JPH1055712A - Light guide plate for planar light source and its molding method - Google Patents

Light guide plate for planar light source and its molding method

Info

Publication number
JPH1055712A
JPH1055712A JP8210997A JP21099796A JPH1055712A JP H1055712 A JPH1055712 A JP H1055712A JP 8210997 A JP8210997 A JP 8210997A JP 21099796 A JP21099796 A JP 21099796A JP H1055712 A JPH1055712 A JP H1055712A
Authority
JP
Japan
Prior art keywords
guide plate
mold
thickness
light
light guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8210997A
Other languages
Japanese (ja)
Inventor
Tokuji Ogawa
徳治 小川
Nobuyuki Hosonuma
信行 細沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP8210997A priority Critical patent/JPH1055712A/en
Publication of JPH1055712A publication Critical patent/JPH1055712A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the number of parts and reduce a light scattering loss of an adhering part so as to brighten a screen by employing one flat face as a ragged light scattering face and the other face as a light emission face having numeral convergent lens units to be emitted to a specified direction. SOLUTION: A light scattering face and a light emission face are formed on a double-sided flat face of a translucent light guide plate by fine processing. Preferably, the light scattering face of a wedge-shaped extremely thin eccentric light guide plate is a grid-shaped pattern roughly faced in a ragged shape, as a substantially rectangular light scattering part is further from a light incident face a side parallel to the light incident face is lengthened, and a distance between the adjacent light scattering parts is reduced. It is preferable that a shape of the convergent lens unit to be formed on the light emission face is a multi-linear prism. This light guide plate is provided with a synthetic resin ejection-molded and formed for a die made of a nest top shaped dies 2 and 2' for forming a cavity having dies 1 and 1', a thickness part A and a thickness part B, a heat insulation layers 3 and 3', a face roughened gold layer 4 adhered thereto, and a fine convergent lens shaped gold.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示装置等の
バックライトなどに好適な面状光源用導光板及びその導
光板を成形する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light guide plate for a planar light source suitable for a backlight of a liquid crystal display device and the like, and a method for forming the light guide plate.

【0002】[0002]

【従来技術】面状光源装置は、薄肉且つ軽量であるため
ワードプロセッサーやパーソナルコンピュター等のOA
(オフィスオートメーション)機器或いは画像信号の各
種モニター等に用いられる液晶表示装置のバックライト
や発光看板、装飾性を高めた薄型の避難誘導灯などに使
用されている。面光源装置は、表示面の直下の空間に直
管状或いはU字管状の蛍光灯を複数配置し、その上に拡
散板を配したいわゆる直下型、又は樹脂透明導光板の側
端面部(エッジ)に蛍光灯を1〜2灯を配置し光出射面
に拡散フィルム、プリズムシートを配したいわゆるエッ
ジライト型が殆ど総てである。その近年、ノート型パー
ソナルコンピュターに代表される液晶表示装置のバック
ライトに用いられる面状光源用導光板は、液晶表示装置
の薄型・軽量化、省電力化及び高輝度・高精細化の要求
からテーパ状の傾斜面を有する楔型形状の偏肉導光板が
提案されている。
2. Description of the Related Art Since a planar light source device is thin and lightweight, it can be used as an OA for word processors, personal computers, and the like.
(Office Automation) It is used for backlights and light-emitting signs of liquid crystal display devices used for devices and various monitors of image signals, and thin evacuation guide lights with enhanced decorativeness. The surface light source device is a so-called direct type in which a plurality of straight or U-shaped fluorescent lamps are arranged in a space directly below a display surface and a diffusion plate is disposed thereon, or a side end portion (edge) of a resin transparent light guide plate. Almost all are so-called edge light types, in which one or two fluorescent lamps are arranged and a diffusion film and a prism sheet are arranged on the light emitting surface. In recent years, light guide plates for planar light sources used for backlights of liquid crystal display devices typified by notebook personal computers have been required to meet the demands for thinner, lighter, lower power, higher brightness, and higher definition liquid crystal display devices. A wedge-shaped uneven light guide plate having a tapered inclined surface has been proposed.

【0003】更に、液晶表示装置は大型化の方向にあ
り、面状光源用導光板として薄肉、楔形状の偏肉で大画
面導光板が要求されている。液晶表示装置のバックライ
トに用いられる面状光源用導光板の射出成形方法は、金
型キャビティ内へ溶融樹脂を射出充填し、ゲート部が冷
却固化するまで保圧によりスプールの溶融樹脂を介して
キャビティ内に圧力を加えゲートが固化した後金型内の
成形品を得る方法が通常行われている。そして、面状光
源用導光板を射出成形方法として、例えば特開平5−1
96820号、特開平6−324632号、特開平7−
159623号、特開平7−164496号公報に記載
したものがある。
Further, the size of liquid crystal display devices has been increasing, and a light guide plate for a planar light source is required to have a thin, wedge-shaped, uneven thickness and a large-screen light guide plate. The injection molding method of the planar light source light guide plate used for the backlight of the liquid crystal display device is performed by injecting and filling the molten resin into the mold cavity and holding the pressure through the molten resin on the spool until the gate portion is cooled and solidified. A method of obtaining a molded product in a mold after applying pressure to the cavity and solidifying the gate is usually performed. A light guide plate for a planar light source is used as an injection molding method, for example, as disclosed in
96820, JP-A-6-324632, JP-A-7-324
159623 and JP-A-7-164496.

【0004】一般に、この様な射出成形における充填、
保圧工程では、溶融樹脂の流動抵抗及び冷却等によりキ
ャビティ内に圧力分布が生じ不均一な冷却が起こり易
く、特に偏肉導光板の薄肉部の成形厚みが1mm以下の
極薄導光板で顕著に見られ、更にゲートから流動末端ま
で長いと場合によっては充填不良となる。偏肉導光板の
薄肉部の厚みが1mm以下の極薄肉偏肉導光板を射出成
形する方法について、良流動性樹脂の使用、高速射出成
形、金型温度を高くする方法、高い射出圧力或いは高い
保圧条件を採用する等の条件が使用されて射出成形され
ているが、その対応は十分ではない。
In general, filling in such injection molding,
In the pressure-holding step, pressure distribution is generated in the cavity due to the flow resistance and cooling of the molten resin, and uneven cooling is likely to occur. Particularly, it is remarkable in an ultra-thin light guide plate in which the thickness of the thin portion of the uneven thickness light guide plate is 1 mm or less. In addition, if the distance from the gate to the flow end is long, the filling may be poor. For the method of injection-molding an ultra-thin walled light-guiding plate in which the thickness of the thin-walled light-guiding plate is 1 mm or less, use of a highly fluid resin, high-speed injection molding, a method of increasing the mold temperature, a high injection pressure or a high Injection molding is performed using conditions such as the use of pressure-holding conditions, but this is not sufficient.

【0005】良流動性樹脂の使用は、薄肉成形品の充填
性は改善されやすいが、合成樹脂の分子量が小さくなり
樹脂の機械的強度が低下し、その利用に制限が生じる問
題がある。又、射出圧力或いは保圧力を採用した場合
は、厚肉部のヒケは低減するが、冷却速度の大きい薄肉
部の残留応力が大きくなり成形品の変形或いは反り等が
発生しやすくなり外観上の欠点が発生するという問題が
ある。これらの要因の中で最も効果に大きな影響のある
のは金型温度であり、金型温度を高くすることは非常に
有効である。しかし、金型温度を高くすると、可塑化さ
れた樹脂の冷却固化に必要な冷却時間が長くなり成形能
率が下がる。このため、金型温度を高くすることなく型
内樹脂流動性を良くし、又金型温度を高くしても必要な
冷却時間が長くならない方法が要求されている。金型に
加熱用、冷却用の孔をそれぞれ取り付けておき交互に熱
媒、冷媒を流して金型の加熱、冷却を繰り返す方法も行
われているが、この方法は熱の使用量も多く冷却時間が
長くなる。
[0005] The use of a high-flowable resin tends to improve the filling property of a thin-walled molded product, but there is a problem that the molecular weight of the synthetic resin is reduced, the mechanical strength of the resin is reduced, and its use is restricted. When the injection pressure or the holding pressure is employed, the sink in the thick portion is reduced, but the residual stress in the thin portion having a high cooling rate is increased, and the molded product is likely to be deformed or warped. There is a problem that disadvantages occur. Among these factors, the mold temperature has the greatest effect on the effect, and increasing the mold temperature is very effective. However, when the mold temperature is increased, the cooling time required for cooling and solidifying the plasticized resin increases, and the molding efficiency decreases. For this reason, there is a demand for a method of improving the resin fluidity in the mold without increasing the mold temperature and a method of preventing the required cooling time from being prolonged even if the mold temperature is increased. There is also a method in which holes for heating and cooling are attached to the mold, and heating and cooling of the mold are repeated by alternately flowing a heat medium and a coolant.However, this method uses a large amount of heat and cools The time gets longer.

【0006】金型キャビティを形成する型壁面を熱伝導
率の小さい物質で被覆することにより金型表面再現性を
良くする方法は米国特許第3544518号明細書で射
出成形について開示されている。更に、特開昭53−8
6754号公報には金属製の金型壁面に断熱層を被覆
し、更にその断面層表面に薄肉金属層を被覆した金型が
示されている。
US Pat. No. 3,544,518 discloses a method of improving the mold surface reproducibility by coating the mold wall surface forming the mold cavity with a substance having low thermal conductivity. Further, JP-A-53-8
No. 6,754 discloses a mold in which a heat insulating layer is coated on a metal mold wall surface, and a thin metal layer is coated on a cross-sectional surface of the metal mold.

