層と、前記表面加工層を支持するために前記凹状の曲面に対応して窪んだ支持面を有する母材と、前記表面加工層と前記支持面との間に配置された断熱層と、を有し、前記断熱層の熱伝導率は、前記表面加工層の熱伝導率より低いことを特徴とする金型。 A mold used to mold an objective lens for an optical pickup device, the surface processing layer having a concave curved surface for transfer molding the optical surface of the objective lens, and the concave shape for supporting the surface processing layer A base material having a support surface that is recessed corresponding to the curved surface, and a heat insulating layer disposed between the surface processed layer and the support surface, and the thermal conductivity of the heat insulating layer is the surface processed A mold characterized by being lower than the thermal conductivity of the layer.
  2.  前記断熱層の熱伝導率は、前記母材の熱伝導率より低いことを特徴とする請求項1に記載の金型。 The mold according to claim 1, wherein the heat conductivity of the heat insulating layer is lower than the heat conductivity of the base material.
  3.  前記断熱層の熱伝導率は、10.0W/m・K以下であることを特徴とする請求項1又は2に記載の金型。 The mold according to claim 1 or 2, wherein the heat conductivity of the heat insulating layer is 10.0 W / m · K or less.
  4.  前記断熱層は、中央の肉厚の厚みと、周辺の肉厚の厚みとの差が0.1mm以下であることを特徴とする請求項1~3のいずれかに記載の金型。 The mold according to any one of claims 1 to 3, wherein the heat insulating layer has a difference between a thickness of a central thickness and a thickness of a peripheral thickness of 0.1 mm or less.
  5.  前記断熱層の厚みは、0.1~3mmであることを特徴とする請求項1~4のいずれかに記載の金型。 The mold according to any one of claims 1 to 4, wherein the heat insulating layer has a thickness of 0.1 to 3 mm.
  6.  前記断熱層はセラミックスから形成されることを特徴とする請求項1~5のいずれかに記載の金型。 The mold according to any one of claims 1 to 5, wherein the heat insulating layer is made of ceramics.
  7.  前記表面加工層は無電解ニッケルメッキから形成されることを特徴とする請求項1~6のいずれかに記載の金型。 The mold according to any one of claims 1 to 6, wherein the surface processed layer is formed from electroless nickel plating.
  8.  前記対物レンズは、BD/DVD/CD互換用対物レンズであることを特徴とする請求項1~7のいずれかに記載の金型。 8. The mold according to claim 1, wherein the objective lens is a BD / DVD / CD compatible objective lens.
  9.  前記対物レンズは、中央領域と、中間領域と、周辺領域とを有し、前記金型により少なくとも中央領域と中間領域とに微細形状を転写形成されたことを特徴とする請求項1~8のいずれかに記載の金型。 9. The objective lens according to claim 1, wherein the objective lens has a central area, an intermediate area, and a peripheral area, and a fine shape is transferred and formed at least in the central area and the intermediate area by the mold. A mold according to any one of the above.
PCT/JP2011/053805 2010-03-30 2011-02-22 Die WO2011122174A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800160467A CN102821926A (en) 2010-03-30 2011-02-22 Die
JP2012508143A JPWO2011122174A1 (en) 2010-03-30 2011-02-22 Mold

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010077459 2010-03-30
JP2010-077459 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122174A1 true WO2011122174A1 (en) 2011-10-06

Family

ID=44711906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053805 WO2011122174A1 (en) 2010-03-30 2011-02-22 Die

Country Status (3)

Country Link
JP (1) JPWO2011122174A1 (en)
CN (1) CN102821926A (en)
WO (1) WO2011122174A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112935040B (en) * 2021-01-28 2023-05-16 佛山科学技术学院 Forming mechanism, mold core and hot pressing device for composite micro-nano lens array

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044244A (en) * 2004-06-29 2006-02-16 Konica Minolta Opto Inc Mold for injection molding and injection molding method
JP2006044247A (en) * 2004-06-29 2006-02-16 Konica Minolta Opto Inc Injection mold and injection molding method
JP2006044245A (en) * 2004-06-29 2006-02-16 Konica Minolta Opto Inc Mold for injection molding and injection molding method
JP2008168646A (en) * 2008-04-04 2008-07-24 Konica Minolta Opto Inc Molding process of optical element
WO2009122862A1 (en) * 2008-03-31 2009-10-08 コニカミノルタオプト株式会社 Optical element manufacturing method, optical element molding die, and optical element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055712A (en) * 1996-08-09 1998-02-24 Asahi Chem Ind Co Ltd Light guide plate for planar light source and its molding method
JP2000246769A (en) * 1999-03-01 2000-09-12 Canon Inc Mold for molding and method for molding
JP4135304B2 (en) * 2000-09-25 2008-08-20 コニカミノルタオプト株式会社 Manufacturing method of mold for molding optical element
CN1715033A (en) * 2004-06-29 2006-01-04 柯尼卡美能达精密光学株式会社 Injection mold and method for molding an optical element
US7708550B2 (en) * 2004-06-29 2010-05-04 Konica Minolta Opto, Inc. Cold runner injection mold having an insulated gate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044244A (en) * 2004-06-29 2006-02-16 Konica Minolta Opto Inc Mold for injection molding and injection molding method
JP2006044247A (en) * 2004-06-29 2006-02-16 Konica Minolta Opto Inc Injection mold and injection molding method
JP2006044245A (en) * 2004-06-29 2006-02-16 Konica Minolta Opto Inc Mold for injection molding and injection molding method
WO2009122862A1 (en) * 2008-03-31 2009-10-08 コニカミノルタオプト株式会社 Optical element manufacturing method, optical element molding die, and optical element
JP2008168646A (en) * 2008-04-04 2008-07-24 Konica Minolta Opto Inc Molding process of optical element

Also Published As

Publication number Publication date
JPWO2011122174A1 (en) 2013-07-08
CN102821926A (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP2006286198A (en) Optical information recording medium
WO2010116804A1 (en) Lens
WO2010087068A1 (en) Lens and molding die
WO2011122174A1 (en) Die
JP2007197241A (en) Method for molding optical glass element
WO2011030523A1 (en) Disc substrate forming device, disc substrate forming method, and disc substrate forming die
WO2009096230A1 (en) Method for manufacturing optical element, and optical element
JP5602833B2 (en) Objective lens, optical head and optical disk apparatus
WO2011040151A1 (en) Objective lens and optical pickup device
JP2004284110A (en) Optical element manufacturing apparatus
JP2000263615A (en) Mold for optical information recording medium substrate
JP2002367231A (en) Optical recording medium and method of manufacturing for the same as well as metal mold for molding substrate
JP5765333B2 (en) Mold, injection molding machine, and objective optical element manufacturing method
JP3749470B2 (en) Method for manufacturing disc-shaped substrate material
JP4046881B2 (en) Optical disc and manufacturing method thereof
JP2008151836A (en) Optical element
WO2011093165A1 (en) Objective lens and optical pickup device
JP2008146808A (en) Optical disk mold and method of forming the same
JP2011113587A (en) Optical element and optical pickup device using the same
JP2006260650A (en) Optical recording medium
WO2010095322A1 (en) Mold and molding method
JP2005056536A (en) Information recording medium disk, its manufacturing method and manufacturing apparatus
JP2002222545A (en) Optical disk substrate
JP2006031753A (en) Disk substrate, optical recording medium, and mold apparatus
JP2002074766A (en) Method for manufacturing optical recording medium

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016046.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762414

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508143

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762414

Country of ref document: EP

Kind code of ref document: A1