WO2013153940A1 - Method for producing optical component - Google Patents

Method for producing optical component Download PDF

Info

Publication number
WO2013153940A1
WO2013153940A1 PCT/JP2013/058494 JP2013058494W WO2013153940A1 WO 2013153940 A1 WO2013153940 A1 WO 2013153940A1 JP 2013058494 W JP2013058494 W JP 2013058494W WO 2013153940 A1 WO2013153940 A1 WO 2013153940A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
flange
mold
lens
flange portion
Prior art date
Application number
PCT/JP2013/058494
Other languages
French (fr)
Japanese (ja)
Inventor
智信 徳永
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014510102A priority Critical patent/JP5835473B2/en
Publication of WO2013153940A1 publication Critical patent/WO2013153940A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • B29C45/2708Gates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • B29C2045/0027Gate or gate mark locations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • B29C45/0055Shaping
    • B29C2045/0058Shaping removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the present invention relates to a method of manufacturing an optical component, for example, a method of manufacturing an optical component such as a thin plastic lens (for example, a lens for a mobile phone) by injection molding.
  • a method of manufacturing an optical component such as a thin plastic lens (for example, a lens for a mobile phone) by injection molding.
  • a general plastic lens is composed of a lens portion having an optical function of a lens and a flange-like flange portion provided on the outer periphery thereof.
  • the flange portion is used as an installation portion when the plastic lens is attached to the lens holder.
  • the resin flows from the gate to the flange forming space in the mold and is filled up to the lens forming space.
  • the space for forming the flange portion in the mold is also made thinner, and accordingly the gate is also made thinner.
  • problems such as a decrease in resin filling efficiency and a decrease in optical accuracy occur.
  • Patent Document 1 proposes a technique for preventing the occurrence of a weld line generated in the lens portion
  • Patent Document 2 proposes a technique for eliminating the decrease in the resin filling efficiency.
  • Patent Document 3 proposes a technique for preventing a gate mark from being generated on the surface of a resin molded body immediately after taking out a mold as a gate cutting method in the overlap gate system.
  • JP 2006-272870 A Japanese Patent Laid-Open No. 11-14804 JP-A-11-216744
  • a gate is arranged on the side surface of the flange portion, and the gate is further extended to the surface on one side of the flange to form the gate extending to the lens portion. appear. For this reason, the shape accuracy of the lens surface deteriorates or birefringence occurs near the gate, and the optical accuracy is lowered. Also, since the gate protrusion on the flange surface (extended portion of the gate) is not removed, the protrusion is obstructed when the flange surface on which the protrusion is formed is used as an assembly reference surface (for example, a mounting surface). It becomes a thing. For this reason, it is necessary to limit the design of the mating parts so that the lens does not tilt during assembly, and when the antireflection film is formed, the lens does not tilt when placed on the jig.
  • the optical surface moves away from the jig opening, so that vignetting may occur and the film may not be formed in a desired range.
  • the protrusions are provided on both surfaces, the protrusion and the gate are provided on the fixed mold, so that the protrusion and the gate are difficult to peel from the fixed mold, and the lens may be tilted and taken out. is there.
  • Patent Document 3 since the molten resin is gate-cut in the mold, stress distortion occurs near the gate in the plastic lens, and the shape accuracy of the lens surface deteriorates near the gate, or birefringence occurs. Will be.
  • the present invention has been made in view of such problems, and the object thereof is to produce a plastic optical component by injection molding, and the resin filling efficiency is high even when the flange portion is thin,
  • An object of the present invention is to provide a method of manufacturing an optical component having a high-accuracy assembly reference surface (for example, a fitting surface and a mounting surface) while being free from stress distortion and poor appearance.
  • a method of manufacturing an optical component according to a first aspect of the present invention is a plastic optical component having a flange portion on the outer periphery of an optical function portion by injection molding using a fixed side mold and a movable side mold.
  • a manufacturing method for manufacturing wherein a space for forming a gate for filling a resin and a space for forming the flange portion are provided only in the movable mold, and in the space for forming the flange portion, The gate is arranged in a portion corresponding to a range extending from the side surface of the flange portion in the thickness direction of the flange portion to reaching a part of the flange surface.
  • a method of manufacturing an optical component according to the first aspect wherein the gate is made of a resin filled in the gate with respect to the resin molded body formed of the fixed side mold and the movable side mold. The part is cut and removed after the resin is solidified outside the mold.
  • a method for manufacturing an optical component according to the second aspect comprising: removing the gate portion from a side surface of the flange portion; and removing the gate portion from the flange surface. Cutting and removing are performed.
  • a method for manufacturing an optical component according to the second aspect wherein the flange portion provided with the gate portion is integrally removed with the gate portion in cutting and removing the gate portion.
  • a method for manufacturing an optical component according to a fifth invention is characterized in that, in the first invention, the maximum thickness of the flange portion is 2 mm or less.
  • a method for manufacturing an optical component according to a sixth invention is characterized in that, in the fifth invention, the flange portion has a maximum thickness of 0.8 mm or less.
  • a seventh aspect of the present invention there is provided the method for manufacturing an optical component according to the second or third aspect, wherein the gate portion is cut and removed so that a concave gate cut mark is formed on the flange surface.
  • the method for manufacturing an optical component according to an eighth invention is characterized in that, in the first invention, the flange surface has a plurality of height surfaces.
  • the gate is formed from the side surface of the flange portion to the flange surface on the movable side. Can be bigger. As a result, the resin filling efficiency is improved and the resin can be filled before the solidification of the resin progresses, and the rigidity of the gate is increased, so that the lens itself and the lens posture are prevented from being deformed at the time of mold release. It is also possible.
  • the gate portion can be held by the movable mold, it is possible to prevent the resin molded body from being restrained to the fixed side and achieve good mold release. Thereby, there can be obtained an optical component which is free from stress distortion and has no appearance defect due to resin flow failure. Therefore, according to the manufacturing method of the present invention, even when the flange portion is thin, the resin filling efficiency is high, and there is no release deformation, stress distortion and appearance defect, and the quality is high, but a high-precision assembly reference surface (for example, fitting) An optical component having a surface and a mounting surface) can be manufactured.
  • the gate part made of resin filled in the gate is cut and removed from the resin molded body formed by the fixed side mold and the movable side mold. Since it is performed after the resin is solidified outside, it is possible to prevent stress distortion from being applied to the optical component.
  • the gate portion is removed from the side surface and the flange surface of the flange portion by cutting and removing the gate portion. It is possible to prevent the projection from becoming larger than the outer diameter of the flange. For this reason, it becomes easy to make the side surface of a flange part into a fitting surface, or to make a flange surface into a mounting surface, and it can avoid restrict
  • the flange portion provided with the gate portion is removed integrally with the gate portion. Or it can prevent that a gate cut trace becomes convex rather than the mounting surface of a flange part, or a flange outer diameter. Therefore, it is easy to make the side surface of the flange portion a fitting surface or the flange surface to be a mounting surface, and it is possible to prevent the counterpart part from being restricted.
  • the flange thickness of the optical component is suppressed as in the fifth invention, it is possible to prevent the gate thickness from being insufficient and insufficiently filled like the side gate even if the side surface of the flange portion is thin. If the flange thickness of the optical component is suppressed as in the sixth aspect of the invention, the above effect is increased, and it is possible to prevent the gate portion from being bent and taken out when released from the mold.
  • the seventh aspect of the invention it is possible to prevent the gate portion or the gate cut trace from becoming more convex than the mounting surface of the flange portion or the flange outer diameter. For this reason, it becomes easy to make the side surface of a flange part into a fitting surface, or to make a flange surface into a mounting surface, and it can avoid restrict
  • Sectional drawing which shows the basic composition of the die structure of an ejector pin protrusion type for reference.
  • the top view which shows the specific example of the circular lens by which the gate cut was carried out.
  • the external view which shows the basic composition of the resin molding for D cut lenses for reference.
  • the external view which shows the resin molding for circular lenses by which the gate part was extended on both surfaces of the flange part for a comparison.
  • Sectional drawing which shows the metal mold
  • FIG. 7 shows a resin molded body 11A (mirror core protruding type) for a circular lens
  • FIG. 8 shows a mold structure used for injection molding of the resin molded body 11A.
  • 7A is a top view of the resin molded body 11A
  • FIG. 7B is a side view of the resin molded body 11A
  • FIG. 7C is a bottom view of the resin molded body 11A.
  • the resin molded body 11 ⁇ / b> A constitutes a plastic lens 1 ⁇ / b> A with the lens portion 2 and the bowl-shaped flange portion 3 provided on the outer periphery thereof.
  • the lens portion 2 is a portion having an optical function of the lens
  • the flange portion 3 is an installation portion when the plastic lens 1A is attached to a lens holder 6 (FIGS. 12 and 14 described later).
  • a gate portion 4 and a runner portion 5 are integrally formed by a mirror core protruding type mold structure shown in FIG.
  • the mold structure shown in FIG. 8 includes a fixed mold M1, a movable mold M2, a fixed mirror core 17a, a movable mirror core 17b, an ejector pin 18, and the like.
  • the lens portion forming space 12, the flange portion forming space 13, the gate 14 and the runner 15 are constituted by M2 or the like.
  • the space of the gate 14 for filling the resin and the flange portion forming space 13 are provided only in the movable mold M2.
  • the fixed side mold M1 and the movable side mold M2 are provided with mirror surface cores 17a and 17b for forming lens surfaces, respectively.
  • the mirror surface core 17a provided on the fixed mold M1 does not move while being fixed to the mold M1
  • the mirror core 17b provided on the movable mold M2 has a flange. It can advance and retreat in the direction perpendicular to the surface 3a.
  • the movable mold M2 is provided with an ejector pin 18 so as to be movable forward and backward with respect to the runner 15.
  • the resin flows from the runner 15 through the gate 14 to the flange portion forming space 13 in the molds M1 and M2, and is filled up to the lens portion forming space 12.
  • the mold release of the resin molded body 11A is performed as follows after the resin is solidified. First, the movable mold M2 moves parallel to the direction away from the fixed mold M1 (downward in FIG. 8), and the resin molded body 11A moves together with the movable mold M2 in a state of being in close contact with the movable mold M2. To do. Thereby, the resin molded body 11A is released from the fixed mold M1.
  • the ejector pin 18 is projected toward the runner 15 side, and at the same time, the mirror core 17b moves toward the plastic lens 1A, and the resin molded body 11A is released from the movable mold M2.
  • the ejector pin 18 and the mirror core 17b are separated from the resin molded body 11A by returning to the original predetermined position in the movable mold M2.
  • the ejector pin mark 18a (FIG. 7C) remains in the runner portion 5 due to the protrusion of the ejector pin 18.
  • FIG. 9 shows a resin molded body 11A (ejector pin protruding type) for a circular lens
  • FIG. 10 shows a mold structure used for injection molding of the resin molded body 11A.
  • 9A is a top view of the resin molded body 11A
  • FIG. 9B is a side view of the resin molded body 11A
  • FIG. 9C is a bottom view of the resin molded body 11A.
  • the resin molded body 11 ⁇ / b> A constitutes a plastic lens 1 ⁇ / b> A with the lens portion 2 and the bowl-shaped flange portion 3 provided on the outer periphery thereof.
  • the lens portion 2 is a portion having an optical function of the lens
  • the flange portion 3 is an installation portion when the plastic lens 1A is attached to a lens holder 6 (FIGS. 12 and 14 described later).
  • a gate portion 4 and a runner portion 5 are integrally formed on the plastic lens 1A by an ejector pin protruding type mold structure shown in FIG.
  • the mold structure shown in FIG. 10 is composed of a fixed mold M1, a movable mold M2, a fixed mirror core 17a, a movable mirror core 17b, an ejector pin 18, and the like.