【0007】面状光源用導光板を用い液晶表示装置のバ
ックライトは、一般に図2の様な構成となっている。図
2は、従来の面光源装置の断面図を示す模式図である。
図2において、1は透明導光板、2は光散乱部、3は反
射フィルム、4は拡散フィルム、5はプリズムシート、
6は1次光源、7は光入射面である。導光板の片面には
光散乱部が印刷などで形成され、発光面全体が均一に光
るように光散乱部は1次光源の近くでは小さく、1次光
源から遠くなるほど大きくなるように形成されている。
光散乱部の配置、例えば形状や大きさの変化の仕方は発
光面積や導光板の厚みによってそれぞれ変わってくる。
この様な面光源装置に関する技術として、例えば特開平
2−17号、特開平4−52286号、特開平4−16
2002号、特開平5−173130号、特開平6−1
86562号、特開平6−265888号公報等が開示
されている。特開平2−17号公報には、導光板の出射
面の反対側に反射層を備えた第一のエレメントと、第一
のエレメントの光出射面の光を所定の方向に出射させる
多数のレンズ単位を有した第二のエレメントとを組み合
わせた面光源素子が提案されている。又、この様に多数
のレンズ単位を有した第二のエレメントのある方向に射
光を集光するような面光源用導光板の製造方法として
は、特開平7−117144号公報が開示されている。
A backlight of a liquid crystal display device using a light guide plate for a planar light source generally has a configuration as shown in FIG. FIG. 2 is a schematic diagram showing a cross-sectional view of a conventional surface light source device.
In FIG. 2, 1 is a transparent light guide plate, 2 is a light scattering portion, 3 is a reflection film, 4 is a diffusion film, 5 is a prism sheet,
6 is a primary light source, and 7 is a light incident surface. A light scattering portion is formed on one side of the light guide plate by printing or the like, and the light scattering portion is formed so as to be small near the primary light source and to be larger as the distance from the primary light source increases so that the entire light emitting surface shines uniformly. I have.
The arrangement of the light scattering portions, for example, the manner of changing the shape and size, varies depending on the light emitting area and the thickness of the light guide plate.
Techniques relating to such a surface light source device include, for example, JP-A Nos. 2-17, 4-52286 and 4-16.
2002, JP-A-5-173130, JP-A-6-1
86562, JP-A-6-265888, and the like. Japanese Patent Laid-Open No. 2-17 discloses a first element provided with a reflective layer on the side opposite to the exit surface of a light guide plate, and a number of lenses for emitting light from a light exit surface of the first element in a predetermined direction. A surface light source element combining a second element having a unit has been proposed. Japanese Patent Application Laid-Open No. 7-117144 discloses a method for manufacturing a light guide plate for a surface light source that collects light in a direction in which a second element having a large number of lens units is provided. .

【0008】しかし、面光源装置に用いられる樹脂透明
導光板の片面に光散乱部、他面にプリズムの一体化構成
の面光源用導光板を射出成形したものが知られていな
い。
However, there is no known resin transparent light guide plate used in a surface light source device, which is formed by injection molding a light guide plate for a surface light source having a light scattering portion on one surface and a prism integrated on the other surface.

【0009】[0009]

【発明が解決しょうとする課題】本発明は、透明導光板
の表面と裏面に微細加工の光散乱部とプリズムを一体化
成形した面光源用導光板を提供するもので、面光源装置
の構成部品点数が削減できること、構成部品の接着部で
の光散乱ロスが少なく出来画面の明るさを向上させるこ
とが出来る。そして、透明導光板の一方の平面を凹凸状
の光散乱面と成し、他方の平面を光出射面で所定の方向
に出射させる多数の収束レンズ単位が形成されている両
面微細加工された面状光源用透明導光板を、金型全体の
温度を高くすることなく、しかも金型温度を高くしたこ
とと同等の効果を与え、射出成形時の金型の転写性と樹
脂充填性を改善し、内部残留歪みを小さく、流動距離を
伸ばすことで大画面の極薄導光板を良好に効率よく成形
する方法の要求に応えたものである。
SUMMARY OF THE INVENTION The present invention provides a light guide plate for a surface light source in which a light scattering portion and a prism of fine processing are integrally formed on the front and back surfaces of a transparent light guide plate. The number of parts can be reduced, and the light scattering loss at the bonding part of the constituent parts can be reduced, and the brightness of the screen can be improved. One surface of the transparent light guide plate is a light scattering surface having an uneven shape, and the other surface is a light emitting surface on which a plurality of converging lens units for emitting light in a predetermined direction are formed. The transparent light-guiding plate for the shape light source does not need to raise the temperature of the entire mold, and has the same effect as increasing the temperature of the mold, improving the transferability of the mold and resin filling during injection molding. The present invention meets the demand for a method of forming a large-screen ultra-thin light guide plate in a good and efficient manner by reducing the internal residual strain and extending the flow distance.

【0010】[0010]

【課題を解決するための手段】本出願人は、先に樹脂導
光板用金型及び該金型を用いた樹脂導光板の成形法とし
て、樹脂導光板の側端を光入射面としこれと直行する片
面に凹凸状の光散乱部を形成し、この反対面を光出射面
とする導光板を射出成形する金属において、金型の型表
面を構成する一面が該凹凸状に粗面化されたパターン表
面を有する金属板及び該金属板の裏面が耐熱性樹脂重合
体である断熱層からなる層構造を有することを特徴とし
た樹脂導光板成形用金型及び該金型を用いた射出成形法
を提案した。(特願平7−337673号) 本発明者は、大画面の極薄偏肉導光板を更に効率よく良
好に成形する方法を鋭意検討した結果、耐熱性重合体か
らなる断熱層の被覆厚みをコントロールすることで上記
問題点が解決されることを見出し、更に導光板の光出射
面に所定の方向に出射させる多数の収束レンズ単位が形
成される両面微細加工された面状光源用透明導光板が得
られることを明らかにして本発明を完成した。即ち、本
発明は、 樹脂透明導光板の側端面部に1次光源を配置
する面状光源用導光板において、該透明導光板の一方の
平面を凹凸状の光散乱面と成し、他方の平面を光出射面
と成し且つ所定の方向に出射させる多数の収束レンズ単
位が形成された両面微細加工を特徴とする面状光源用導
光板である。
SUMMARY OF THE INVENTION The present applicant has previously described a mold for a resin light guide plate and a method for molding a resin light guide plate using the mold. One surface forming the mold surface of the mold is roughened in the metal for injection-molding a light guide plate having a light-scattering portion having an uneven surface formed on one side perpendicular to the light-emitting surface of the opposite surface. A metal mold having a patterned surface and a back surface of the metal sheet having a layer structure comprising a heat insulating layer made of a heat-resistant resin polymer, and a resin light guide plate molding die, and injection molding using the metal mold Proposed the law. (Japanese Patent Application No. 7-337673) As a result of diligent studies on a method of more efficiently forming a large-screen ultra-thin walled light guide plate with good efficiency, the present inventors have found that the thickness of the heat-insulating layer made of a heat-resistant polymer has been reduced. It has been found that the above problem can be solved by controlling, and furthermore, a transparent light guide plate for a two-sided micro-machined planar light source in which a number of converging lens units for emitting light in a predetermined direction are formed on the light exit surface of the light guide plate. It has been clarified that the present invention can be obtained, thereby completing the present invention. That is, the present invention provides a light guide plate for a planar light source in which a primary light source is arranged on a side end surface of a resin transparent light guide plate, wherein one plane of the transparent light guide plate is formed as an uneven light scattering surface, and the other is formed. This is a light guide plate for a planar light source characterized by a double-sided fine processing in which a flat surface is formed as a light emitting surface and a plurality of converging lens units for emitting light in a predetermined direction are formed.

【0011】光散乱面が凹凸状に粗面化されたパターン
で格子状に配置し、該光散乱部がほぼ長方形に形成さ
れ、光入射面から遠ざかるほど該長方形の光入射面に平
行な辺の長さが増し、又隣り合った光散乱部間の距離を
小さくするが好ましい。更に、収束レンズ単位の形状が
マルチ線状プリズムであるが好ましく、更には、面状光
源用導光板の形状がくさび型の厚肉部と薄肉部を有する
偏肉形状であることが好ましい。
The light-scattering surface is arranged in a lattice pattern with a roughened pattern, and the light-scattering portion is formed in a substantially rectangular shape, and the side parallel to the rectangular light-incident surface becomes more distant from the light-incident surface. It is preferable to increase the length of the light scattering portion and to reduce the distance between the adjacent light scattering portions. Further, the shape of the converging lens unit is preferably a multi-linear prism, and more preferably, the shape of the planar light source light guide plate is an uneven thickness shape having a wedge-shaped thick portion and a thin portion.

【0012】又、厚肉部と薄肉部を有する型キャビティ
を持つ金型を用いて面状光源用導光板を成形する方法に
於いて、型キャビティを構成する型壁面の両面に断熱層
を被覆し、該断熱層の上の平面部に凹凸状の微細加工、
他方の平面部に多数の収束レンズ単位の微細加工を施し
た金属層を密着した断熱層被覆金型を用い、型キャビテ
ィの厚肉部の最大厚みと薄肉部の最小厚みとの差をA、
型キャビティの最大厚肉部のにおける(型キャビティの
厚み+断熱層厚み)と型キャビティの最小薄肉部におれ
る(型キャビティの厚み+断熱層厚み)との差をBとし
たとき、A>0.5mm、A≧B、好ましくは、A=
0.5〜10mm、0.7A≧Bの関係を有する断熱層
被覆金型を用いる面状光源用偏肉導光板の成形方法が好
ましい。
Further, in a method of molding a light guide plate for a planar light source using a mold having a mold cavity having a thick portion and a thin portion, a heat insulating layer is coated on both surfaces of a mold wall surface constituting the mold cavity. And fine processing of irregularities on the flat part on the heat insulating layer,
Using a heat-insulating layer-coated mold in which a metal layer subjected to fine processing of a number of converging lens units is closely adhered to the other flat portion, the difference between the maximum thickness of the thick portion of the mold cavity and the minimum thickness of the thin portion is A,
When the difference between (the thickness of the mold cavity + the thickness of the heat-insulating layer) in the maximum thickness portion of the mold cavity and the (thickness of the mold cavity + the thickness of the heat-insulating layer) in the minimum thin portion of the mold cavity is B, A> 0.5 mm, A ≧ B, preferably A =
It is preferable to use a heat-insulating-layer-coated mold having a relationship of 0.5 to 10 mm and 0.7A ≧ B to form a light-guided light-guiding plate for a planar light source.

【0013】更に、微細加工された金属層の厚みが、前
記断熱層厚みの1/3以下で、且つ0.01〜1mmで
ある面状光源用偏肉導光板の成形方法が好ましい。以下
に本発明を詳細に説明する。本発明の射出成形に用いら
れる透明導光板用材料の一つは、透明な合成樹脂で有
り、例えば、スチレン系重合体、ポリカーボネート、メ
タクリル樹脂等である。中でも特に透明性や耐光性に優
れる点からメタクリル樹脂、ポリカーボネートが好まし
い。最も好ましい透明導光板用材料としては、例えば本
出願人が特願平7−33766号、特願平7−5867
1号に示すものがある。
Further, it is preferable that the thickness of the finely processed metal layer is not more than 1/3 of the thickness of the heat insulating layer, and the thickness is from 0.01 to 1 mm. Hereinafter, the present invention will be described in detail. One of the materials for the transparent light guide plate used in the injection molding of the present invention is a transparent synthetic resin, such as a styrene-based polymer, polycarbonate, and methacrylic resin. Of these, methacrylic resins and polycarbonates are particularly preferred from the viewpoint of excellent transparency and light resistance. As the most preferable materials for the transparent light guide plate, for example, the present applicant discloses Japanese Patent Application Nos. 7-33766 and 7-5867.
No. 1 is shown.

【0014】面状光源用導光板の形状は、平板若しくは
楔形状のいわゆる厚肉部と薄肉部を有する偏肉形状であ
り、楔形状では導光板の側端面厚肉部から入射した光束
を一定の割合で散乱による方向転換を受け反射を繰り返
しながら導光板の末端部(薄肉部)へ近ずいて行くこと
から導光板の末端部から光が出射される機会が増大する
ので好ましい。そして、導光板の末端部を成形する場
合、その末端部の樹脂の流動性を改善する方法として、
本発明の断熱層被覆金型は効果的である。
The shape of the light guide plate for a planar light source is a flat or wedge-shaped uneven thickness having a so-called thick portion and a thin portion. In the wedge shape, a light beam incident from the thick portion on the side end face of the light guide plate is fixed. It is preferable that light is emitted from the end of the light guide plate since it approaches the terminal end (thin portion) of the light guide plate while repeating reflection while receiving a change in direction due to scattering. And when molding the terminal part of the light guide plate, as a method of improving the fluidity of the resin at the terminal part,
The mold for covering a heat insulating layer of the present invention is effective.

【0015】本発明の金型に用いる金属としては、一般
に金型に用いられる金属である。例えば、鉄又は鉄を主
成分とする鋼材、アルミニウム又はアルミニウムを主成
分とする合金、亜鉛合金、ベリリウムー銅合金等の一般
に合成樹脂の成形に使用されている金属金型を包含す
る。特に鋼材から成る金型が良好に使用できる。これら
の金属からなる主金型の型キャビティを構成する型壁面
をクロムメッキ又はニッケルメッキすることが好まし
い。クロムメッキ又はニッケルメッキは断熱層との密着
性に優れ、又耐蝕性にも優れている。射出成形には、金
型に加熱と冷却が繰り返し加えられるため密着力が安定
して大きいことが非常に重要であり、数万回の成形に耐
えるためには上記のメッキ効果が大きく好ましいもので
ある。
The metal used for the mold of the present invention is a metal generally used for a mold. For example, a metal mold generally used for molding a synthetic resin such as iron or a steel material containing iron as a main component, aluminum or an alloy containing aluminum as a main component, a zinc alloy, and a beryllium-copper alloy is included. Particularly, a mold made of a steel material can be used favorably. It is preferable to apply chrome plating or nickel plating to the mold wall surface forming the mold cavity of the main mold made of these metals. Chromium plating or nickel plating has excellent adhesion to the heat insulating layer and also has excellent corrosion resistance. In injection molding, since heating and cooling are repeatedly applied to the mold, it is very important that the adhesion is stable and large, and in order to withstand tens of thousands of moldings, the above plating effect is large and preferable. is there.

【0016】本発明の断熱層を形成する断熱材とは、主
金型を形成する金属の熱伝導率の1/10以下、好まし
くは1/20以下の熱伝導率を有する物質である。好ま
しい断熱層としては、各種耐熱樹脂重合体、各種セラミ
ック等である。最も好適に用いられるのは耐熱性重合体
である。耐熱重合体は、ガラス転移温度が150℃以
上、好ましくは200℃以上、更に好ましくは230℃
以上、及び/又は融点が200℃以上、好ましくは25
0℃以上、更に好ましくは280℃以上の耐熱性重合体
である。耐熱性重合体の熱伝導率は小さい程好ましく、
熱伝導度が0.002cal/cm・sec・℃以下で
あり、一般の重合体はこの熱伝導率以下である。又、該
耐熱性重合体の破断伸度は10%以上の強靭な重合体が
好ましい。破断伸度はASTMD638に準じて行い、
引張速度は5mm/minである。
The heat insulating material forming the heat insulating layer of the present invention is a substance having a thermal conductivity of 1/10 or less, preferably 1/20 or less of the thermal conductivity of the metal forming the main mold. Preferred heat insulating layers are various heat-resistant resin polymers, various ceramics, and the like. Most preferably used are heat-resistant polymers. The heat-resistant polymer has a glass transition temperature of 150 ° C. or higher, preferably 200 ° C. or higher, more preferably 230 ° C.
And / or a melting point of 200 ° C. or higher, preferably 25 ° C.
It is a heat-resistant polymer having a temperature of 0 ° C or higher, more preferably 280 ° C or higher. The smaller the thermal conductivity of the heat-resistant polymer, the more preferable,
The thermal conductivity is 0.002 cal / cm · sec · ° C. or less, and a general polymer has this thermal conductivity or less. The toughness of the heat-resistant polymer is preferably 10% or more. The elongation at break is performed according to ASTM D638,
The tensile speed is 5 mm / min.

【0017】本発明で断熱層として良好に使用できる重
合体は、主鎖に芳香環を有する耐熱性重合体であり、有
機溶剤に溶解する各種非結晶性耐熱性重合体、各種ポリ
イミド、エポキシ樹脂等である。非結晶性耐熱性重合体
としては、ポリスルホン、ポリエーテルスルホン、ポリ
アリルスルホン、ポリアリレート、ポリフェニレンエー
テル、ポリベンツイミダゾール等がある。ポリイミドは
各種有るが、直鎖型と熱硬化型に分けられそれぞれのポ
リイミド前駆体として各種知られている。
The polymer which can be used favorably as the heat-insulating layer in the present invention is a heat-resistant polymer having an aromatic ring in its main chain, and various amorphous heat-resistant polymers, various polyimides and epoxy resins soluble in organic solvents. And so on. Examples of the non-crystalline heat-resistant polymer include polysulfone, polyether sulfone, polyallylsulfone, polyarylate, polyphenylene ether, polybenzimidazole and the like. There are various kinds of polyimides, and they are classified into a linear type and a thermosetting type, and various types are known as respective polyimide precursors.

【0018】本発明で用いられる断熱層に関しては、熱
伝導率が低いこと、耐熱性に優れること、引っ張り強
度、伸びが大きく冷熱サイクルに強いこと、金型本体へ
の塗布が良好であること、金型との密着性が良いこと等
から直鎖型の高分子量ポリイミドが好ましい。例えば商
品名がカプトン(東レ製)、ノバックス(三菱化成
製)、ユーピレックスS或いはユーピレックスR(宇部
興産製)、LarcTPI(三井東圧化学製)、等が好
ましいものである。ポリイミド層を金型に強固に密着さ
せるには、直鎖型高分子量ポリイミドの前駆体溶液を金
型に塗布し、次いで加熱してポリイミドを形成させるこ
とが最も好ましい。直鎖型高分子量ポリイミドの前駆体
は、例えば芳香族ジアミンと芳香族テトラカルボン酸二
無水物を開環重付加反応させることにより合成される。
これらポリイミド前駆体は、加熱して脱水環化反応させ
ることによりポリイミドを形成する。ポリイミド前駆体
のポリマーは、カルボキシル基等の極性基のため金型と
の密着性が良い。上記のポリイミド前駆体のポリマー
は、N−メチルピロリドン等の溶媒に溶かし金型壁面に
塗布される。ポリイミドの前駆体溶液には、コーティン
グ時の粘度を調整したり、溶液の表面張力を調整、チキ
ソトロピー性を調整するための添加物を加えたり、及び
/又は金型との密着性を上げる為の微小の添加物を加え
ることが出来る。これらポリイミドの中で、ピロメリッ
ト酸ジ無水物系ポリイミドは、耐熱性、機械的性質等に
優れ最も好ましい。特に塗布用に変性したワニスは、良
好できる。
The heat-insulating layer used in the present invention has a low thermal conductivity, an excellent heat resistance, a high tensile strength, a large elongation and a high resistance to cooling and heating cycles, and a good application to a mold body. A linear high molecular weight polyimide is preferred because of its good adhesion to the mold. For example, the preferred product names are Kapton (manufactured by Toray), Novax (manufactured by Mitsubishi Chemical), Upilex S or Upilex R (manufactured by Ube Industries), LarcTPI (manufactured by Mitsui Toatsu Chemicals), and the like. In order to firmly adhere the polyimide layer to the mold, it is most preferable to apply a precursor solution of linear high molecular weight polyimide to the mold and then heat to form the polyimide. The precursor of the linear high molecular weight polyimide is synthesized by, for example, subjecting an aromatic diamine and an aromatic tetracarboxylic dianhydride to a ring-opening polyaddition reaction.
These polyimide precursors are heated to cause a dehydration cyclization reaction to form a polyimide. The polyimide precursor polymer has good adhesion to a mold because of a polar group such as a carboxyl group. The above polyimide precursor polymer is dissolved in a solvent such as N-methylpyrrolidone and applied to the mold wall. To adjust the viscosity during coating, adjust the surface tension of the solution, add an additive to adjust the thixotropic property, and / or increase the adhesion to the mold to the polyimide precursor solution Minor additives can be added. Among these polyimides, pyromellitic dianhydride-based polyimide is most preferable because of its excellent heat resistance and mechanical properties. Particularly, a varnish modified for coating can be excellent.

【0019】エポキシ樹脂は、硬化剤と組み合わせたエ
ポキシ樹脂硬化物或いは各種充填剤を適量配合したエポ
キシ樹脂等も使用できる(以後、エポキシ樹脂硬化物を
エポキシ樹脂と称する)。エポキシ樹脂は一般に熱膨張
係数が大きく、金属金型との熱膨張係数の差が大きい。
しかし、熱膨張係数の小さいガラス、シリカ、クレー、
タルク、炭酸カルシウム、アルミナ、マイカ等の粉体、
ウィスカー、炭素繊維等の適量をエポキシ樹脂に配合
し、金属金型との熱膨張係数の差を小さくした充填剤配
合エポキシ樹脂は本発明の断熱層として良好に使用でき
る。
As the epoxy resin, an epoxy resin cured product combined with a curing agent or an epoxy resin mixed with various fillers in an appropriate amount can be used (hereinafter, the epoxy resin cured product is referred to as an epoxy resin). Epoxy resins generally have a large coefficient of thermal expansion and a large difference in the coefficient of thermal expansion from a metal mold.
However, glass, silica, clay,
Powder of talc, calcium carbonate, alumina, mica, etc.
A filler-containing epoxy resin in which an appropriate amount of whiskers, carbon fibers, or the like is mixed with an epoxy resin to reduce the difference in thermal expansion coefficient from a metal mold can be used favorably as the heat insulating layer of the present invention.