  • the lens portion forming space 12, the flange portion forming space 13, the gate 14 and the runner 15 are constituted by M2 or the like.
  • the space of the gate 14 for filling the resin and the flange portion forming space 13 are provided only in the movable mold M2.
  • the fixed mold M1 and the movable mold M2 are provided with mirror surface cores 17a and 17b for forming lens surfaces, respectively, so that they do not move while being fixed to the molds M1 and M2. It has become.
  • the movable mold M2 is provided with an ejector pin 18 so as to be movable back and forth with respect to the flange forming space 13 and the runner 15.
  • the resin flows from the runner 15 through the gate 14 to the flange portion forming space 13 in the molds M1 and M2, and is filled up to the lens portion forming space 12.
  • the mold release of the resin molded body 11A is performed as follows after the resin is solidified. First, the movable mold M2 moves parallel to the direction away from the fixed mold M1 (downward in FIG. 10), and the resin molded body 11A moves together with the movable mold M2 in a state of being in close contact with the movable mold M2. To do. Thereby, the resin molded body 11A is released from the fixed mold M1.
  • the ejector pin 18 is projected toward the flange portion forming space 13 and the runner 15 side, and the resin molded body 11A is released from the movable mold M2.
  • the ejector pin 18 moves away from the resin molded body 11A by returning to the original predetermined position in the movable mold M2.
  • the ejector pin mark 18a (FIG. 9C) remains on the flange portion 3 and the runner portion 5 due to the protrusion of the ejector pin 18.
  • FIGS. 11A to 11C show examples of gate cutting of a circular lens.
  • a plastic lens 1 ⁇ / b> A shown in FIG. 11A is a circular lens that is gate-cut so as to leave a part of the gate portion 4.
  • a plastic lens 1 ⁇ / b> A shown in FIG. 11B is a circular lens that is gate-cut on an arc along the outer circle of the flange portion 3.
  • a plastic lens 1A shown in FIG. 11C is a circular lens in which a part of the flange portion 3 is linearly gate-cut (thinned).
  • FIG. 12 shows an example of the holder holding state of the plastic lens 1A shown in FIG. 12A is a plan view showing a state where the plastic lens 1A is attached to the lens holder 6, and FIG. 12B is a cross-sectional view showing a state where the plastic lens 1A is attached to the lens holder 6.
  • FIG. 11A When cut so as to leave a part of the gate portion 4 (FIG. 11A), when the plastic lens 1A is set in the lens holder 6, the gate cut mark 4c remaining on the side surface 3b of the flange portion 3 is shown in FIG. It becomes easy to interfere with the lens holder 6 as shown in FIG. That is, in the circular lens, the protruding gate cut trace 4c becomes an obstacle to the assembly with the outer circle of the flange portion 3 as a reference.
  • FIG. 13 shows a basic configuration of a resin molded body 11B for a D-cut lens for reference.
  • FIG. 13A is a top view of the resin molded body 11B
  • FIG. 13B is a side view of the resin molded body 11B.
  • the plastic lens 1B is a D-cut lens, and the characteristics of the mirror core protruding type and the ejector pin protruding type are the same as in the case of the circular lens.
  • FIG. 14 shows an example of the holder holding state of the plastic lens 1B.
  • a plastic lens 1B shown in FIG. 14A is a D-cut lens that is gate-cut so that a part of the gate portion 4 remains.
  • 14B is a plan view showing a state in which the plastic lens 1B is attached to the lens holder 6
  • FIG. 14C is a cross-sectional view showing a state in which the plastic lens 1B is attached to the lens holder 6. is there.
  • the gate cut trace 4c can be left in the virtual circle of the outer shape of the flange portion 3, so the gate cut trace 4c does not interfere with the lens holder 6 and the assembly is facilitated. .
  • the flange portion forming space 13 in the movable mold M2 is also thinned to make the flange portion 3 thin (FIGS. 7 to 7). Accordingly, the gate 14 is also made thinner. As a result, problems (FIG. 15) relating to the filling property, mold release property, and workability described below occur.
  • FIG. 15B shows an ejector pin protruding type structure, but the same phenomenon occurs even in a mirror core protruding type structure.
  • the manufacturing method according to the first and second embodiments described below has a characteristic gate structure. Adopted.
  • FIG. 1 shows a resin molded body 10A for a plastic lens (circular lens) 1A according to the first embodiment
  • FIG. 2 shows a plastic lens (D-cut lens) 1B according to the second embodiment and its resin molded body 10B.
  • FIG. 1A is a side view of the resin molded body 10A
  • FIG. 1B is a bottom view of the resin molded body 10A
  • 2A is a side view of the resin molded body 10B
  • FIG. 2B is a bottom view of the resin molded body 10B
  • FIG. 2C is a gate with a part of the gate portion 4 left. It is a top view of the cut plastic lens 1B.
  • FIG. 3 shows a mold structure used for injection molding of the resin molded bodies 10A and 10B in the first and second embodiments.
  • FIG. 3A shows a mirror core protruding mold structure used for injection molding of the resin moldings 10A and 10B
  • FIG. 3B shows an ejector used for injection molding of the resin moldings 10A and 10B.
  • a pin protrusion type mold structure is shown.
  • the resin molded bodies 10A and 10B constitute plastic lenses 1A and 1B with the lens portion 2 and the flange-like flange portion 3 provided on the outer periphery thereof.
  • the lens part 2 is a part having an optical function of the lens
  • the flange part 3 is an installation part when the plastic lenses 1A and 1B are attached to the lens holder 6 (FIGS. 12 and 14).
  • a gate portion 4 and a runner portion 5 are integrally formed on the plastic lenses 1A and 1B by a mold structure of a mirror core protruding type (FIG. 3A) or an ejector pin protruding type (FIG. 3B). ing.
  • the mold structure shown in FIG. 3 is composed of a fixed mold M1, a movable mold M2, a fixed mirror core 17a, a movable mirror core 17b, an ejector pin 18, and the like.
  • the lens portion forming space 12, the flange portion forming space 13, the gate 14 and the runner 15 are constituted by M2 or the like.
  • the space of the gate 14 for filling the resin and the flange portion forming space 13 are provided only in the movable mold M2.
  • the gate 14 is disposed in a portion corresponding to a range extending from the side surface 3 b of the flange portion 3 in the thickness direction of the flange portion 3 to reach a part of the flange surface 3 a.
  • the fixed side mold M1 and the movable side mold M2 are provided with mirror surface cores 17a and 17b for forming lens surfaces, respectively.
  • the mirror core 17a provided on the fixed mold M1 is fixed so as not to move while being fixed to the mold M1.
  • the mirror core 17b provided on the side mold M2 can be advanced and retracted in the direction perpendicular to the flange surface 3a.
  • the movable mold M2 is provided with an ejector pin 18 so as to be movable forward and backward with respect to the runner 15.
  • the mirror surface cores 17a and 17b for forming the lens surfaces respectively provided in the fixed mold M1 and the movable mold M2 are molds. It does not move while fixed to M1 and M2. Further, the movable mold M2 is provided with an ejector pin 18 so as to be movable back and forth with respect to the flange forming space 13 and the runner 15.
  • the resin 9 flows from the runner 15 through the gate 14 to the flange forming space 13 in the molds M1 and M2, and is filled up to the lens forming space 12.
  • the mold release of the resin molded bodies 10A and 10B is performed as follows after the resin is solidified. First, the movable mold M2 is translated in the direction away from the fixed mold M1 (downward in FIG. 3), and the resin molded bodies 10A and 10B are in close contact with the movable mold M2. Move with. Thus, the resin molded bodies 10A and 10B are released from the fixed mold M1.
  • the ejector pin 18 is protruded toward the runner 15 side, and at the same time, the mirror core 17b moves toward the plastic lens 1A side. 10A and 10B are released from the movable mold M2. The ejector pin 18 and the mirror core 17b are separated from the resin moldings 10A and 10B by returning to the original predetermined position in the movable mold M2. As described above, the ejector pin mark 18a (FIG. 7C) remains in the runner portion 5 due to the protrusion of the ejector pin 18.
  • the ejector pins 18 are projected toward the flange portion forming space 13 and the runner 15 side, and the resin molded bodies 10A and 10B are moved from the movable mold M2. Mold is released. The ejector pin 18 moves away from the resin moldings 10A and 10B by returning to the original predetermined position in the movable mold M2. As described above, the ejector pin marks 18 a (FIG. 9C) remain on the flange portion 3 and the runner portion 5 due to the protrusion of the ejector pin 18.
  • the plastic lenses 1A and 1B having the flange portion 3 on the outer periphery of the lens portion 2 are manufactured by injection molding using the fixed side mold M1 and the movable side mold M2.
  • the flange portion 3 in the flange portion forming space 13, the flange portion 3 extends from the side surface 3 b in the thickness direction of the flange portion 3 to reach a part of the flange surface 3 a.
  • a gate 14 is disposed in a portion corresponding to the range.
  • the gate 14 is formed from the side surface 3b of the flange portion 3 to the flange surface 3a on the movable side in this way, the gate is provided as compared with the case where the gate 14 is provided only on the side surface 3b of the flange portion 3 (FIGS. 8, 10, etc.).
  • the cross-sectional area can be made relatively large. As a result, the resin filling efficiency is improved and the resin can be filled before the solidification of the resin progresses, and the rigidity of the gate is increased, so that the lens itself and the lens posture are prevented from being deformed at the time of mold release. It is also possible.
  • the gate part 4 can be held by the movable mold M2, it is possible to prevent the resin moldings 10A and 10B from being restrained to the fixed side and achieve good mold release. Thereby, there can be obtained an optical component which is free from stress distortion and has no appearance defect due to resin flow failure. Therefore, according to the manufacturing method of each embodiment, even if the flange portion 3 is thin, the resin filling efficiency is high, and there is no mold release deformation, stress strain, and appearance defect, and the quality is high, but the assembly reference surface with high accuracy ( For example, plastic lenses 1A and 1B having a fitting surface and a mounting surface can be manufactured. Although the plastic lenses 1A and 1B have two transmission surfaces in the lens portion 2, since there is no stress distortion as described above, a lens function with little birefringence and good imaging performance can be obtained.
  • the space of the gate 14 and the flange portion forming space 13 are provided only in the movable mold M2, and the side surface 3b of the flange portion 3 to the flange surface 3a.
  • the gate 14 is extended to the movable side. If the gates 14 are extended on both sides of the flange portion 3, the releasability may be lowered as described below.
  • FIG. 16 shows a resin molded body 11C for a circular lens in which the gate part 4 is extended on both surfaces of the flange part 3 for comparison.
  • FIG. 17 shows a mold structure in which the gates 14 are extended on both sides of the flange forming space 13 for comparison.
  • FIG. 17A shows a mold structure in a resin-filled state
  • FIG. 17B shows a mold structure in a state where the movable mold M2 is moved downward from the fixed mold M1.
  • the gate portion 4 When the gate portion 4 is also expanded to the flange surface 3a on the fixed side of the flange portion 3, as can be seen from FIG. 17 (B), the gate portion 4 (dotted line circled portion) is difficult to peel from the fixed side mold M1. As a result, the resin molded body 11C is partly removed from the movable mold M2 in an attempt to remain on the fixed side, and the resin molded body 11C is inclined and partially deformed, or the entire surface is inclined and the transfer surface becomes the mold. If pressed, the transfer accuracy of the movable side surface may be lowered.
  • the gate 14 space and the flange portion forming space 13 are provided only in the movable mold M2, and the gate extends from the side surface 3b of the flange portion 3 to the movable flange surface 3a. 14 is formed, the above problem does not occur.
  • the maximum thickness of the flange portion 3 is preferably 2 mm or less.
  • the maximum thickness of the flange portion 3 is preferably 0.8 mm or less.