【0020】又、エポキシ樹脂或いは充填材配合エポキ
シ樹脂に、更にナイロン等の強靱な熱可塑性樹脂あるい
はゴム等の各種配合物を加えて強靱性を与えた配合エポ
キシ樹脂は良好できる。特に、エポキシ樹脂にポリエー
テルスルホンやポリエーテルイミドを配合して硬化した
ポリマーアロイは強靱性に優れ良好できる。射出成形法
は、テーパ状の形斜面を有する楔型形状の偏肉導光板を
一度の成形で得られるところに経済的価値がある。メタ
クリル樹脂は、溶融時の粘度が高く1mm以下の極薄肉
成形品では樹脂の流動性が極端に悪化し十分に充填でき
ない場合が生じる。本発明での好ましい面状光源用偏肉
導光板は、最も薄い薄肉部の型キャビティ厚みが0.1
〜1mmの極薄導光板である。
A compounded epoxy resin obtained by adding a tough thermoplastic resin such as nylon or various compounds such as rubber to an epoxy resin or a compounded epoxy resin with a filler to impart toughness can be improved. In particular, a polymer alloy cured by mixing polyethersulfone or polyetherimide with an epoxy resin is excellent in toughness and can be excellent. The injection molding method has economic value in that a wedge-shaped uneven light guide plate having a tapered slope can be obtained by a single molding. The methacrylic resin has a high viscosity at the time of melting and, in the case of an ultra-thin molded product having a thickness of 1 mm or less, the fluidity of the resin is extremely deteriorated and may not be sufficiently filled. The preferred uneven light guide plate for a planar light source in the present invention has a mold cavity thickness of the thinnest thin portion of 0.1.
It is a very thin light guide plate of の 1 mm.

【0021】金型キャビティは、一般に複雑な形状であ
り、この複雑な形状の金型キャビティ表面、型壁面に鏡
面状に被覆物を塗布することは極めて困難で有り、その
ため塗布された被覆層を後から表面研磨したり、塗布層
を数値制御フライス盤等の数値制御工作機械で削った後
に表面研磨して鏡面状に仕上げることが好ましい。本発
明の型キャビティ厚みと断熱層厚みの関係は、以下の条
件を満たすものである。即ち、A:型キャビティ厚肉部
の厚みと型キャビティ薄肉部の厚みの差(偏肉型物の偏
肉差)、B:型キャビティ厚肉部の(型キャビティ厚み
+断熱層厚み)と型キャビティ薄肉部の(型キャビティ
+断熱層厚み)の差として、A>0.5mm、A≧Bで
ある。好ましくは、A=0.5〜10mm、及び0.7
A>B≧0mmで、更に好ましくは、A=1〜5mm、
及び0.5A>B≧0mmである。
The mold cavity is generally of a complicated shape, and it is extremely difficult to apply a mirror-like coating to the surface of the mold cavity and the wall surface of the mold having such a complicated shape. It is preferable that the surface is polished later, or the coating layer is shaved by a numerically controlled machine tool such as a numerically controlled milling machine and then polished to a mirror finish. The relationship between the thickness of the mold cavity and the thickness of the heat insulating layer of the present invention satisfies the following conditions. That is, A: the difference between the thickness of the mold cavity thick portion and the thickness of the mold cavity thin portion (difference in thickness of the mold thickness variation), B: (mold cavity thickness + insulation layer thickness) of the mold cavity thick portion and the mold A> 0.5 mm and A ≧ B as a difference between (mold cavity + heat insulation layer thickness) of the cavity thin portion. Preferably, A = 0.5-10 mm, and 0.7
A> B ≧ 0 mm, more preferably A = 1 to 5 mm,
And 0.5A> B ≧ 0 mm.

【0022】本発明で型キャビティを構成する型壁面に
被覆する断熱層の厚みは、5mm以下の範囲で適宜選択
され、且つ、該断熱層は型キャビティの厚肉部で薄く、
型キャビティの薄肉部で厚く被覆される。本発明では型
キャビティの薄肉部のみに断熱層を被覆し、型キャビテ
ィ厚肉部には断熱層が無い場合も含まれる。この場合の
型キャビティ厚肉部の(型キャビティ+断熱層厚み)
は、型キャビティ厚みと等しい。型キャビティの厚肉部
が十分に厚い場合は、断熱層の必要が無く型キャビティ
の薄肉部の一部分のみを断熱層で被覆することが好まし
い。好ましい断熱層の厚みは、0.01mm〜3mmで
あり、更に好ましくは0.1mm〜2mm、且つ断熱層
被覆金型の(型キャビティ+断熱層厚み)値が均一化さ
れた金型である。
In the present invention, the thickness of the heat insulating layer covering the mold wall surface constituting the mold cavity is appropriately selected within a range of 5 mm or less, and the heat insulating layer is thin at the thick portion of the mold cavity.
It is thickly covered with the thin part of the mold cavity. In the present invention, the case where only the thin portion of the mold cavity is covered with the heat insulating layer and the thick portion of the mold cavity does not have the heat insulating layer is also included. In this case, the mold cavity thick part (mold cavity + heat insulation layer thickness)
Is equal to the mold cavity thickness. When the thick part of the mold cavity is sufficiently thick, it is preferable to cover only a part of the thin part of the mold cavity with the heat insulating layer without the need for the heat insulating layer. A preferable thickness of the heat insulating layer is 0.01 mm to 3 mm, more preferably 0.1 mm to 2 mm, and a mold in which the (mold cavity + heat insulating layer thickness) value of the heat insulating layer coating mold is uniform.

【0023】本発明では、断熱層の上に薄い金属層が存
在する。その接着樹脂層も断熱層となる。断熱層の厚み
が5mmを超えた場合には、金型の冷却効果が低下し、
成形効率が低下する。そして、金型温度が高い程耐熱性
重合体から成る断熱層の厚みを薄く被覆し、金型温度が
低いほど断熱層厚みを厚く被覆して、(型キャビティ厚
み+断熱層厚み)の均一化された金型を用いることが最
も好ましい。また、(型キャビティ厚み+断熱層厚み)
値の最大値は、最小値の1〜3倍の範囲以内であり、3
倍を超えると金型の冷却効率が低下し、成形効率が悪く
なる。本発明では、断熱層で被覆する金型は、型キャビ
ティを構成する型壁面及びコアー金型を構成する型壁面
の両型壁面が被覆されている金型は射出された透明樹脂
の流動性支援効果が大きく、金型微細加工面の転写性に
優れ特に好ましい。
In the present invention, a thin metal layer is present on the heat insulating layer. The adhesive resin layer also becomes a heat insulating layer. If the thickness of the heat insulating layer exceeds 5 mm, the cooling effect of the mold decreases,
Molding efficiency decreases. The higher the temperature of the mold, the thinner the thickness of the heat-insulating layer made of the heat-resistant polymer, and the lower the temperature of the mold, the thicker the thickness of the heat-insulating layer. It is most preferable to use a prepared mold. Also, (mold cavity thickness + heat insulation layer thickness)
The maximum value is within the range of 1 to 3 times the minimum value, and 3
If it exceeds twice, the cooling efficiency of the mold decreases, and the molding efficiency deteriorates. In the present invention, the mold covered with the heat insulating layer is a mold in which both the mold wall surface constituting the mold cavity and the mold wall surface constituting the core mold are coated. The effect is great, and the transferability of the finely machined surface of the mold is excellent and particularly preferable.

【0024】ポリイミド等の断熱層を被覆し、その上に
該断熱層厚みの1/3以下で、且つ0.01〜1mmの
厚みで、断熱層に密着し、微細加工の施された金属層が
存在する断熱層被覆金型を用いる。本発明の面状光源用
偏肉導光板は、樹脂透明導光板の側端面厚肉部に1次光
源を配置する面状光源用偏肉導光板であって、該透明導
光板の一方の平面を凹凸状の光散乱面と成し、他方の平
面を光出射面で所定の方向に出射させる多数の収束レン
ズ単位が形成されている両面微細加工されたものであ
る。光散乱面は、凹凸状に粗面化されたパターンで格子
状に配置し、該光散乱部がほぼ長方形に形成され、光入
射面から遠ざかるほど該長方形の光入射面に平行な辺の
長さが増し、又隣り合った光散乱部間の距離を小さくし
た面状光源用偏肉導光板である。
A metal layer coated with a heat insulating layer of polyimide or the like and having a thickness of 0.01 to 1 mm or less of the thickness of the heat insulating layer and having a thickness of 0.01 to 1 mm, which is in close contact with the heat insulating layer and has been subjected to fine processing. Is used. The uneven thickness light guide plate for a planar light source according to the present invention is a thickness uneven light guide plate for a planar light source in which a primary light source is disposed at a thick portion on a side end surface of a resin transparent light guide plate, and one plane of the transparent light guide plate is provided. Is a light scattering surface having concavo-convex shapes, and is formed by fine processing on both sides in which a plurality of converging lens units for emitting the other plane in a predetermined direction on the light emitting surface are formed. The light-scattering surface is arranged in a lattice pattern with a roughened pattern, and the light-scattering portion is formed in a substantially rectangular shape. As the distance from the light-incident surface increases, the length of a side parallel to the rectangular light-incident surface increases. An uneven thickness light guide plate for a planar light source, wherein the distance between adjacent light scattering portions is reduced.