  • the plastic lenses 1A and 1B that can be mounted on an optical device can be obtained.
  • the plastic moldings 10A and 10B formed by the fixed side mold M1 and the movable side mold M2 are cut and removed from the gate portion 4 after the resin is solidified outside the molds M1 and M2, so that a plastic is obtained. It is possible not to give stress distortion to the lenses 1A and 1B.
  • FIG. 4 shows a specific example 1 of the gate cut in the first embodiment.
  • the side view of FIG. 4 (A) and the bottom view of FIG. 4 (B) show the state where the side surface 3b and the flange surface 3a of the flange portion 3 are end milled, and the side view of FIG. 4 (C).
  • the bottom view of FIG. 4D shows the plastic lens 1A after end milling.
  • the gate portion 4 is cut and removed in the step of removing the gate portion 4 from the side surface 3b of the flange portion 3 and the step of removing the gate portion 4 from the flange surface 4a.
  • a concave gate cut mark 4a is formed on the flange surface 3a as shown in FIGS. Since the gate cut mark 4a has a concave shape, it does not interfere with the assembly reference surface or the attachment reference surface. Thus, since the gate portion 4 is removed from the side surface 3b and the flange surface 3a of the flange portion 3 by cutting and removing the gate portion 4, the gate portion 4 or the gate cut mark 4a is placed on the mounting surface ( For example, it is possible to prevent the projection surface from becoming more convex than the outer diameter of the flange or the installation surface with the assembly partner, the mounting surface when the antireflection film is formed, and the like.
  • the side surface 3b of the flange part 3 as a fitting surface (assembly reference surface, etc.) or the flange surface 3a as a mounting surface (assembly reference surface, film formation reference surface, etc.). It is possible to prevent the design from being restricted. Moreover, since the rigidity of the gate part 4 is high, it is possible to prevent the gate part 4 from being broken when the gate is cut, and cracking of the flange part 3 or loss of the flange part 3 can be prevented.
  • the plastic lens 1B according to the second embodiment also has a concave gate cut mark 4a formed on the flange surface 3a by processing the flange surface 3a using the end mill 16, as shown in FIG. It is formed. For this reason, the gate cut trace 4a does not interfere with the assembly reference surface or the attachment reference surface.
  • the side surface 3b of the flange portion 3 has a D shape that is gate-cut so as to leave a part of the gate portion 4, so that the outer shape of the flange portion 3 is similar to the plastic lens 1B of FIG.
  • a gate cut trace 4c can be left in the virtual circle. Further, even if the cut burr 4b occurs when the gate is cut, the cut burr 4b can be left in the virtual circle.
  • FIG. 5 shows a specific example 2 of the gate cut in the first embodiment.
  • the side view of FIG. 5 (A) and the bottom view of FIG. 5 (B) show a state where the flange portion 3 is cut and removed, and the side view of FIG. 5 (C) and FIG. 5 (D).
  • the bottom view shows the plastic lens 1A after cutting and removal.
  • the gate portion 4 is cut and removed by the gate cut line 4L, whereby the portion of the flange portion 3 where the gate portion 4 is provided is removed integrally with the gate portion 4.
  • the gate portion 4 is cut and removed, the flange portion where the gate portion 4 is provided is removed integrally with the gate portion 4, so that the gate portion or the gate cut trace is flanged while particularly simplifying the gate cut processing. It can prevent becoming convex rather than the mounting surface of a part, or a flange outer diameter.
  • the side surface 3b of the flange portion 3 can be easily used as a fitting surface (assembly reference surface, etc.) or the flange surface 3a can be used as a mounting surface (assembly reference surface, film formation reference surface, etc.). It is possible not to limit the design.
  • FIG. 6 shows two specific examples of the flange surface 3a having different shapes as the D-shaped plastic lens 1B according to the second embodiment (FIG. 2).
  • 6A shows a D-cut lens in which the flange surface 3a is a single surface (same as FIG. 2C), and
  • FIG. 6B shows the height of the stepped portion 3c provided on the flange surface 3a.
  • 2 shows a D-cut lens having a plurality of different surfaces.
  • FIG. 6C shows a cross-sectional structure of FIG.
  • the flange surface 3a may have a plurality of heights in addition to a single surface to improve assembly and manufacturability. If the flange surface 3a is constituted by a plurality of height surfaces in this way, it is possible to prevent the minute cut burr 4b generated by the gate cut from being exposed to the mounting surface and causing a slight inclination during assembly. Moreover, in order to make the flange part 3 thin, it is preferable that the level

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

The present invention is a method of production comprising manufacturing a plastic optical component having a flange section on the outer periphery of an optical function section by injection molding using a stationary mold and a movable mold. A space for a gate for packing with a resin and a space for forming the flange section are both provided solely to the movable mold. Within the space for forming the flange section, the gate is arranged at a portion corresponding to a range that extends from a side surface of the flange section in the thickness direction of the flange section and reaches a part of a flange surface.

Description

光学部品の製造方法Manufacturing method of optical components
 本発明は光学部品の製造方法に関するものであり、例えば、薄肉のプラスチックレンズ(例えば携帯電話用レンズ)等の光学部品を射出成形により製造する方法に関するものである。 The present invention relates to a method of manufacturing an optical component, for example, a method of manufacturing an optical component such as a thin plastic lens (for example, a lens for a mobile phone) by injection molding.
 一般的なプラスチックレンズは、レンズの光学的機能を有するレンズ部と、その外周に設けられた鍔状のフランジ部と、で構成されている。フランジ部は、プラスチックレンズをレンズホルダーに取り付ける際の設置部分として利用される。このようなプラスチックレンズの射出成形時には、樹脂が金型内でゲートからフランジ部形成空間へと流れ、レンズ部形成空間まで充填されることになる。このため、プラスチックレンズの薄型化を図ろうとすると、フランジ部を薄くするために金型内のフランジ部形成空間も薄くなり、それに伴ってゲートも薄くなってしまう。その結果、樹脂充填効率の低下,光学的精度の低下等の問題が生じることになる。 A general plastic lens is composed of a lens portion having an optical function of a lens and a flange-like flange portion provided on the outer periphery thereof. The flange portion is used as an installation portion when the plastic lens is attached to the lens holder. At the time of injection molding of such a plastic lens, the resin flows from the gate to the flange forming space in the mold and is filled up to the lens forming space. For this reason, in order to reduce the thickness of the plastic lens, in order to make the flange portion thinner, the space for forming the flange portion in the mold is also made thinner, and accordingly the gate is also made thinner. As a result, problems such as a decrease in resin filling efficiency and a decrease in optical accuracy occur.
 上記のようにフランジ部を有するプラスチック光学部品に特有な製造時の問題点を解消するために、従来より様々な製造技術が提案されている。例えば、特許文献1にはレンズ部に生じるウェルドラインの発生を防止するための技術が提案されており、特許文献2には前記樹脂充填効率の低下等を解消するための技術が提案されている。また、特許文献3には、オーバーラップゲート方式におけるゲートカット方法として、金型取り出し直後の樹脂成形体の表面にゲート部痕が生じないようにするための技術が提案されている。 As described above, various manufacturing techniques have been proposed in order to solve the manufacturing problems peculiar to the plastic optical component having the flange portion. For example, Patent Document 1 proposes a technique for preventing the occurrence of a weld line generated in the lens portion, and Patent Document 2 proposes a technique for eliminating the decrease in the resin filling efficiency. . Patent Document 3 proposes a technique for preventing a gate mark from being generated on the surface of a resin molded body immediately after taking out a mold as a gate cutting method in the overlap gate system.
特開2006-272870号公報JP 2006-272870 A 特開平11-14804号公報Japanese Patent Laid-Open No. 11-14804 特開平11-216744号公報JP-A-11-216744
 特許文献1に記載の技術では、フランジ部の側面にゲートを配し、さらにフランジ片側表面にゲートを拡張し、レンズ部にまでわたってゲートを形成しているので、レンズ部に直接応力歪が発生する。このため、ゲート付近ではレンズ表面の形状精度が悪化したり複屈折が生じたりして、光学的精度が低下することになる。また、フランジ面のゲート突起部(ゲートの拡張部分)の除去を行わないので、突起部が形成されている側のフランジ面を組立基準面(例えば載置面)とする場合に突起部が障害物となる。このため、レンズが組立時に傾かないように、また、反射防止膜を成膜する場合には治具への設置においてレンズが傾かないように、相手部品の設計に制限を与える必要がある。 In the technique described in Patent Document 1, a gate is arranged on the side surface of the flange portion, and the gate is further extended to the surface on one side of the flange to form the gate extending to the lens portion. appear. For this reason, the shape accuracy of the lens surface deteriorates or birefringence occurs near the gate, and the optical accuracy is lowered. Also, since the gate protrusion on the flange surface (extended portion of the gate) is not removed, the protrusion is obstructed when the flange surface on which the protrusion is formed is used as an assembly reference surface (for example, a mounting surface). It becomes a thing. For this reason, it is necessary to limit the design of the mating parts so that the lens does not tilt during assembly, and when the antireflection film is formed, the lens does not tilt when placed on the jig.
 特許文献2に記載の技術では、フランジ面の周縁部の一部にゲート用凸部を設け、ゲート用凸部の側面にゲート切断部を形成しているので、フランジ面を組立基準面(例えば載置面)とする場合にゲート用凸部が障害物となる。このため、レンズが組立時に傾かないように、相手部品の設計に制限を与える必要がある。また、フランジ面に対して1か所以上の突起部が存在するので、反射防止膜を成膜する場合において治具への設置で傾かないように、相手部品の設計に制限を与える必要がある。突起部が2か所以上存在する場合には、光学面が治具開口よりも遠ざかるため、成膜にケラレが発生し、所望の範囲に成膜できないおそれがある。また、両面に突起部を設けた場合、固定側金型に突起部とゲートを設けることになるので、突起部とゲートが固定側金型から剥離し難くなり、レンズが傾いて取り出されるおそれがある。 In the technique described in Patent Document 2, since the gate convex portion is provided on a part of the peripheral portion of the flange surface and the gate cutting portion is formed on the side surface of the gate convex portion, the flange surface is used as an assembly reference surface (for example, In the case of the mounting surface, the gate convex portion becomes an obstacle. For this reason, it is necessary to limit the design of the counterpart component so that the lens does not tilt during assembly. In addition, since one or more protrusions exist on the flange surface, it is necessary to limit the design of the mating part so that it does not tilt when placed on a jig when an antireflection film is formed. . When there are two or more protrusions, the optical surface moves away from the jig opening, so that vignetting may occur and the film may not be formed in a desired range. In addition, when the protrusions are provided on both surfaces, the protrusion and the gate are provided on the fixed mold, so that the protrusion and the gate are difficult to peel from the fixed mold, and the lens may be tilted and taken out. is there.
 特許文献3では、金型内において溶融状態の樹脂がゲートカットされるため、プラスチックレンズにおいてはゲート近傍に応力歪が発生し、ゲート付近でレンズ表面の形状精度が悪化したり、複屈折が生じたりすることになる。 In Patent Document 3, since the molten resin is gate-cut in the mold, stress distortion occurs near the gate in the plastic lens, and the shape accuracy of the lens surface deteriorates near the gate, or birefringence occurs. Will be.
 本発明はこのような問題点に鑑みてなされたものであって、その目的は、プラスチック光学部品を射出成形で作製する場合において、フランジ部が薄くても樹脂充填効率が高く、離型変形,応力歪及び外観不良が無く高品質でありながら、高精度の組立基準面(例えば嵌合面及び載置面)を有する光学部品の製造方法を提供することにある。 The present invention has been made in view of such problems, and the object thereof is to produce a plastic optical component by injection molding, and the resin filling efficiency is high even when the flange portion is thin, An object of the present invention is to provide a method of manufacturing an optical component having a high-accuracy assembly reference surface (for example, a fitting surface and a mounting surface) while being free from stress distortion and poor appearance.