【0025】光散乱部の形成は、導光板の厚肉部側が1
次光源となりこの光源から離れるにしたがい、即ち、薄
肉部側に向かって次第に拡大或いは密にする。形状の平
面図形は、円、楕円、三角、四角、多角、半円、三日月
等どのような形状でも良く、又これら平面図形の形状を
2種以上を組み合わせたものでもよい。そして、これら
平面図形の形状を微細な凹凸形状で導光板の片面を粗面
化することにより1次光源の光は、これら粗面化面で散
乱し導光板表面での発光効率及び発光の均一性が向上す
る。この様な効果を発揮する凹凸の高さ、深さは1〜5
0μm程度が良好である。
The light-scattering portion is formed such that the thick portion of the light guide plate is 1
As the light source becomes the next light source, the distance from the light source increases, that is, the light source gradually expands or becomes denser toward the thin portion. The plane figure of the shape may be any shape such as a circle, an ellipse, a triangle, a square, a polygon, a semicircle, a crescent, or a combination of two or more of these plane figures. The light of the primary light source is scattered on the roughened surface by roughening one surface of the light guide plate with the fine irregularities in the shape of the plane figure, and the luminous efficiency and the uniform light emission on the surface of the light guide plate are uniform. The performance is improved. The height and depth of the unevenness exhibiting such an effect is 1 to 5
About 0 μm is good.

【0026】金型への微細な凹凸形状の形成方法として
は、金型金属板面にエッチング加工、切削加工、放電加
工、レーザー加工、電鋳加工法及び鋳造加工法等の公知
な方法が適宜用いられる。例えば、予め写真フイルム等
に光散乱部の配列パターンを形成し、金型金属層に面に
フォトレジスト法でこの配列パターンに対応したマスク
を形成し、その後金型金属層を化学エッチングする方法
が知られている。そして望ましい微細な凹凸状の光散乱
部の配列パターンとしては、例えば、本出願人により先
に特開平7−104296号公報でシボパターンの配
置、形状、大きさ等を示している。
As a method of forming fine irregularities on the mold, a known method such as etching, cutting, electric discharge machining, laser machining, electroforming, and casting is suitably applied to the surface of the mold metal plate. Used. For example, a method in which an arrangement pattern of light scattering portions is formed in advance on a photographic film or the like, a mask corresponding to this arrangement pattern is formed on a surface of a mold metal layer by a photoresist method, and then the mold metal layer is chemically etched. Are known. As a desirable arrangement pattern of light scattering portions having fine unevenness, for example, the arrangement, shape, size, and the like of a grain pattern are described in Japanese Patent Application Laid-Open No. 7-104296 by the present applicant.

【0027】又、電鋳加工法の一例として、先ず鋼鉄、
アルミニウム又は黄銅等の伝型用金属製ベース材の表面
に所望の形状、配列パターンを有するマスターを被せ形
状パターンをエッチングにより削り込み或いは切削によ
り微細な凹凸形状を形成し電鋳用の電型を作製する。次
に、電着層に入れ、この電型表面に金属メッキを積層す
る電着加工を施し、メッキ層の厚みを0.1〜1mmの
範囲で所望する厚みとする。電着後、電型を電着槽から
取り出し積層メッキ部分をベース材の電型から剥離する
ことにより電型表面の凹凸形状が積層メッキ材の表面に
転写される。この転写された積層メッキ板を射出成形用
の金型部分の金属層として用いる。
As an example of the electroforming method, first, steel,
A master having a desired shape and an array pattern is placed on the surface of a metal base material for transfer such as aluminum or brass, and the shape pattern is etched or cut to form fine irregularities to form an electroform for electroforming. Make it. Next, the resultant is put into an electrodeposition layer and subjected to an electrodeposition process of laminating a metal plating on the surface of the electroform, and the thickness of the plating layer is set to a desired thickness in a range of 0.1 to 1 mm. After the electrodeposition, the electroform is taken out of the electrodeposition bath, and the laminated plating portion is peeled off from the electroform of the base material, whereby the unevenness of the electroformed surface is transferred to the surface of the laminated plating material. The transferred laminated plating plate is used as a metal layer of a mold part for injection molding.

【0028】金属からなる金型表面を断熱層で被覆し、
その表面に射出された加熱合成樹脂が接触すると、型表
面は合成樹脂の熱を受けて昇温する。断熱層の熱伝導度
が小さいほど、又、断熱層が厚いほど型表面温度は高く
なる。従って、断熱層の上に密着させる金属層の厚み
は、薄いほど好適で本発明の効果が得られる。そして、
この薄い金属層の厚みは均一であることが好ましい。金
属層の厚みのバラツキが大きいと、金属層の厚い部分の
型表面再現性が悪くなったり、合成樹脂材料の流動性に
変化が起きたりする。
A metal mold surface is covered with a heat insulating layer,
When the injected synthetic resin comes into contact with the surface, the surface of the mold is heated by the heat of the synthetic resin. The lower the thermal conductivity of the heat insulating layer and the thicker the heat insulating layer, the higher the mold surface temperature. Therefore, the smaller the thickness of the metal layer adhered on the heat insulating layer, the better, and the effect of the present invention can be obtained. And
The thickness of this thin metal layer is preferably uniform. If the thickness variation of the metal layer is large, the mold surface reproducibility of the thick portion of the metal layer is deteriorated, and the fluidity of the synthetic resin material changes.

【0029】本発明の金属層は、種々の方法で被覆でき
るが、メッキによって良好に被覆される。ここに述べる
メッキは化学メッキ(無電解メッキ)と電解メッキであ
る。一般には次の工程の幾つかを経てメッキされる。す
なわち、まず断熱層に接して化学メッキが行われる。前
処理→化学腐食(酸、アルカリによる化学エッチング:
表面を適度な凹凸にする)→中和→感受性化処理(合成
樹脂表面に還元力のある金属塩を吸着させて活性化を効
果を高める)→活性化処理(触媒作用を有するパラジウ
ム等の貴金属を断熱層樹脂表面に付与)→化学メッキ
(化学ニッケル、銅メッキ等)→電解メッキ(電解ニッ
ケル、銅、クロムメッキ等)。
The metal layer of the present invention can be coated by various methods, but is preferably coated by plating. The plating described here is chemical plating (electroless plating) and electrolytic plating. Generally, plating is performed through some of the following steps. That is, first, chemical plating is performed in contact with the heat insulating layer. Pretreatment → chemical corrosion (chemical etching with acid and alkali:
→ Surface neutralization → Neutralization → Sensitivity treatment (Enhance activation effect by adsorbing a reducing metal salt on the synthetic resin surface) → Activation treatment (noble metal such as palladium which has catalytic action) To the heat insulating layer resin surface) → chemical plating (chemical nickel, copper plating, etc.) → electrolytic plating (electrolytic nickel, copper, chromium plating, etc.).

【0030】本発明は、1mm以下の薄い金属板を断熱
層表面に貼り付けることも可能である。薄い金属板とし
ては、例えばSUS304H、銅板等であり、SUS3
04Hのテンションアニール材は反りが出難く好適に使
用でき、この様な薄い金属板面のエッチング加工法が好
ましい。本発明の面状光源用偏肉導光板のもう一方の金
型平面は、光出射面で所定の方向に光出射させる多数の
収束レンズ単位が形成されている。本発明の面状光源用
偏肉導光板は、入射光線が光散乱部にて出射面方向に反
射し、出射面の収束レンズで特定方向に出射光を集中的
に収束させることが出来るものである。この様な収束レ
ンズ形状としては、凸状レンチキュラーレンズ、三角柱
状レンチキュラーレンズ、多角錐状レンチキュラーレン
ズ等が適宜用いられる。この中でも、凸レンズで三角柱
状レンチキュラーレンズのマルチ線状プリズムが最も好
ましい形状である面状光源用偏肉導光板である。
According to the present invention, a thin metal plate of 1 mm or less can be attached to the surface of the heat insulating layer. Examples of the thin metal plate include SUS304H and a copper plate.
The 04H tension annealing material is preferably used because it hardly warps, and such a thin metal plate surface etching method is preferable. On the other mold plane of the uneven thickness light guide plate for a planar light source of the present invention, a number of converging lens units for emitting light in a predetermined direction on a light emitting surface are formed. The uneven thickness light guide plate for a planar light source of the present invention is such that an incident light beam is reflected in a light scattering portion in a direction of an emission surface, and the emission light can be concentrated and converged in a specific direction by a converging lens on the emission surface. is there. As such a convergent lens shape, a convex lenticular lens, a triangular prism lenticular lens, a polygonal pyramidal lenticular lens, or the like is appropriately used. Among these, a multi-line prism having a convex lens and a triangular prism-shaped lenticular lens is the most preferable shape of the uneven light guide plate for a planar light source.

【0031】一般的なプリズムの形状は、頂角が60〜
120°、高さが10〜50μm、ピッチが25〜10
0μmの範囲が望ましく、頂角90°、高さ25μm、
ピッチ50μmが標準的に用いられる。金型への微細な
凸形状のレンズ形成方法としては、金型金属板面にエッ
チング加工、切削加工、電鋳加工法等の公知な方法が適
宜用いられる。
A general prism shape has an apex angle of 60 to
120 °, height 10-50 μm, pitch 25-10
A range of 0 μm is desirable, a vertex angle of 90 °, a height of 25 μm,
A pitch of 50 μm is typically used. As a method for forming a lens having a fine convex shape on the mold, a known method such as an etching process, a cutting process, and an electroforming process is appropriately used on the surface of the mold metal plate.

【0032】一般に、平行板間を流動する流体の圧力損
失は次式で示される。 ΔA=β×LηQ/H2 ΔP=圧力損失、H=平行板間距離(型キャビティ厚
み)、η=粘度、β=定数、Q=流量、L=流動距離 即ち、圧力損失は粘度と流動距離に比例し、平行板間距
離の2乗に比例する。射出成形では上記数式から明らか
なように、ゲートから離れるに従って圧力損失は大きく
金型面を押す樹脂圧力が低下する。これは、射出された
合成樹脂が金型表面に接した部分で冷却されるため時間
とともに樹脂の粘度が上昇する為である。そして、射出
された樹脂が時間と共に金型面に押し付けられる力、及
び流動方向への流動性が低下する。また、流動末端部で
は、金型面の転写性が低下する。特に、上記数式のLと
ηが大きい場合、即ち、大型で薄肉成形品で粘度の高い
合成樹脂では流動性及び金型面の転写性に問題が生じ
る。本発明は、型キャビティの薄肉部を断熱層で被覆す
ることにより薄肉部での冷却速度を遅延させる効果が有
り、合成樹脂の流動性を大幅に低下させることなく成形
できる。
Generally, the pressure loss of a fluid flowing between parallel plates is expressed by the following equation. ΔA = β × LηQ / H 2 ΔP = pressure loss, H = distance between parallel plates (mold cavity thickness), η = viscosity, β = constant, Q = flow rate, L = flow distance, ie pressure loss is viscosity and flow distance And is proportional to the square of the distance between the parallel plates. In the injection molding, as is clear from the above formula, the pressure loss increases as the distance from the gate increases, and the resin pressure pressing the mold surface decreases. This is because the viscosity of the resin increases with time because the injected synthetic resin is cooled at a portion in contact with the mold surface. Then, the force with which the injected resin is pressed against the mold surface with time and the fluidity in the flowing direction decrease. Also, at the flow end, the transferability of the mold surface is reduced. In particular, when L and η in the above formulas are large, that is, in a large-sized thin-walled molded product having a high viscosity, a problem occurs in fluidity and transferability of a mold surface. The present invention has an effect of delaying the cooling rate in the thin portion by covering the thin portion of the mold cavity with the heat insulating layer, and can perform molding without significantly lowering the fluidity of the synthetic resin.