 上記目的を達成するために、第1の発明の光学部品の製造方法は、光学機能部の外周にフランジ部を有するプラスチック光学部品を、固定側金型と可動側金型を用いた射出成形により作製する製造方法であって、樹脂を充填するためのゲートの空間と前記フランジ部を形成する空間とが、前記可動側金型にのみ設けられており、前記フランジ部を形成する空間において、前記フランジ部の側面からフランジ部の厚み方向へ拡張してフランジ面の一部に至るまでの範囲に対応する部分に、前記ゲートが配置されていることを特徴とする。 In order to achieve the above object, a method of manufacturing an optical component according to a first aspect of the present invention is a plastic optical component having a flange portion on the outer periphery of an optical function portion by injection molding using a fixed side mold and a movable side mold. A manufacturing method for manufacturing, wherein a space for forming a gate for filling a resin and a space for forming the flange portion are provided only in the movable mold, and in the space for forming the flange portion, The gate is arranged in a portion corresponding to a range extending from the side surface of the flange portion in the thickness direction of the flange portion to reaching a part of the flange surface.
 第2の発明の光学部品の製造方法は、上記第1の発明において、前記固定側金型及び可動側金型で形成された樹脂成形体に対して、前記ゲートに充填された樹脂から成るゲート部の切断除去を、金型外で樹脂固化後に行うことを特徴とする。 According to a second aspect of the present invention, there is provided a method of manufacturing an optical component according to the first aspect, wherein the gate is made of a resin filled in the gate with respect to the resin molded body formed of the fixed side mold and the movable side mold. The part is cut and removed after the resin is solidified outside the mold.
 第3の発明の光学部品の製造方法は、上記第2の発明において、前記フランジ部の側面からゲート部を除去する工程と、前記フランジ面からゲート部を除去する工程と、で前記ゲート部の切断除去を行うことを特徴とする。 According to a third aspect of the present invention, there is provided a method for manufacturing an optical component according to the second aspect, comprising: removing the gate portion from a side surface of the flange portion; and removing the gate portion from the flange surface. Cutting and removing are performed.
 第4の発明の光学部品の製造方法は、上記第2の発明において、前記ゲート部の切断除去において、前記ゲート部が設けられているフランジ部分をゲート部と一体で除去することを特徴とする。 According to a fourth aspect of the present invention, there is provided a method for manufacturing an optical component according to the second aspect, wherein the flange portion provided with the gate portion is integrally removed with the gate portion in cutting and removing the gate portion. .
 第5の発明の光学部品の製造方法は、上記第1の発明において、前記フランジ部の最大厚みが2mm以下であることを特徴とする。 A method for manufacturing an optical component according to a fifth invention is characterized in that, in the first invention, the maximum thickness of the flange portion is 2 mm or less.
 第6の発明の光学部品の製造方法は、上記第5の発明において、前記フランジ部の最大厚みが0.8mm以下であることを特徴とする。 A method for manufacturing an optical component according to a sixth invention is characterized in that, in the fifth invention, the flange portion has a maximum thickness of 0.8 mm or less.
 第7の発明の光学部品の製造方法は、上記第2又は第3の発明において、前記フランジ面に凹形状のゲートカット跡が形成されるようにゲート部の切断除去を行うことを特徴とする。 According to a seventh aspect of the present invention, there is provided the method for manufacturing an optical component according to the second or third aspect, wherein the gate portion is cut and removed so that a concave gate cut mark is formed on the flange surface. .
 第8の発明の光学部品の製造方法は、上記第1の発明において、前記フランジ面が複数の高さの面を有することを特徴とする。 The method for manufacturing an optical component according to an eighth invention is characterized in that, in the first invention, the flange surface has a plurality of height surfaces.
 第1の発明に係る光学部品の製造方法では、フランジ部の側面から可動側のフランジ面にわたってゲートを形成するので、フランジ部の側面のみにゲートを設ける場合に比べて、ゲート断面積を比較的大きくすることができる。これにより、樹脂の充填効率が向上し、樹脂の固化が進む前に充填を行うことが可能となり、また、ゲートの剛性が高まるので離型時のレンズ自身の変形とレンズ姿勢の変形を防止することも可能となる。 In the method for manufacturing an optical component according to the first aspect of the invention, the gate is formed from the side surface of the flange portion to the flange surface on the movable side. Can be bigger. As a result, the resin filling efficiency is improved and the resin can be filled before the solidification of the resin progresses, and the rigidity of the gate is increased, so that the lens itself and the lens posture are prevented from being deformed at the time of mold release. It is also possible.
 さらに、ゲート部を可動側金型で保持することができるので、樹脂成形体の固定側への拘束を防止して、良好な離型を達成することができる。これにより、応力歪が無く、樹脂流動不良に伴う外観不良の無い光学部品を得ることができる。したがって、本発明の製造方法によれば、フランジ部が薄くても樹脂充填効率が高く、離型変形,応力歪及び外観不良が無く高品質でありながら、高精度の組立基準面(例えば嵌合面及び載置面)を有する光学部品を製造することができる。 Furthermore, since the gate portion can be held by the movable mold, it is possible to prevent the resin molded body from being restrained to the fixed side and achieve good mold release. Thereby, there can be obtained an optical component which is free from stress distortion and has no appearance defect due to resin flow failure. Therefore, according to the manufacturing method of the present invention, even when the flange portion is thin, the resin filling efficiency is high, and there is no release deformation, stress distortion and appearance defect, and the quality is high, but a high-precision assembly reference surface (for example, fitting) An optical component having a surface and a mounting surface) can be manufactured.
 第2の発明に係る光学部品の製造方法では、固定側金型及び可動側金型で形成された樹脂成形体に対して、ゲートに充填された樹脂から成るゲート部の切断除去を、金型外で樹脂固化後に行うので、光学部品に応力歪を与えないようにすることが可能である。 In the method for manufacturing an optical component according to the second aspect of the invention, the gate part made of resin filled in the gate is cut and removed from the resin molded body formed by the fixed side mold and the movable side mold. Since it is performed after the resin is solidified outside, it is possible to prevent stress distortion from being applied to the optical component.
 第3の発明に係る光学部品の製造方法では、ゲート部の切断除去を行うことによりフランジ部の側面とフランジ面からゲート部を除去するので、ゲート部又はゲートカット跡がフランジ部の載置面やフランジ外径よりも凸になることを防止することができる。このため、フランジ部の側面を嵌合面にしたりフランジ面を載置面にしたりすることが容易になり、相手部品の設計に制限を与えないようにすることができる。また、ゲート部の剛性が高いので、ゲートカット時にゲート部分が折損して、フランジ部にクラックが及んだり、フランジ部が欠損することを防止することができる。 In the method for manufacturing an optical component according to the third aspect of the invention, the gate portion is removed from the side surface and the flange surface of the flange portion by cutting and removing the gate portion. It is possible to prevent the projection from becoming larger than the outer diameter of the flange. For this reason, it becomes easy to make the side surface of a flange part into a fitting surface, or to make a flange surface into a mounting surface, and it can avoid restrict | limiting a design of a counterpart component. In addition, since the rigidity of the gate portion is high, it is possible to prevent the gate portion from being broken when the gate is cut, cracking the flange portion, and loss of the flange portion.
 第4の発明に係る光学部品の製造方法では、ゲート部の切断除去において、ゲート部が設けられているフランジ部分をゲート部と一体で除去するので、ゲートカット処理を特に簡素化しながら、ゲート部又はゲートカット跡がフランジ部の載置面やフランジ外径よりも凸になることを防止することができる。したがって、フランジ部の側面を嵌合面にしたりフランジ面を載置面にしたりすることが容易になり、相手部品の設計に制限を与えないようにすることができる。 In the method of manufacturing an optical component according to the fourth aspect of the present invention, in cutting and removing the gate portion, the flange portion provided with the gate portion is removed integrally with the gate portion. Or it can prevent that a gate cut trace becomes convex rather than the mounting surface of a flange part, or a flange outer diameter. Therefore, it is easy to make the side surface of the flange portion a fitting surface or the flange surface to be a mounting surface, and it is possible to prevent the counterpart part from being restricted.
 上記のように、ゲート部の切断除去により載置面に突起が無いようにすれば、反射防止膜を成膜する時にケラレが生じず、所望の範囲に成膜を行うことが可能となる。また、応力歪や外観不良が無く高品質でありながら、嵌合面と載置面が高精度なプラスチック光学部品を得ることが可能となる。 As described above, if there is no protrusion on the mounting surface by cutting and removing the gate portion, no vignetting occurs when the antireflection film is formed, and the film can be formed in a desired range. In addition, it is possible to obtain a plastic optical component with high accuracy in terms of the fitting surface and the mounting surface while having high quality without stress distortion and appearance defects.
 第5の発明のように光学部品のフランジ厚を抑えれば、フランジ部の側面が薄くても、サイドゲートのようにゲート厚が不足して充填不足になる、ということを防ぐことができる。第6の発明のように光学部品のフランジ厚を抑えれば、上記効果が増大するとともに、金型からの離型時にゲート部が曲がって取り出される、ということも防ぐことができる。 If the flange thickness of the optical component is suppressed as in the fifth invention, it is possible to prevent the gate thickness from being insufficient and insufficiently filled like the side gate even if the side surface of the flange portion is thin. If the flange thickness of the optical component is suppressed as in the sixth aspect of the invention, the above effect is increased, and it is possible to prevent the gate portion from being bent and taken out when released from the mold.
 第7の発明によれば、ゲート部又はゲートカット跡がフランジ部の載置面やフランジ外径よりも凸になることを防止することができる。このため、フランジ部の側面を嵌合面にしたりフランジ面を載置面にしたりすることが容易になり、相手部品の設計に制限を与えないようにすることができる。 According to the seventh aspect of the invention, it is possible to prevent the gate portion or the gate cut trace from becoming more convex than the mounting surface of the flange portion or the flange outer diameter. For this reason, it becomes easy to make the side surface of a flange part into a fitting surface, or to make a flange surface into a mounting surface, and it can avoid restrict | limiting a design of a counterpart component.
 第8の発明によれば、ゲートカットで生じる極微なカットバリが載置面に露出して、組立時に微小傾きが発生することを防止することができる。 According to the eighth aspect of the invention, it is possible to prevent a fine cut burr generated by gate cut from being exposed on the mounting surface and causing a slight inclination during assembly.