【0033】合成樹脂の射出成形では金型温度と成形サ
イクルタイムは密接に関連している。一般に、成形時の
金型温度(Td)と金型内必要冷却時間(θ)の関係は
次式で示される。 θ=−(D2/2πα)ln[π/4(Tx−Td)/
(Tc−Td)] θ:冷却時間(sec)、D:成形品の最大肉厚(c
m)、Tc:成形時の加熱樹脂温度(℃)、Tx:成形
合成樹脂の軟化温度(℃)、α:合成樹脂の熱拡散率、
Td:金型温度(℃) 冷却時間(θ)は、成形品の最大肉厚(D)の2乗に比
例し、(Tx−Td)/(Tc−Td)の関数である。
In synthetic resin injection molding, mold temperature and molding cycle time are closely related. Generally, the relationship between the mold temperature (Td) during molding and the required cooling time in the mold (θ) is expressed by the following equation. θ = − (D 2 / 2πα) ln [π / 4 (Tx−Td) /
(Tc-Td)] θ: Cooling time (sec), D: Maximum thickness of molded product (c
m), Tc: heated resin temperature during molding (° C.), Tx: softening temperature of molded synthetic resin (° C.), α: thermal diffusivity of synthetic resin,
Td: mold temperature (° C.) Cooling time (θ) is proportional to the square of the maximum thickness (D) of the molded product, and is a function of (Tx−Td) / (Tc−Td).

【0034】金型の型キャビティ薄肉部に断熱層を被覆
することは、導光板の薄肉部の肉厚を厚くして冷却時間
を長くする方向と同様の働きをする。一方、金型温度を
下げると冷却時間を短くする方向に働く。従って、断熱
層の厚みは薄肉で流動性支援、金型面の転写性等の改良
が出来ることが成形サイクルの観点から経済的に極めて
好ましい。偏肉導光板を射出成形する場合、上記の成形
時の金型温度(Td)と金型内必要冷却時間(θ)の関
係式より、成形品の最大厚肉で決まる。そして、型キャ
ビティの薄肉部では断熱層を厚くしても良く、(型キャ
ビティ厚み+断熱層厚み)が成形サイクルタイムに重要
である。従って、型キャビティの厚みが十分に大きい場
合には、断熱層を被覆することは成形効率が低下するこ
とになり、好ましく無い。型キャビティの薄肉部では断
熱層を厚く被覆し、(型キャビティ厚み+断熱層厚み)
値が均一化された金型が好ましく、合成樹脂の流動充填
性、金型面の転写性と成形効率のバランスが好適であ
る。
The coating of the heat-insulating layer on the thin portion of the mold cavity in the mold has the same function as increasing the cooling time by increasing the thickness of the thin portion of the light guide plate. On the other hand, when the mold temperature is lowered, the cooling time is shortened. Therefore, it is very economically preferable from the viewpoint of the molding cycle that the thickness of the heat-insulating layer is thin so that the flowability can be improved and the transferability of the mold surface can be improved. In the case of injection-molding the uneven thickness light guide plate, the maximum thickness of the molded product is determined by the above-mentioned relational expression between the mold temperature (Td) and the required cooling time in the mold (θ). In the thin portion of the mold cavity, the heat insulation layer may be thickened, and (mold cavity thickness + heat insulation layer thickness) is important for the molding cycle time. Therefore, when the thickness of the mold cavity is sufficiently large, covering the heat insulating layer is not preferable because the molding efficiency is reduced. In the thin part of the mold cavity, the heat insulation layer is thickly covered, (mold cavity thickness + heat insulation layer thickness)
A mold having a uniform value is preferable, and a balance between the flowability of the synthetic resin, the transferability of the mold surface, and the molding efficiency is preferable.

【0035】以下に、本発明を詳細に図面を用いて説明
する。図1に本発明の面状光源用偏肉導光板成形金型に
おける型キャビティ付近の断面図を示す。図1に於い
て、金属から成る金型1、1’は、入り子駒型金型2、
2’から成り型キャビティが厚肉部(イ)と薄肉部
(ロ)を有し該型キャビティを構成する型壁面に断熱層
3、3’を被覆し、該断熱層3、3’の上に密着した金
属層4、4’が存在した断熱層被覆金型である。そし
て、金属層4は、凹凸状で微細に粗面化されたパターン
で厚肉部から薄肉部に向かって密に形成され、金属層
4’は、多数の微細な収束レンズ形状に形成されてい
る。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing the vicinity of a mold cavity in a mold for molding a light-thickness light guide plate for a planar light source according to the present invention. In FIG. 1, metal molds 1 and 1 ′ are nested piece molds 2,
2 ′, the mold cavity has a thick portion (a) and a thin portion (b), and the mold wall surfaces constituting the mold cavity are covered with heat insulating layers 3 and 3 ′. This is a heat-insulating-layer-coated mold in which the metal layers 4 and 4 'adhered to the metal were present. Then, the metal layer 4 is formed densely from the thick portion to the thin portion in a finely roughened pattern with an uneven shape, and the metal layer 4 ′ is formed in a number of fine converging lens shapes. I have.

【0036】型キャビティ厚肉部の厚み(イ)と薄肉部
の厚み(ロ)の差をAとした場合、A>0.5mm、好
ましくは、A=0.5〜10mmである。更に、型キャ
ビティ厚肉部の(型キャビティ厚み+断熱層厚み)と型
キャビティ薄肉部の(型キャビティ厚み+断熱層厚み)
の差をBとした場合、A≧Bの関係となる断熱層の被覆
厚みの金型である。好ましくは、0.7>B≧0であ
る。好ましい金属層の厚みは、該断熱層厚みの1/3以
下で且つ0.001〜1mm、更に好ましくは0.05
〜0.5mmの厚みである。金属層表面がシボ状、凹凸
模様でパターン化されたもの及びプリズム形状等を含
む。金型の一面の金属層は、型キャビティの厚肉部が1
次光源の光源ランプ側で光散乱部の凹凸が粗で薄肉部に
向うに従って密に形成している。一方、対面側となる金
型面の金属層は、頂角90度、ピッチ50μm、深さ2
5μmのプリズム形状に形成した金属層である。
When the difference between the thickness (a) of the thick part of the mold cavity and the thickness (b) of the thin part is A, A> 0.5 mm, preferably A = 0.5 to 10 mm. Furthermore, (mold cavity thickness + insulation layer thickness) of the mold cavity thick portion and (mold cavity thickness + insulation layer thickness) of the mold cavity thin portion
Is a mold having a coating thickness of the heat insulating layer that satisfies the relationship of A ≧ B, where B is the difference between the two. Preferably, 0.7> B ≧ 0. A preferable thickness of the metal layer is 1/3 or less of the thickness of the heat insulating layer and 0.001 to 1 mm, more preferably 0.05 to 1 mm.
The thickness is about 0.5 mm. The surface of the metal layer includes a textured surface, a metal surface patterned in an uneven pattern, a prism shape, and the like. The metal layer on one side of the mold has a thick portion of the mold cavity of 1
On the light source lamp side of the next light source, the unevenness of the light scattering portion is rough and densely formed toward the thin portion. On the other hand, the metal layer on the opposite mold side has a vertical angle of 90 degrees, a pitch of 50 μm, and a depth of 2 μm.
It is a metal layer formed in a 5 μm prism shape.

【0037】尚、光学特性の測定方法等は次の装置、条
件で行った。 (1)導光板の輝度及び輝度分布測定 成形した導光板の光散乱部面側に反射フィルム、発光面
側に拡散フィルム、1次光源に冷陰極蛍光管(直径3m
m、長さ220mm)を配置し、インバーターに接続し
て面状光源装置を製作した。電源を投入して冷陰極蛍光
管を発光させ30分間放置して明るさを安定させた後、
ミノルタ製輝度計(CA−1000)を用いて導光板面
の輝度分布を測定した。縦、横を各5分割して25分割
における輝度を測定し、その平均値を輝度値とし、輝度
の最小値÷最大値の百分率で得られる値を光均斉度とし
て輝度ムラの比較を行った。 (2)導光板微細形状の転写性測定 微細形状の転写性は、(株)東京精密製の表面粗さ計状
測定機:サーフコム570A型により導光板の中央部に
ついて微細凸部の高さ及びプリズム形状の高さを測定し
計測した。
The optical characteristics were measured by the following apparatus and under the following conditions. (1) Measurement of Luminance and Luminance Distribution of Light Guide Plate Reflective film on light scattering part side of diffused light guide plate, diffusion film on light emitting surface side, cold cathode fluorescent tube (diameter 3 m)
m, length 220 mm) and connected to an inverter to produce a planar light source device. After turning on the power to make the cold cathode fluorescent tube emit light and leaving it for 30 minutes to stabilize the brightness,
The luminance distribution on the light guide plate surface was measured using a Minolta luminance meter (CA-1000). The luminance was measured at 25 divisions by dividing the vertical and horizontal into 5 parts each, and the average value was taken as the luminance value, and the luminance nonuniformity was compared with the value obtained by the percentage of the minimum value of the luminance ÷ the maximum value as the light uniformity. . (2) Measurement of transferability of fine shape of light guide plate The transferability of the fine shape was measured by measuring the height of fine protrusions at the center of the light guide plate using a surface roughness measuring instrument: Surfcom 570A manufactured by Tokyo Seimitsu Co., Ltd. The height of the prism shape was measured and measured.