第1の実施の形態による円形レンズ用樹脂成形体を示す外観図。The external view which shows the resin molding for circular lenses by 1st Embodiment. 第2の実施の形態によるDカットレンズ及びその樹脂成形体を示す外観図。The external view which shows D cut lens by 2nd Embodiment, and its resin molding. 第1,第2の実施の形態に用いる金型構造を示す断面図。Sectional drawing which shows the metal mold | die structure used for 1st, 2nd embodiment. 第1の実施の形態におけるゲートカットの具体例1を示す外観図。The external view which shows the specific example 1 of the gate cut in 1st Embodiment. 第1の実施の形態におけるゲートカットの具体例2を示す外観図。The external view which shows the specific example 2 of the gate cut in 1st Embodiment. 第2の実施の形態によるDカットレンズのフランジ面形状の具体例を示す図。The figure which shows the specific example of the flange surface shape of D cut lens by 2nd Embodiment. 円形レンズ用樹脂成形体の基本構成(鏡面コア突き出しタイプ)を参考のために示す外観図。The external view which shows the basic composition (mirror surface protrusion type) of the resin molding for circular lenses for reference. 鏡面コア突き出しタイプの金型構造の基本構成を参考のために示す断面図。Sectional drawing which shows the basic composition of the mold structure of a mirror surface core protrusion type for reference. 円形レンズ用樹脂成形体の基本構成(エジェクタピン突き出しタイプ)を参考のために示す外観図。The external view which shows the basic composition (ejector pin protrusion type) of the resin molding for circular lenses for reference. エジェクタピン突き出しタイプの金型構造の基本構成を参考のために示す断面図。Sectional drawing which shows the basic composition of the die structure of an ejector pin protrusion type for reference. ゲートカットされた円形レンズの具体例を示す平面図。The top view which shows the specific example of the circular lens by which the gate cut was carried out. 円形レンズのホルダー保持状態の一例を示す図。The figure which shows an example of the holder holding state of a circular lens. Dカットレンズ用樹脂成形体の基本構成を参考のために示す外観図。The external view which shows the basic composition of the resin molding for D cut lenses for reference. Dカットレンズのホルダー保持状態等の一例を示す図。The figure which shows an example of the holder holding state etc. of D cut lens. フランジ部が薄い樹脂成形体の課題を説明するための断面図。Sectional drawing for demonstrating the subject of the resin molding with a thin flange part. フランジ部の両面にゲート部が拡張された円形レンズ用樹脂成形体を比較のために示す外観図。The external view which shows the resin molding for circular lenses by which the gate part was extended on both surfaces of the flange part for a comparison. フランジ部形成空間の両面にゲート拡張された金型構造を比較のために示す断面図。Sectional drawing which shows the metal mold | die structure by which the gate was extended on both surfaces of the flange part formation space for a comparison.
 以下、本発明に係る光学部品の製造方法の実施の形態等を、図面を参照しつつ説明する。なお、実施の形態,参考・比較のための形態等の相互で同一の部分や相当する部分には同一の符号を付して重複説明を適宜省略する。 Hereinafter, embodiments of the method for manufacturing an optical component according to the present invention will be described with reference to the drawings. Note that the same or corresponding parts in the embodiment, the reference / comparison form, and the like are denoted by the same reference numerals, and redundant description is omitted as appropriate.
 まず、プラスチックレンズとして一般的な円形レンズについて、その製造に用いられる樹脂成形体及び金型構造の基本構成を参考のために説明する。図7に円形レンズ用の樹脂成形体11A(鏡面コア突き出しタイプ)を示し、図8に樹脂成形体11Aの射出成形に用いられる金型構造を示す。図7(A)は樹脂成形体11Aの上面図であり、図7(B)は樹脂成形体11Aの側面図であり、図7(C)は樹脂成形体11Aの下面図である。 First, a basic structure of a resin molded body and a mold structure used for manufacturing a circular lens generally used as a plastic lens will be described for reference. FIG. 7 shows a resin molded body 11A (mirror core protruding type) for a circular lens, and FIG. 8 shows a mold structure used for injection molding of the resin molded body 11A. 7A is a top view of the resin molded body 11A, FIG. 7B is a side view of the resin molded body 11A, and FIG. 7C is a bottom view of the resin molded body 11A.
 樹脂成形体11Aは、レンズ部2とその外周に設けられた鍔状のフランジ部3とでプラスチックレンズ1Aを構成している。レンズ部2はレンズの光学的機能を有する部分であり、フランジ部3はプラスチックレンズ1Aをレンズホルダー6(後で説明する図12,図14)に取り付ける際の設置部分となる。プラスチックレンズ1Aには、図8に示す鏡面コア突き出しタイプの金型構造により、ゲート部4とランナー部5が一体的に形成されている。 The resin molded body 11 </ b> A constitutes a plastic lens 1 </ b> A with the lens portion 2 and the bowl-shaped flange portion 3 provided on the outer periphery thereof. The lens portion 2 is a portion having an optical function of the lens, and the flange portion 3 is an installation portion when the plastic lens 1A is attached to a lens holder 6 (FIGS. 12 and 14 described later). In the plastic lens 1A, a gate portion 4 and a runner portion 5 are integrally formed by a mirror core protruding type mold structure shown in FIG.
 図8に示す金型構造は、固定側金型M1,可動側金型M2,固定側の鏡面コア17a,可動側の鏡面コア17b,エジェクタピン18等から成っており、これらの金型M1,M2等でレンズ部形成空間12,フランジ部形成空間13,ゲート14及びランナー15を構成している。樹脂を充填するためのゲート14の空間とフランジ部形成空間13とは、可動側金型M2にのみ設けられている。また、固定側金型M1と可動側金型M2には、レンズ面形成用の鏡面コア17a,17bがそれぞれ設けられている。ただし、固定側金型M1に設けられている鏡面コア17aは、金型M1に固定された状態で動かないようになっており、可動側金型M2に設けられている鏡面コア17bは、フランジ面3aに対する垂直方向に進退可能になっている。また、可動側金型M2にはエジェクタピン18が設けられており、ランナー15に対して進退可能に構成されている。 The mold structure shown in FIG. 8 includes a fixed mold M1, a movable mold M2, a fixed mirror core 17a, a movable mirror core 17b, an ejector pin 18, and the like. The lens portion forming space 12, the flange portion forming space 13, the gate 14 and the runner 15 are constituted by M2 or the like. The space of the gate 14 for filling the resin and the flange portion forming space 13 are provided only in the movable mold M2. Further, the fixed side mold M1 and the movable side mold M2 are provided with mirror surface cores 17a and 17b for forming lens surfaces, respectively. However, the mirror surface core 17a provided on the fixed mold M1 does not move while being fixed to the mold M1, and the mirror core 17b provided on the movable mold M2 has a flange. It can advance and retreat in the direction perpendicular to the surface 3a. Further, the movable mold M2 is provided with an ejector pin 18 so as to be movable forward and backward with respect to the runner 15.
 射出成形時には、樹脂が金型M1,M2内でランナー15からゲート14を通ってフランジ部形成空間13へと流れ、レンズ部形成空間12まで充填される。樹脂成形体11Aの離型は、樹脂固化後、以下のようにして行われる。まず、可動側金型M2が固定側金型M1から離れる方向(図8においては下方)に平行移動し、樹脂成形体11Aが可動側金型M2に密着した状態で可動側金型M2と共に移動する。これにより、樹脂成形体11Aは固定側金型M1から離型される。次に、エジェクタピン18がランナー15側に向けて突き出されると同時に鏡面コア17bがプラスチックレンズ1A側に向けて移動して、樹脂成形体11Aが可動側金型M2から離型される。エジェクタピン18と鏡面コア17bは可動側金型M2内の元の所定位置に戻る事で樹脂成形体11Aから離れる。なお、エジェクタピン18の突き出しにより、ランナー部5にはエジェクタピン跡18a(図7(C))が残る。 At the time of injection molding, the resin flows from the runner 15 through the gate 14 to the flange portion forming space 13 in the molds M1 and M2, and is filled up to the lens portion forming space 12. The mold release of the resin molded body 11A is performed as follows after the resin is solidified. First, the movable mold M2 moves parallel to the direction away from the fixed mold M1 (downward in FIG. 8), and the resin molded body 11A moves together with the movable mold M2 in a state of being in close contact with the movable mold M2. To do. Thereby, the resin molded body 11A is released from the fixed mold M1. Next, the ejector pin 18 is projected toward the runner 15 side, and at the same time, the mirror core 17b moves toward the plastic lens 1A, and the resin molded body 11A is released from the movable mold M2. The ejector pin 18 and the mirror core 17b are separated from the resin molded body 11A by returning to the original predetermined position in the movable mold M2. The ejector pin mark 18a (FIG. 7C) remains in the runner portion 5 due to the protrusion of the ejector pin 18.
 次に、離型方式が上記とは異なる射出成形方法を説明する。図9に円形レンズ用の樹脂成形体11A(エジェクタピン突き出しタイプ)を示し、図10に樹脂成形体11Aの射出成形に用いられる金型構造を示す。図9(A)は樹脂成形体11Aの上面図であり、図9(B)は樹脂成形体11Aの側面図であり、図9(C)は樹脂成形体11Aの下面図である。 Next, an injection molding method in which the mold release method is different from the above will be described. FIG. 9 shows a resin molded body 11A (ejector pin protruding type) for a circular lens, and FIG. 10 shows a mold structure used for injection molding of the resin molded body 11A. 9A is a top view of the resin molded body 11A, FIG. 9B is a side view of the resin molded body 11A, and FIG. 9C is a bottom view of the resin molded body 11A.
 樹脂成形体11Aは、レンズ部2とその外周に設けられた鍔状のフランジ部3とでプラスチックレンズ1Aを構成している。レンズ部2はレンズの光学的機能を有する部分であり、フランジ部3はプラスチックレンズ1Aをレンズホルダー6(後で説明する図12,図14)に取り付ける際の設置部分となる。プラスチックレンズ1Aには、図10に示すエジェクタピン突き出しタイプの金型構造により、ゲート部4とランナー部5が一体的に形成されている。 The resin molded body 11 </ b> A constitutes a plastic lens 1 </ b> A with the lens portion 2 and the bowl-shaped flange portion 3 provided on the outer periphery thereof. The lens portion 2 is a portion having an optical function of the lens, and the flange portion 3 is an installation portion when the plastic lens 1A is attached to a lens holder 6 (FIGS. 12 and 14 described later). A gate portion 4 and a runner portion 5 are integrally formed on the plastic lens 1A by an ejector pin protruding type mold structure shown in FIG.
 図10に示す金型構造は、固定側金型M1,可動側金型M2,固定側の鏡面コア17a,可動側の鏡面コア17b,エジェクタピン18等から成っており、これらの金型M1,M2等でレンズ部形成空間12,フランジ部形成空間13,ゲート14及びランナー15を構成している。樹脂を充填するためのゲート14の空間とフランジ部形成空間13とは、可動側金型M2にのみ設けられている。また、固定側金型M1と可動側金型M2には、レンズ面形成用の鏡面コア17a,17bがそれぞれ設けられており、いずれも金型M1,M2に固定された状態で動かないようになっている。また、可動側金型M2にはエジェクタピン18が設けられており、フランジ部形成空間13及びランナー15に対して進退可能に構成されている。 The mold structure shown in FIG. 10 is composed of a fixed mold M1, a movable mold M2, a fixed mirror core 17a, a movable mirror core 17b, an ejector pin 18, and the like. The lens portion forming space 12, the flange portion forming space 13, the gate 14 and the runner 15 are constituted by M2 or the like. The space of the gate 14 for filling the resin and the flange portion forming space 13 are provided only in the movable mold M2. The fixed mold M1 and the movable mold M2 are provided with mirror surface cores 17a and 17b for forming lens surfaces, respectively, so that they do not move while being fixed to the molds M1 and M2. It has become. Further, the movable mold M2 is provided with an ejector pin 18 so as to be movable back and forth with respect to the flange forming space 13 and the runner 15.
 射出成形時には、樹脂が金型M1,M2内でランナー15からゲート14を通ってフランジ部形成空間13へと流れ、レンズ部形成空間12まで充填される。樹脂成形体11Aの離型は、樹脂固化後、以下のようにして行われる。まず、可動側金型M2が固定側金型M1から離れる方向(図10においては下方)に平行移動し、樹脂成形体11Aが可動側金型M2に密着した状態で可動側金型M2と共に移動する。これにより、樹脂成形体11Aは固定側金型M1から離型される。次に、エジェクタピン18がフランジ部形成空間13及びランナー15側に向けて突き出されて、樹脂成形体11Aが可動側金型M2から離型される。エジェクタピン18は可動側金型M2内の元の所定位置に戻る事で樹脂成形体11Aから離れる。なお、エジェクタピン18の突き出しにより、フランジ部3及びランナー部5にはエジェクタピン跡18a(図9(C))が残る。 At the time of injection molding, the resin flows from the runner 15 through the gate 14 to the flange portion forming space 13 in the molds M1 and M2, and is filled up to the lens portion forming space 12. The mold release of the resin molded body 11A is performed as follows after the resin is solidified. First, the movable mold M2 moves parallel to the direction away from the fixed mold M1 (downward in FIG. 10), and the resin molded body 11A moves together with the movable mold M2 in a state of being in close contact with the movable mold M2. To do. Thereby, the resin molded body 11A is released from the fixed mold M1. Next, the ejector pin 18 is projected toward the flange portion forming space 13 and the runner 15 side, and the resin molded body 11A is released from the movable mold M2. The ejector pin 18 moves away from the resin molded body 11A by returning to the original predetermined position in the movable mold M2. The ejector pin mark 18a (FIG. 9C) remains on the flange portion 3 and the runner portion 5 due to the protrusion of the ejector pin 18.
 上述のようにして得られた樹脂成形体11Aをゲート部4で切断すると、プラスチックレンズ1Aを得ることができる。図11(A)~(C)に、円形レンズのゲートカット例を示す。図11(A)に示すプラスチックレンズ1Aは、ゲート部4の一部を残すようにしてゲートカットされた円形レンズである。図11(B)に示すプラスチックレンズ1Aは、フランジ部3の外形の円に沿って円弧上にゲートカットされた円形レンズである。図11(C)に示すプラスチックレンズ1Aは、フランジ部3の一部が直線状にゲートカット(減肉加工)された円形レンズである。 When the resin molded body 11A obtained as described above is cut by the gate portion 4, the plastic lens 1A can be obtained. FIGS. 11A to 11C show examples of gate cutting of a circular lens. A plastic lens 1 </ b> A shown in FIG. 11A is a circular lens that is gate-cut so as to leave a part of the gate portion 4. A plastic lens 1 </ b> A shown in FIG. 11B is a circular lens that is gate-cut on an arc along the outer circle of the flange portion 3. A plastic lens 1A shown in FIG. 11C is a circular lens in which a part of the flange portion 3 is linearly gate-cut (thinned).
 図11(A)に示すプラスチックレンズ1Aのホルダー保持状態の一例を、図12に示す。図12(A)はプラスチックレンズ1Aがレンズホルダー6に取り付けられた状態を示す平面図であり、図12(B)はプラスチックレンズ1Aがレンズホルダー6に取り付けられた状態を示す断面図である。ゲート部4の一部を残すようにカットすると(図11(A))、プラスチックレンズ1Aをレンズホルダー6にセットする際、フランジ部3の側面3bに残っているゲートカット跡4cが、図12に示すようにレンズホルダー6に干渉し易くなる。つまり、円形レンズでは突出したゲートカット跡4cがフランジ部3の外形の円を基準にする組み立ての障害となる。 FIG. 12 shows an example of the holder holding state of the plastic lens 1A shown in FIG. 12A is a plan view showing a state where the plastic lens 1A is attached to the lens holder 6, and FIG. 12B is a cross-sectional view showing a state where the plastic lens 1A is attached to the lens holder 6. FIG. When cut so as to leave a part of the gate portion 4 (FIG. 11A), when the plastic lens 1A is set in the lens holder 6, the gate cut mark 4c remaining on the side surface 3b of the flange portion 3 is shown in FIG. It becomes easy to interfere with the lens holder 6 as shown in FIG. That is, in the circular lens, the protruding gate cut trace 4c becomes an obstacle to the assembly with the outer circle of the flange portion 3 as a reference.
 ゲート部4の一部が残らないようにゲートカットすれば(図11(B),(C))、ゲートカット跡4cに起因する問題は生じない。そして、フランジ部3が直線状となるように(図11(C))、Dカットレンズとして樹脂成型を行った場合でも同様である。図13に、Dカットレンズ用の樹脂成形体11Bの基本構成を参考のために示す。図13(A)は樹脂成形体11Bの上面図であり、図13(B)は樹脂成形体11Bの側面図である。なお、プラスチックレンズ1BはDカットレンズとなっており、鏡面コア突き出しタイプやエジェクタピン突き出しタイプの特徴は、円形レンズの場合と同様である。 If the gate is cut so that a part of the gate portion 4 does not remain (FIGS. 11B and 11C), the problem due to the gate cut trace 4c does not occur. The same applies to the case where resin molding is performed as a D-cut lens so that the flange portion 3 is linear (FIG. 11C). FIG. 13 shows a basic configuration of a resin molded body 11B for a D-cut lens for reference. FIG. 13A is a top view of the resin molded body 11B, and FIG. 13B is a side view of the resin molded body 11B. The plastic lens 1B is a D-cut lens, and the characteristics of the mirror core protruding type and the ejector pin protruding type are the same as in the case of the circular lens.
 図14に、プラスチックレンズ1Bのホルダー保持状態等の一例を示す。図14(A)に示すプラスチックレンズ1Bは、ゲート部4の一部を残すようにしてゲートカットされたDカットレンズである。そして、図14(B)はプラスチックレンズ1Bがレンズホルダー6に取り付けられた状態を示す平面図であり、図14(C)はプラスチックレンズ1Bがレンズホルダー6に取り付けられた状態を示す断面図である。図14から分かるように、Dカットレンズではフランジ部3の外形の仮想円内にゲートカット跡4cを残すことができるので、ゲートカット跡4cがレンズホルダー6に干渉せず、組み立てが容易になる。 FIG. 14 shows an example of the holder holding state of the plastic lens 1B. A plastic lens 1B shown in FIG. 14A is a D-cut lens that is gate-cut so that a part of the gate portion 4 remains. 14B is a plan view showing a state in which the plastic lens 1B is attached to the lens holder 6, and FIG. 14C is a cross-sectional view showing a state in which the plastic lens 1B is attached to the lens holder 6. is there. As can be seen from FIG. 14, in the D-cut lens, the gate cut trace 4c can be left in the virtual circle of the outer shape of the flange portion 3, so the gate cut trace 4c does not interfere with the lens holder 6 and the assembly is facilitated. .
 上述したプラスチックレンズ1A,1B(円形レンズやDカットレンズ)の薄型化を図ろうとすると、フランジ部3を薄くするために可動側金型M2内のフランジ部形成空間13も薄くなり(図7~図10等)、それに伴ってゲート14も薄くなってしまう。その結果、以下に説明する充填性,離型性及び加工性に関する問題(図15)が生じることになる。 If the plastic lenses 1A and 1B (circular lens and D-cut lens) described above are to be thinned, the flange portion forming space 13 in the movable mold M2 is also thinned to make the flange portion 3 thin (FIGS. 7 to 7). Accordingly, the gate 14 is also made thinner. As a result, problems (FIG. 15) relating to the filling property, mold release property, and workability described below occur.
 フランジ部3の薄い樹脂成形体11A,11Bを前述した製造方法で作製する場合、充填性に関する問題(図15(A))が生じる。フランジ部形成空間13が薄いと、ゲート14も薄くなるため、樹脂9の充填の際に過大な圧力をかけないと充填は困難である。このため、ゲート部4に応力歪が生じるおそれがある。また、樹脂9の充填効率が低いと、樹脂9の固化が進み易くなるため、充填不良・応力歪が生じるおそれがある。 When producing the thin resin moldings 11A and 11B with the flange portion 3 by the above-described manufacturing method, a problem relating to filling properties (FIG. 15A) occurs. When the flange portion forming space 13 is thin, the gate 14 is also thin. Therefore, filling is difficult unless an excessive pressure is applied when the resin 9 is filled. For this reason, there is a possibility that stress strain occurs in the gate portion 4. Further, if the filling efficiency of the resin 9 is low, the solidification of the resin 9 is likely to proceed, so that there is a risk of poor filling and stress strain.
 フランジ部3の薄い樹脂成形体11A,11Bを前述した製造方法で作製する場合、離型性に関する問題(図15(B))が生じる。フランジ部形成空間13が薄いと、ゲート14も薄くなるため、ゲート部4の剛性が低くなる。その結果、可動側金型M2からの離型時に、プラスチックレンズ1A,1Bが、エジェクタピン18から剥離する際に、両者の密着力により、プラスチックレンズ1A,1Bが、ゲート部4から曲がって連れ戻りする事が有り、ゲート部4の応力歪やレンズ自身の変形が生じるおそれがある。また、ランナー部5に対してレンズ部2及びフランジ部3が斜めになって取り出されるため、ゲートカット機で正常にカットすることが困難になる。なお、図15(B)はエジェクタピン突き出しタイプの構造を示しているが、鏡面コア突き出しタイプの構造でも同じ現象が発生する。 When the resin molded bodies 11A and 11B having a thin flange portion 3 are manufactured by the above-described manufacturing method, a problem related to releasability (FIG. 15B) occurs. When the flange portion forming space 13 is thin, the gate 14 is also thinned, so that the rigidity of the gate portion 4 is lowered. As a result, when the plastic lenses 1A and 1B are peeled off from the ejector pin 18 at the time of releasing from the movable mold M2, the plastic lenses 1A and 1B are bent from the gate portion 4 due to the adhesion between them. There is a risk of return, and there is a risk of stress distortion of the gate portion 4 and deformation of the lens itself. Moreover, since the lens part 2 and the flange part 3 are taken out obliquely with respect to the runner part 5, it becomes difficult to cut normally with a gate cutting machine. FIG. 15B shows an ejector pin protruding type structure, but the same phenomenon occurs even in a mirror core protruding type structure.
 フランジ部3の薄い樹脂成形体11A,11Bを前述した製造方法で作製する場合、ゲートカット時の加工性に関する問題(図15(C))が生じる。フランジ部形成空間13が薄いと、ゲート14も薄くなるため、ゲート部4の剛性が低くなる。その結果、ゲートを切削で除去する時にゲートが折損し易くなり、フランジ部3にクラックが及んだりフランジ部3が欠損したりするおそれがある。例えば、ゲート部4を切断した後にエンドミル16で削る際の加工性に劣るため、加工時間を長くかける必要が生じてしまう。 When the resin molded bodies 11A and 11B having a thin flange portion 3 are manufactured by the manufacturing method described above, a problem relating to workability at the time of gate cutting (FIG. 15C) occurs. When the flange portion forming space 13 is thin, the gate 14 is also thinned, so that the rigidity of the gate portion 4 is lowered. As a result, when the gate is removed by cutting, the gate is easily broken, and the flange portion 3 may be cracked or the flange portion 3 may be lost. For example, since the workability at the time of cutting with the end mill 16 after cutting the gate portion 4 is inferior, it is necessary to increase the processing time.
 上述したようにフランジ部3の薄いプラスチックレンズ1A,1Bに特有な製造時の問題を解決するために、以下に説明する第1,第2の実施の形態の製造方法では特徴的なゲート構造を採用している。 As described above, in order to solve the manufacturing problems peculiar to the plastic lenses 1A and 1B having the thin flange portion 3, the manufacturing method according to the first and second embodiments described below has a characteristic gate structure. Adopted.
 図1に第1の実施の形態によるプラスチックレンズ(円形レンズ)1A用の樹脂成形体10Aを示し、図2に第2の実施の形態によるプラスチックレンズ(Dカットレンズ)1B及びその樹脂成形体10Bを示す。図1(A)は樹脂成形体10Aの側面図であり、図1(B)は樹脂成形体10Aの下面図である。図2(A)は樹脂成形体10Bの側面図であり、図2(B)は樹脂成形体10Bの下面図であり、図2(C)はゲート部4の一部を残すようにしてゲートカットされたプラスチックレンズ1Bの平面図である。 FIG. 1 shows a resin molded body 10A for a plastic lens (circular lens) 1A according to the first embodiment, and FIG. 2 shows a plastic lens (D-cut lens) 1B according to the second embodiment and its resin molded body 10B. Indicates. FIG. 1A is a side view of the resin molded body 10A, and FIG. 1B is a bottom view of the resin molded body 10A. 2A is a side view of the resin molded body 10B, FIG. 2B is a bottom view of the resin molded body 10B, and FIG. 2C is a gate with a part of the gate portion 4 left. It is a top view of the cut plastic lens 1B.