【0038】[0038]

【発明の実施の形態】次の主金型、断熱層及び金属板と
合成樹脂を用いた。 主金型:鋼材(S55C)で作られた射出成形用の金型
である。該金型で得られる型物は、楔形状(テーパー
状)の偏肉板で、成形品サイズは160mm×220m
m、厚みは厚肉部:2.5mm、薄肉部:0.8mmで
ある。ゲート位置は、厚肉部のサイドゲートで、ゲート
の大きさは、幅20mm、厚み2mmである。型キャビ
ティは、鋼材(S55C)製で入れ子構造である。型表
面は鏡面状で更に表面は硬質クロムメッキされている。
鋼材の熱伝導率は約0.2cal/cm・sec・℃で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The following main mold, heat insulating layer, metal plate and synthetic resin were used. Main mold: A mold for injection molding made of steel (S55C). The mold obtained by the mold is a wedge-shaped (tapered) uneven thickness plate having a size of 160 mm × 220 m.
m, the thickness is 2.5 mm for the thick part and 0.8 mm for the thin part. The gate position is the side gate of the thick portion, and the size of the gate is 20 mm in width and 2 mm in thickness. The mold cavity is made of steel (S55C) and has a nested structure. The mold surface is mirror-like and the surface is hard chrome plated.
The thermal conductivity of the steel material is about 0.2 cal / cm · sec · ° C.

【0039】断熱層:ポリイミド樹脂で被覆した。型キ
ャビティを構成する入れ子表面をプライマ−処理する。
その上に、直鎖型ポリイミド前駆体、ポリイミドワニス
「トレニース#3000」[東レ(株)製商品名]を塗
布し、160℃で加熱して部分イミド化し、次いで該塗
布、160℃加熱を繰り返して所定の偏肉厚みとした。
型キャビティ厚肉部の断熱層厚みを0.2mm、薄肉部
の断熱層厚みを0.7mmとし、次いで290℃に加熱
してポリイミド層を形成した。該ポリイミド層の軟化温
度は300℃、熱伝導率0.0005cal/cm・s
ec・℃、破断伸度60%であった。最後にポリイミド
層の断熱層の最表面に硬化型エポキシ樹脂系弾性接着剤
を塗布し、その上に、金属板を置き80℃で加熱し、接
着させ断熱層被覆金型を作った。金属板は、固定側金型
に厚さ0.3mmのニッケル電鋳板でプリズム形状品
(頂角=90°、ピッチ=50μm、高さ=25μm)を
用い、可動側金型には厚さ0.05mmの材質SUS3
04HTでエッチングにより削り込みした微細な凹形状
にパターン化(厚肉部側は粗で、薄肉部側は密に凹形
状、凹の深さ=40μm)を施したものを配置した。
Heat insulation layer: covered with a polyimide resin. The nesting surfaces that make up the mold cavity are primed.
A straight-chain polyimide precursor, polyimide varnish “Trenice # 3000” (trade name, manufactured by Toray Industries, Inc.) is applied thereon, heated at 160 ° C. to partially imidize, and the coating and heating at 160 ° C. are repeated. To a predetermined thickness.
The thickness of the heat insulating layer in the thick part of the mold cavity was set to 0.2 mm, and the thickness of the heat insulating layer in the thin part was set to 0.7 mm, and then heated to 290 ° C. to form a polyimide layer. The polyimide layer has a softening temperature of 300 ° C. and a thermal conductivity of 0.0005 cal / cm · s.
ec · ° C., elongation at break was 60%. Finally, a curable epoxy resin-based elastic adhesive was applied to the outermost surface of the heat insulating layer of the polyimide layer, and a metal plate was placed thereon and heated at 80 ° C. to bond to form a heat insulating layer coating mold. For the metal plate, use a 0.3 mm thick nickel electroformed plate prism-shaped product (vertical angle = 90 °, pitch = 50 μm, height = 25 μm) for the fixed mold, and a thickness for the movable mold. Material SUS3 of 0.05mm
A pattern formed into a fine concave shape cut by etching with 04HT (thick part side is coarse, thin part side is densely concave, concave depth = 40 μm) was arranged.

【0040】合成樹脂:メタクリル樹脂「デルペット8
0NH」[旭化成工業(株)製商品名]を用いて射出成
形した。
Synthetic resin: methacrylic resin "Delpet 8"
0NH "(trade name, manufactured by Asahi Kasei Kogyo Co., Ltd.).

【0041】[0041]

【実施例1】上記の方法で制作された断熱層被覆金型
を、名機(株)製ダイナメルタ射出成形機(M−150
AII)に取り付け、成形温度:240℃、金型温度設
定値:70℃成形サイクル:45秒、射出速度:50m
m/sec、保圧力:50kg/cm2の成形条件で射
出成形を実施し、成形サイクルタイムを変えること無く
良好な偏肉成形板が得られた。得られた導光板の微細な
凹形状の転写性及び輝度値を測定した。結果を表1に示
す。
Example 1 A heat-insulating layer-coated mold produced by the above-described method was applied to a Dynamelter injection molding machine (M-150, manufactured by Meiki Co., Ltd.).
AII), molding temperature: 240 ° C, mold temperature set value: 70 ° C, molding cycle: 45 seconds, injection speed: 50m
Injection molding was performed under the molding conditions of m / sec and holding pressure: 50 kg / cm 2, and a good uneven thickness molded plate was obtained without changing the molding cycle time. The transferability and luminance value of the fine concave shape of the obtained light guide plate were measured. Table 1 shows the results.

【0042】[0042]

【比較例1】固定側金型を鏡面状として、片面のみを微
細な凹形状にパターン化と成し従来から使用される導光
板を射出成形した。得られた導光板の光散乱部面側(凹
形状面)に反射フィルム、発光面側にプリズムシート
(頂角=90°、ピッチ=50μm、高さ=25μm)、
拡散フィルムをセットし、面状光源装置を製作した。輝
度及び光均斉度の比較を行った。結果を表1に示す。
COMPARATIVE EXAMPLE 1 A fixed-side mold was mirror-finished, and only one side was patterned into a fine concave shape, and a light guide plate conventionally used was injection-molded. A reflective film on the light-scattering portion side (concave surface) side of the obtained light guide plate, and a prism sheet (vertical angle = 90 °, pitch = 50 μm, height = 25 μm) on the light-emitting surface side;
The diffusion film was set, and a planar light source device was manufactured. The brightness and the light uniformity were compared. Table 1 shows the results.

【0043】[0043]

【比較例2】断熱層を有しない金型面微細加工を行った
偏肉金型を用いて、同様の成形条件で射出成形を行っ
た。成形品は薄肉部で未充填となり良好な成形品が得ら
れなかった。完全充填に比較して、15%未充填であっ
た。保圧力を80kg/cm2に上げ完全充填にして、
得られた導光板の微細な凹形状の転写性及び輝度値を測
定した。結果を表1に示す。
COMPARATIVE EXAMPLE 2 Injection molding was performed under the same molding conditions, using an uneven thickness mold that had been subjected to fine processing on the mold surface without a heat insulating layer. The molded product was not filled in the thin portion, and a good molded product was not obtained. 15% unfilled compared to fully filled. Increase the holding pressure to 80 kg / cm2 to complete filling,
The transferability and luminance value of the fine concave shape of the obtained light guide plate were measured. Table 1 shows the results.

【0044】以上の結果から明らかなように、断熱層を
有する金型面微細加工の偏肉金型を用いて光散乱部とプ
リズムレンズ部を一体成形した面状光源用透明導光板
は、金型温度を高くする事無く樹脂の充填性に優れ効率
的に成形できるほか、微細加工形状の転写性にも優れ光
均斉度及び輝度値の高いものである。そして、別途プリ
ズムシートを組み込む必要がなく高輝度の面状光源装置
が得られる。
As is apparent from the above results, the transparent light guide plate for a planar light source, in which the light scattering portion and the prism lens portion are integrally formed by using a mold having a heat-insulating layer and a fine-walled mold having a finely processed surface, is a metal mold. It has excellent resin filling properties and can be molded efficiently without increasing the mold temperature, and also has excellent light transferability of finely processed shapes and high light uniformity and high luminance value. Then, it is not necessary to separately incorporate a prism sheet, and a high-luminance planar light source device can be obtained.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【発明の効果】本発明の面状光源用導光板は、射出成形
法により微細なプリズム形状と微細な凹形状にパターン
化を施した一体成型品で、面状光源装置にセットする場
合、別途プリズムシートを組み込む必要がなく高輝度の
面状光源装置が得られる。又、微細加工の金属面層の下
を断熱層で被覆する事により金型温度を高くすることな
く、金属層表面の微細加工の転写性を高めることが出来
て、経済的に且つ極薄肉部を有する面状光源用偏肉導光
板が良好に成形が出来る。
The light guide plate for a planar light source of the present invention is an integrally molded product obtained by patterning a fine prism shape and a fine concave shape by an injection molding method. There is no need to incorporate a prism sheet, and a high-luminance planar light source device can be obtained. In addition, by coating the lower part of the metal surface layer of the fine processing with a heat insulating layer, the transferability of the fine processing on the surface of the metal layer can be improved without increasing the mold temperature. The uneven thickness light guide plate for a planar light source having the above can be molded favorably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の金型断面図を示す。FIG. 1 shows a sectional view of a mold according to the present invention.

【図2】従来の面光源装置の断面図を示す。FIG. 2 shows a cross-sectional view of a conventional surface light source device.