 また、図3に第1,第2の実施の形態において樹脂成形体10A,10Bの射出成形に用いられる金型構造を示す。図3(A)は樹脂成形体10A,10Bの射出成形に用いられる鏡面コア突き出しタイプの金型構造を示しており、図3(B)は樹脂成形体10A,10Bの射出成形に用いられるエジェクタピン突き出しタイプの金型構造を示している。 FIG. 3 shows a mold structure used for injection molding of the resin molded bodies 10A and 10B in the first and second embodiments. FIG. 3A shows a mirror core protruding mold structure used for injection molding of the resin moldings 10A and 10B, and FIG. 3B shows an ejector used for injection molding of the resin moldings 10A and 10B. A pin protrusion type mold structure is shown.
 樹脂成形体10A,10Bは、レンズ部2とその外周に設けられた鍔状のフランジ部3とでプラスチックレンズ1A,1Bを構成している。レンズ部2はレンズの光学的機能を有する部分であり、フランジ部3はプラスチックレンズ1A,1Bをレンズホルダー6(図12,図14)に取り付ける際の設置部分となる。プラスチックレンズ1A,1Bには、鏡面コア突き出しタイプ(図3(A))又はエジェクタピン突き出しタイプ(図3(B))の金型構造により、ゲート部4とランナー部5が一体的に形成されている。 The resin molded bodies 10A and 10B constitute plastic lenses 1A and 1B with the lens portion 2 and the flange-like flange portion 3 provided on the outer periphery thereof. The lens part 2 is a part having an optical function of the lens, and the flange part 3 is an installation part when the plastic lenses 1A and 1B are attached to the lens holder 6 (FIGS. 12 and 14). A gate portion 4 and a runner portion 5 are integrally formed on the plastic lenses 1A and 1B by a mold structure of a mirror core protruding type (FIG. 3A) or an ejector pin protruding type (FIG. 3B). ing.
 図3に示す金型構造は、固定側金型M1,可動側金型M2,固定側の鏡面コア17a,可動側の鏡面コア17b,エジェクタピン18等から成っており、これらの金型M1,M2等でレンズ部形成空間12,フランジ部形成空間13,ゲート14及びランナー15を構成している。樹脂を充填するためのゲート14の空間とフランジ部形成空間13とは、可動側金型M2にのみ設けられている。フランジ部形成空間13において、フランジ部3の側面3bからフランジ部3の厚み方向へ拡張してフランジ面3aの一部に至るまでの範囲に対応する部分に、ゲート14は配置されている。また、固定側金型M1と可動側金型M2には、レンズ面形成用の鏡面コア17a,17bがそれぞれ設けられている。 The mold structure shown in FIG. 3 is composed of a fixed mold M1, a movable mold M2, a fixed mirror core 17a, a movable mirror core 17b, an ejector pin 18, and the like. The lens portion forming space 12, the flange portion forming space 13, the gate 14 and the runner 15 are constituted by M2 or the like. The space of the gate 14 for filling the resin and the flange portion forming space 13 are provided only in the movable mold M2. In the flange portion forming space 13, the gate 14 is disposed in a portion corresponding to a range extending from the side surface 3 b of the flange portion 3 in the thickness direction of the flange portion 3 to reach a part of the flange surface 3 a. Further, the fixed side mold M1 and the movable side mold M2 are provided with mirror surface cores 17a and 17b for forming lens surfaces, respectively.
 図3(A)に示す鏡面コア突き出しタイプの金型構造では、固定側金型M1に設けられている鏡面コア17aは、金型M1に固定された状態で動かないようになっており、可動側金型M2に設けられている鏡面コア17bは、フランジ面3aに対する垂直方向に進退可能になっている。また、可動側金型M2にはエジェクタピン18が設けられており、ランナー15に対して進退可能に構成されている。 In the mirror core protrusion type mold structure shown in FIG. 3 (A), the mirror core 17a provided on the fixed mold M1 is fixed so as not to move while being fixed to the mold M1. The mirror core 17b provided on the side mold M2 can be advanced and retracted in the direction perpendicular to the flange surface 3a. Further, the movable mold M2 is provided with an ejector pin 18 so as to be movable forward and backward with respect to the runner 15.
 図3(B)に示すエジェクタピン突き出しタイプの金型構造では、固定側金型M1と可動側金型M2にそれぞれ設けられているレンズ面形成用の鏡面コア17a,17bが、いずれも金型M1,M2に固定された状態で動かないようになっている。また、可動側金型M2にはエジェクタピン18が設けられており、フランジ部形成空間13及びランナー15に対して進退可能に構成されている。 In the ejector pin protrusion type mold structure shown in FIG. 3 (B), the mirror surface cores 17a and 17b for forming the lens surfaces respectively provided in the fixed mold M1 and the movable mold M2 are molds. It does not move while fixed to M1 and M2. Further, the movable mold M2 is provided with an ejector pin 18 so as to be movable back and forth with respect to the flange forming space 13 and the runner 15.
 射出成形時には、樹脂9(図15)が金型M1,M2内でランナー15からゲート14を通ってフランジ部形成空間13へと流れ、レンズ部形成空間12まで充填される。樹脂成形体10A,10Bの離型は、樹脂固化後、以下のようにして行われる。まず、可動側金型M2が固定側金型M1から離れる方向(図3においては下方)に平行移動し、樹脂成形体10A,10Bが可動側金型M2に密着した状態で可動側金型M2と共に移動する。これにより、樹脂成形体10A,10Bは固定側金型M1から離型される。 At the time of injection molding, the resin 9 (FIG. 15) flows from the runner 15 through the gate 14 to the flange forming space 13 in the molds M1 and M2, and is filled up to the lens forming space 12. The mold release of the resin molded bodies 10A and 10B is performed as follows after the resin is solidified. First, the movable mold M2 is translated in the direction away from the fixed mold M1 (downward in FIG. 3), and the resin molded bodies 10A and 10B are in close contact with the movable mold M2. Move with. Thus, the resin molded bodies 10A and 10B are released from the fixed mold M1.
 図3(A)に示す鏡面コア突き出しタイプの金型構造では、エジェクタピン18がランナー15側に向けて突き出されると同時に鏡面コア17bがプラスチックレンズ1A側に向けて移動して、樹脂成形体10A,10Bが可動側金型M2から離型される。エジェクタピン18と鏡面コア17bは可動側金型M2内の元の所定位置に戻る事で樹脂成形体10A,10Bから離れる。なお前述したように、エジェクタピン18の突き出しにより、ランナー部5にはエジェクタピン跡18a(図7(C))が残る。 In the mirror core protrusion type mold structure shown in FIG. 3A, the ejector pin 18 is protruded toward the runner 15 side, and at the same time, the mirror core 17b moves toward the plastic lens 1A side. 10A and 10B are released from the movable mold M2. The ejector pin 18 and the mirror core 17b are separated from the resin moldings 10A and 10B by returning to the original predetermined position in the movable mold M2. As described above, the ejector pin mark 18a (FIG. 7C) remains in the runner portion 5 due to the protrusion of the ejector pin 18.
 図3(B)に示すエジェクタピン突き出しタイプの金型構造では、エジェクタピン18がフランジ部形成空間13及びランナー15側に向けて突き出されて、樹脂成形体10A,10Bが可動側金型M2から離型される。エジェクタピン18は可動側金型M2内の元の所定位置に戻る事で樹脂成形体10A,10Bから離れる。なお前述したように、エジェクタピン18の突き出しにより、フランジ部3及びランナー部5にはエジェクタピン跡18a(図9(C))が残る。 In the ejector pin protruding type mold structure shown in FIG. 3 (B), the ejector pins 18 are projected toward the flange portion forming space 13 and the runner 15 side, and the resin molded bodies 10A and 10B are moved from the movable mold M2. Mold is released. The ejector pin 18 moves away from the resin moldings 10A and 10B by returning to the original predetermined position in the movable mold M2. As described above, the ejector pin marks 18 a (FIG. 9C) remain on the flange portion 3 and the runner portion 5 due to the protrusion of the ejector pin 18.
 上記のようにして、レンズ部2の外周にフランジ部3を有するプラスチックレンズ1A,1Bが、固定側金型M1と可動側金型M2を用いた射出成形により作製される。各実施の形態の製造方法では、図3に示すように、フランジ部形成空間13において、フランジ部3の側面3bからフランジ部3の厚み方向へ拡張してフランジ面3aの一部に至るまでの範囲に対応する部分に、ゲート14が配置されている。このようにフランジ部3の側面3bから可動側のフランジ面3aにわたってゲート14を形成するので、フランジ部3の側面3bのみにゲート14を設ける場合(図8,図10等)に比べて、ゲート断面積を比較的大きくすることができる。これにより、樹脂の充填効率が向上し、樹脂の固化が進む前に充填を行うことが可能となり、また、ゲートの剛性が高まるので離型時のレンズ自身の変形とレンズ姿勢の変形を防止することも可能となる。 As described above, the plastic lenses 1A and 1B having the flange portion 3 on the outer periphery of the lens portion 2 are manufactured by injection molding using the fixed side mold M1 and the movable side mold M2. In the manufacturing method of each embodiment, as shown in FIG. 3, in the flange portion forming space 13, the flange portion 3 extends from the side surface 3 b in the thickness direction of the flange portion 3 to reach a part of the flange surface 3 a. A gate 14 is disposed in a portion corresponding to the range. Since the gate 14 is formed from the side surface 3b of the flange portion 3 to the flange surface 3a on the movable side in this way, the gate is provided as compared with the case where the gate 14 is provided only on the side surface 3b of the flange portion 3 (FIGS. 8, 10, etc.). The cross-sectional area can be made relatively large. As a result, the resin filling efficiency is improved and the resin can be filled before the solidification of the resin progresses, and the rigidity of the gate is increased, so that the lens itself and the lens posture are prevented from being deformed at the time of mold release. It is also possible.
 さらに、ゲート部4を可動側金型M2で保持することができるので、樹脂成形体10A,10Bの固定側への拘束を防止して、良好な離型を達成することができる。これにより、応力歪が無く、樹脂流動不良に伴う外観不良の無い光学部品を得ることができる。したがって、各実施の形態の製造方法によれば、フランジ部3が薄くても樹脂充填効率が高く、離型変形,応力歪及び外観不良が無く高品質でありながら、高精度の組立基準面(例えば嵌合面及び載置面)を有するプラスチックレンズ1A,1Bを製造することができる。プラスチックレンズ1A,1Bはレンズ部2に2つの透過面を有しているが、上述したように応力歪が無いため、複屈折が少なく結像性能の良好なレンズ機能を得ることができる。 Furthermore, since the gate part 4 can be held by the movable mold M2, it is possible to prevent the resin moldings 10A and 10B from being restrained to the fixed side and achieve good mold release. Thereby, there can be obtained an optical component which is free from stress distortion and has no appearance defect due to resin flow failure. Therefore, according to the manufacturing method of each embodiment, even if the flange portion 3 is thin, the resin filling efficiency is high, and there is no mold release deformation, stress strain, and appearance defect, and the quality is high, but the assembly reference surface with high accuracy ( For example, plastic lenses 1A and 1B having a fitting surface and a mounting surface can be manufactured. Although the plastic lenses 1A and 1B have two transmission surfaces in the lens portion 2, since there is no stress distortion as described above, a lens function with little birefringence and good imaging performance can be obtained.