【符号の説明】 図1において 1、1’:金属から成る金型 2、2’:入り子駒型金型 3、3’:断熱層 4、:粗面化金属層 4’:多数の微細な収束レンズ形状金属層 図2において 1:透明導光板 2:光散乱部 3:反射フィルム 4:拡散フィルム 5:プリズムシート 6:1次光源 7:光入射面[Description of Signs] In FIG. 1, 1, 1 ′: metal mold 2, 2 ′: nested piece mold 3, 3 ′: heat insulating layer 4, roughened metal layer 4 ′: many fines In FIG. 2, 1: a transparent light guide plate 2: a light scattering section 3: a reflective film 4: a diffusion film 5: a prism sheet 6: a primary light source 7: a light incident surface

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B29C 45/37 B29C 45/37 B29K 101:12 B29L 11:00 Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location // B29C 45/37 B29C 45/37 B29K 101: 12 B29L 11:00

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 樹脂透明導光板の側端面部に1次光源を
配置する面状光源用導光板において、該透明導光板の一
方の平面を凹凸状の光散乱面と成し、他方の平面を光出
射面と成し且つ所定の方向に出射させる多数の収束レン
ズ単位が形成された両面微細加工を特徴とする面状光源
用導光板。
1. A planar light source light guide plate in which a primary light source is disposed on a side end surface of a resin transparent light guide plate, wherein one plane of the transparent light guide plate is formed as an uneven light scattering surface and the other plane is formed. A light guide plate for a planar light source characterized by a double-sided microfabrication in which a plurality of converging lens units for forming a light exit surface and emitting in a predetermined direction are formed.
【請求項2】 光散乱面が凹凸状に粗面化されたパター
ンで格子状に配置し、該光散乱部がほぼ長方形に形成さ
れ、光入射面から遠ざかるほど該長方形の光入射面に平
行な辺の長さが増し、又隣り合った光散乱部間の距離を
小さくすることを特徴とする請求項1記載の面状光源用
導光板。
2. A light-scattering surface is arranged in a lattice pattern with a roughened pattern, and the light-scattering portion is formed in a substantially rectangular shape. As the distance from the light-incident surface increases, the light-scattering portion becomes more parallel to the rectangular light-incident surface. 2. The light guide plate for a planar light source according to claim 1, wherein the length of each side is increased, and the distance between adjacent light scattering portions is reduced.
【請求項3】 収束レンズ単位の形状がマルチ線状プリ
ズムであることを特徴とする請求項1又は請求項2記載
の面状光源用導光板。
3. The light guide plate for a planar light source according to claim 1, wherein the shape of the converging lens unit is a multi-linear prism.
【請求項4】 面状光源用導光板の形状がくさび型の厚
肉部と薄肉部を有する偏肉形状であることを特徴とする
請求項1、2又は3記載の面状光源用編肉導光板。
4. The planar light source knitted meat according to claim 1, wherein the light guide plate for a planar light source has an uneven thickness having a wedge-shaped thick portion and a thin portion. Light guide plate.
【請求項5】 厚肉部と薄肉部を有する型キャビティを
持つ金型を用いて面状光源用導光板を成形する方法に於
いて、型キャビティを構成する型壁面の両面に断熱層を
被覆し、該断熱層の上の平面部に凹凸状の微細加工、他
方の平面部に多数の収束レンズ単位の微細加工を施した
金属層を密着した断熱層被覆金型を用い、型キャビティ
の厚肉部の最大厚みと薄肉部の最小厚みとの差をA、型
キャビティの最大厚肉部のにおける(型キャビティの厚
み+断熱層厚み)と型キャビティの最小薄肉部におれる
(型キャビティの厚み+断熱層厚み)との差をBとした
とき、A>0.5mm、A≧Bの関係を有する断熱層被
覆金型を用いることを特徴とする請求項4記載の面状光
源用偏肉導光板の成形方法。
5. A method for molding a light guide plate for a planar light source using a mold having a mold cavity having a thick portion and a thin portion, wherein a heat insulating layer is coated on both surfaces of a mold wall surface constituting the mold cavity. Then, using a heat-insulating-layer-coated mold in which a metal layer having been subjected to fine processing of irregularities on the flat part on the heat insulating layer and a fine processing of a number of converging lens units on the other flat part is closely attached, the thickness of the mold cavity is increased. The difference between the maximum thickness of the thick portion and the minimum thickness of the thin portion is A, (the thickness of the mold cavity + the thickness of the heat insulating layer) at the maximum thickness portion of the mold cavity, and the difference between the (thickness of the mold cavity) at the minimum thin portion of the mold cavity. 5. The bias for a planar light source according to claim 4, wherein when the difference between the thickness and the thickness of the heat insulating layer is B, a heat insulating layer coating mold having a relationship of A> 0.5 mm and A ≧ B is used. A method for forming a light guide plate.
【請求項6】 A=0.5〜10mm、0.7A≧Bで
あることをを特徴とする請求項5記載の面状光源用偏肉
導光板の成形方法。
6. The method according to claim 5, wherein A = 0.5 to 10 mm and 0.7A ≧ B.
【請求項7】 微細加工された金属層の厚みが、前記断
熱層厚みの1/3以下で、且つ0.01〜1mmである
ことをを特徴とする請求項5又は6記載の面状光源用偏
肉導光板の成形方法。
7. The planar light source according to claim 5, wherein the thickness of the finely processed metal layer is equal to or less than 1/3 of the thickness of the heat insulating layer and is 0.01 to 1 mm. For forming a light guide plate with uneven thickness.
JP8210997A 1996-08-09 1996-08-09 Light guide plate for planar light source and its molding method Withdrawn JPH1055712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8210997A JPH1055712A (en) 1996-08-09 1996-08-09 Light guide plate for planar light source and its molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8210997A JPH1055712A (en) 1996-08-09 1996-08-09 Light guide plate for planar light source and its molding method

Publications (1)

Publication Number Publication Date
JPH1055712A true JPH1055712A (en) 1998-02-24

Family

ID=16598625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8210997A Withdrawn JPH1055712A (en) 1996-08-09 1996-08-09 Light guide plate for planar light source and its molding method

Country Status (1)

Country Link
JP (1) JPH1055712A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243916A (en) * 2001-02-06 2002-08-28 Ctx Opto Electronics Corp Method for manufacturing panel type optical device
US7048428B2 (en) 2001-04-12 2006-05-23 Mitsubishi Engineering-Plastics Corp. Light guide plate with convex portions having low radius of curvature tips, or low surface roughness
JP2008168646A (en) * 2008-04-04 2008-07-24 Konica Minolta Opto Inc Molding process of optical element
JP2010173280A (en) * 2009-02-02 2010-08-12 Meiki Co Ltd Mold for molding very thin molding and method for molding very thin molding
JP2010214893A (en) * 2009-03-18 2010-09-30 Konica Minolta Opto Inc Molding metal mold for lens, method of manufacturing lens and lens
JP2013045587A (en) * 2011-08-23 2013-03-04 Panasonic Corp Light guide plate, metal mold, and processing method for metal mold
JPWO2011122174A1 (en) * 2010-03-30 2013-07-08 コニカミノルタ株式会社 Mold
WO2015087526A1 (en) 2013-12-10 2015-06-18 住化スタイロンポリカーボネート株式会社 Polycarbonate resin composition and optical molded article
KR20190015233A (en) 2015-06-09 2019-02-13 스미카 폴리카르보네이트 가부시키가이샤 Polycarbonate resin composition for optical parts and molded article containing the same
CN115246183A (en) * 2022-07-11 2022-10-28 伟时电子股份有限公司 Mold core for preparing transparent light guide body and preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243916A (en) * 2001-02-06 2002-08-28 Ctx Opto Electronics Corp Method for manufacturing panel type optical device
US7048428B2 (en) 2001-04-12 2006-05-23 Mitsubishi Engineering-Plastics Corp. Light guide plate with convex portions having low radius of curvature tips, or low surface roughness
US7377478B2 (en) 2001-04-12 2008-05-27 Mitsubishi Engineering-Plastics Corporation Light guide plate made of transparent resin, molding method thereof, insert block, mold assembly, and area light apparatus
JP4650514B2 (en) * 2008-04-04 2011-03-16 コニカミノルタオプト株式会社 Optical element molding method
JP2008168646A (en) * 2008-04-04 2008-07-24 Konica Minolta Opto Inc Molding process of optical element
JP2010173280A (en) * 2009-02-02 2010-08-12 Meiki Co Ltd Mold for molding very thin molding and method for molding very thin molding
JP2010214893A (en) * 2009-03-18 2010-09-30 Konica Minolta Opto Inc Molding metal mold for lens, method of manufacturing lens and lens
JPWO2011122174A1 (en) * 2010-03-30 2013-07-08 コニカミノルタ株式会社 Mold
JP2013045587A (en) * 2011-08-23 2013-03-04 Panasonic Corp Light guide plate, metal mold, and processing method for metal mold
WO2015087526A1 (en) 2013-12-10 2015-06-18 住化スタイロンポリカーボネート株式会社 Polycarbonate resin composition and optical molded article
KR20160096631A (en) 2013-12-10 2016-08-16 수미카 스타이론 폴리카보네이트 주식회사 Polycarbonate resin composition and optical molded article
KR20160140968A (en) 2013-12-10 2016-12-07 수미카 스타이론 폴리카보네이트 주식회사 Polycarbonate resin composition and optical molded article
US9617418B2 (en) 2013-12-10 2017-04-11 Sumika Styron Polycarbonate Limited Polycarbonate resin composition and optical molded article
KR20190015233A (en) 2015-06-09 2019-02-13 스미카 폴리카르보네이트 가부시키가이샤 Polycarbonate resin composition for optical parts and molded article containing the same
CN115246183A (en) * 2022-07-11 2022-10-28 伟时电子股份有限公司 Mold core for preparing transparent light guide body and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101056980B1 (en) Light guide plate and planar light source device made of transparent resin, and manufacturing method of light guide plate
US6628460B1 (en) Lens sheet and method for producing the same
TW521159B (en) Light-diffusive film and process for producing the same
US20110317417A1 (en) Light guides
US20020172030A1 (en) Planar light source device and liquid crystal display apparatus
JPH1055712A (en) Light guide plate for planar light source and its molding method
JP2003014938A (en) Light transmission plate composed of transparent resin, method for molding the same, bushing, metallic mold assembling body and surface light source device
TW200538272A (en) Method for producing light transmitting plate
KR20110053496A (en) Light guiding plate, back light device and method for manufacturing light guiding plate
CN1509858A (en) Photic board manufacturing method
US20110188830A1 (en) Light conductive plate and manufacturing method thereof
JP2005215497A (en) Light diffusion plate and its manufacturing method
CN100559067C (en) The LGP of transparent resin system and surface light source apparatus and manufacturing method of light conducting board
KR20070010005A (en) Optical member, its manufacturing method, and display
US20110068249A1 (en) Mold and Method for Manufacturing the Same
JP4743373B2 (en) Manufacturing method of resin sheet
KR100857723B1 (en) Method for manufacturing of micro lens, method for manufacturing core mold of light guide plate and method for manufacturing light guide plate by core mold
JP3884105B2 (en) Injection molding method for uneven light guide plate for planar light source.
JP4670680B2 (en) Light guide plate made of transparent resin, planar light source device, and method for manufacturing light guide plate
JPH09155875A (en) Mold for molding resin light guide plate and molding method therefor
JP2008221472A (en) Mold component
JPH09141757A (en) Synthetic resin molded product having high transmissivity and high diffusibility and its molding method
JP2002162508A (en) Light diffusing film
JPH11211903A (en) Renticular lens
JP3768169B2 (en) Mold assembly and injection molding method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104