 各実施の形態の製造方法では、図3に示すように、ゲート14の空間とフランジ部形成空間13とが可動側金型M2にのみ設けられており、フランジ部3の側面3bからフランジ面3aへと可動側にゲート14を拡張している。もし、フランジ部3の両面にゲート14を拡張すると、以下に説明するように離型性が低下するおそれがある。 In the manufacturing method of each embodiment, as shown in FIG. 3, the space of the gate 14 and the flange portion forming space 13 are provided only in the movable mold M2, and the side surface 3b of the flange portion 3 to the flange surface 3a. The gate 14 is extended to the movable side. If the gates 14 are extended on both sides of the flange portion 3, the releasability may be lowered as described below.
 図16に、フランジ部3の両面にゲート部4が拡張された円形レンズ用樹脂成形体11Cを比較のために示す。また図17に、フランジ部形成空間13の両面にゲート14が拡張された金型構造を比較のために示す。図17(A)は樹脂充填状態の金型構造を示しており、図17(B)は固定側金型M1から可動側金型M2が下方に移動した状態の金型構造を示している。 FIG. 16 shows a resin molded body 11C for a circular lens in which the gate part 4 is extended on both surfaces of the flange part 3 for comparison. FIG. 17 shows a mold structure in which the gates 14 are extended on both sides of the flange forming space 13 for comparison. FIG. 17A shows a mold structure in a resin-filled state, and FIG. 17B shows a mold structure in a state where the movable mold M2 is moved downward from the fixed mold M1.
 フランジ部3の固定側のフランジ面3aにもゲート部4を拡張すると、図17(B)から分かるように、ゲート部4(破線丸印部分)が固定側金型M1から剥離し難くなる。その結果、樹脂成形体11Cが固定側に残ろうとして可動側金型M2から一部外れてしまい、樹脂成形体11Cが傾いて一部変形したり、全体的に傾いて転写面が金型に押しつけられて可動側面の転写精度が低下してしまうおそれがある。それに対して各実施の形態の製造方法によると、ゲート14の空間とフランジ部形成空間13とを可動側金型M2にのみ設けて、フランジ部3の側面3bから可動側のフランジ面3aにわたってゲート14を形成するので、上記のような問題は生じない。 When the gate portion 4 is also expanded to the flange surface 3a on the fixed side of the flange portion 3, as can be seen from FIG. 17 (B), the gate portion 4 (dotted line circled portion) is difficult to peel from the fixed side mold M1. As a result, the resin molded body 11C is partly removed from the movable mold M2 in an attempt to remain on the fixed side, and the resin molded body 11C is inclined and partially deformed, or the entire surface is inclined and the transfer surface becomes the mold. If pressed, the transfer accuracy of the movable side surface may be lowered. On the other hand, according to the manufacturing method of each embodiment, the gate 14 space and the flange portion forming space 13 are provided only in the movable mold M2, and the gate extends from the side surface 3b of the flange portion 3 to the movable flange surface 3a. 14 is formed, the above problem does not occur.
 光学機能部の外周にフランジ部を有するプラスチック光学部品では、フランジ厚を薄くすることが光学部品及びその搭載機器の小型化に大きく貢献する。この観点から、フランジ部3の最大厚みは、2mm以下であることが好ましい。このように光学部品のフランジ厚を抑えれば、フランジ部3の側面3bが薄くても、サイドゲート(図7~図10)のようにゲート厚が不足して充填不足になる、ということを防ぐことができる。 In plastic optical parts having a flange part on the outer periphery of the optical function part, reducing the thickness of the flange greatly contributes to miniaturization of the optical part and its mounted equipment. From this viewpoint, the maximum thickness of the flange portion 3 is preferably 2 mm or less. By suppressing the flange thickness of the optical component in this way, even if the side surface 3b of the flange portion 3 is thin, the gate thickness is insufficient and the filling is insufficient as in the side gate (FIGS. 7 to 10). Can be prevented.
 フランジ部3の最大厚みは、0.8mm以下であることが好ましい。このように光学部品のフランジ厚を抑えれば、フランジ部3の側面3bが薄くても、サイドゲートのようにゲート厚が不足して充填不足になる、ということを特に防ぐことができるとともに、金型M1,M2からの離型時にゲート部4が曲がって取り出される、ということを防ぐことができる。そして、フランジ厚が0.8mm以下のプラスチックレンズを用いれば、例えば、レンズ5枚構成のマイクロカメラユニットの低背化を効果的に達成することができる。 The maximum thickness of the flange portion 3 is preferably 0.8 mm or less. By suppressing the flange thickness of the optical component in this way, even if the side surface 3b of the flange portion 3 is thin, it is possible to particularly prevent that the gate thickness is insufficient and the filling is insufficient as in the side gate, It is possible to prevent the gate portion 4 from being bent and taken out when being released from the molds M1 and M2. If a plastic lens having a flange thickness of 0.8 mm or less is used, for example, it is possible to effectively reduce the height of a micro camera unit having five lenses.
 前述のようにして得られた樹脂成形体10A,10Bをゲート部4で切断すると、光学機器に搭載可能な状態のプラスチックレンズ1A,1Bを得ることができる。このとき、固定側金型M1及び可動側金型M2で形成された樹脂成形体10A,10Bに対して、ゲート部4の切断除去を金型M1,M2外で樹脂固化後に行うことにより、プラスチックレンズ1A,1Bに応力歪を与えないようにすることが可能である。 When the resin molded bodies 10A and 10B obtained as described above are cut by the gate portion 4, the plastic lenses 1A and 1B that can be mounted on an optical device can be obtained. At this time, the plastic moldings 10A and 10B formed by the fixed side mold M1 and the movable side mold M2 are cut and removed from the gate portion 4 after the resin is solidified outside the molds M1 and M2, so that a plastic is obtained. It is possible not to give stress distortion to the lenses 1A and 1B.
 図4に、第1の実施の形態におけるゲートカットの具体例1を示す。図4(A)の側面図と図4(B)の下面図は、フランジ部3の側面3bとフランジ面3aにエンドミル加工を施している状態を示しており、図4(C)の側面図と図4(D)の下面図はエンドミル加工後のプラスチックレンズ1Aを示している。この具体例1では、フランジ部3の側面3bからゲート部4を除去する工程と、フランジ面4aからゲート部4を除去する工程と、でゲート部4の切断除去が行われる。 FIG. 4 shows a specific example 1 of the gate cut in the first embodiment. The side view of FIG. 4 (A) and the bottom view of FIG. 4 (B) show the state where the side surface 3b and the flange surface 3a of the flange portion 3 are end milled, and the side view of FIG. 4 (C). The bottom view of FIG. 4D shows the plastic lens 1A after end milling. In the first specific example, the gate portion 4 is cut and removed in the step of removing the gate portion 4 from the side surface 3b of the flange portion 3 and the step of removing the gate portion 4 from the flange surface 4a.
 エンドミル16を用いたフランジ面3aの加工により、図4(C),(D)に示すように、フランジ面3aに凹形状のゲートカット跡4aが形成される。ゲートカット跡4aは凹形状を有しているため、組立基準面又は取り付け基準面の邪魔になることはない。このように、ゲート部4の切断除去を行うことによりフランジ部3の側面3bとフランジ面3aからゲート部4を除去するので、ゲート部4又はゲートカット跡4aがフランジ部3の載置面(例えば、組み立ての相手との設置面、反射防止膜形成時にジグに置くときの載置面等)やフランジ外径よりも凸になることを防止することができる。このため、フランジ部3の側面3bを嵌合面(組立基準面等)にしたりフランジ面3aを載置面(組立基準面,成膜基準面等)にしたりすることが容易になり、相手部品の設計に制限を与えないようにすることができる。また、ゲート部4の剛性が高いので、ゲートカット時にゲート部4が折損して、フランジ部3にクラックが及んだりフランジ部3が欠損したりすることを防止することができる。 By processing the flange surface 3a using the end mill 16, a concave gate cut mark 4a is formed on the flange surface 3a as shown in FIGS. Since the gate cut mark 4a has a concave shape, it does not interfere with the assembly reference surface or the attachment reference surface. Thus, since the gate portion 4 is removed from the side surface 3b and the flange surface 3a of the flange portion 3 by cutting and removing the gate portion 4, the gate portion 4 or the gate cut mark 4a is placed on the mounting surface ( For example, it is possible to prevent the projection surface from becoming more convex than the outer diameter of the flange or the installation surface with the assembly partner, the mounting surface when the antireflection film is formed, and the like. For this reason, it becomes easy to use the side surface 3b of the flange part 3 as a fitting surface (assembly reference surface, etc.) or the flange surface 3a as a mounting surface (assembly reference surface, film formation reference surface, etc.). It is possible to prevent the design from being restricted. Moreover, since the rigidity of the gate part 4 is high, it is possible to prevent the gate part 4 from being broken when the gate is cut, and cracking of the flange part 3 or loss of the flange part 3 can be prevented.
 第2の実施の形態(図2)によるプラスチックレンズ1Bも、エンドミル16を用いたフランジ面3aの加工により、図2(C)に示すように、フランジ面3aに凹形状のゲートカット跡4aが形成される。このため、ゲートカット跡4aが組立基準面又は取り付け基準面の邪魔になることはない。一方、フランジ部3の側面3bに関しては、ゲート部4の一部を残すようにしてゲートカットされたD形状を有しているため、図14のプラスチックレンズ1Bと同様、フランジ部3の外形の仮想円内にゲートカット跡4cを残すことができる。また、ゲートカットした際にカットバリ4bが発生しても、仮想円内にカットバリ4bを残すことができる。このように、プラスチックレンズ1Bのフランジ外周円が、ゲート部4近傍で直線的に分断されたDカットレンズの場合、ゲートカット時にバリ4bが発生しても、フランジ外周円から凸にならないので、フランジ外周を嵌合径(組立基準等)とする時に障害物になることはない。 The plastic lens 1B according to the second embodiment (FIG. 2) also has a concave gate cut mark 4a formed on the flange surface 3a by processing the flange surface 3a using the end mill 16, as shown in FIG. It is formed. For this reason, the gate cut trace 4a does not interfere with the assembly reference surface or the attachment reference surface. On the other hand, the side surface 3b of the flange portion 3 has a D shape that is gate-cut so as to leave a part of the gate portion 4, so that the outer shape of the flange portion 3 is similar to the plastic lens 1B of FIG. A gate cut trace 4c can be left in the virtual circle. Further, even if the cut burr 4b occurs when the gate is cut, the cut burr 4b can be left in the virtual circle. Thus, in the case of the D cut lens in which the flange outer periphery circle of the plastic lens 1B is linearly divided in the vicinity of the gate portion 4, even if the burr 4b occurs at the time of the gate cut, the flange outer periphery does not protrude from the flange outer periphery circle. There is no obstacle when the outer periphery of the flange is set to the fitting diameter (assembly standard, etc.).
 図5に、第1の実施の形態におけるゲートカットの具体例2を示す。図5(A)の側面図と図5(B)の下面図は、フランジ部3に切断除去を施している状態を示しており、図5(C)の側面図と図5(D)の下面図は切断除去後のプラスチックレンズ1Aを示している。この具体例2では、ゲートカット線4Lでゲート部4の切断除去を行うことにより、フランジ部3においてゲート部4が設けられている部分をゲート部4と一体で除去している。 FIG. 5 shows a specific example 2 of the gate cut in the first embodiment. The side view of FIG. 5 (A) and the bottom view of FIG. 5 (B) show a state where the flange portion 3 is cut and removed, and the side view of FIG. 5 (C) and FIG. 5 (D). The bottom view shows the plastic lens 1A after cutting and removal. In this specific example 2, the gate portion 4 is cut and removed by the gate cut line 4L, whereby the portion of the flange portion 3 where the gate portion 4 is provided is removed integrally with the gate portion 4.
 ゲートカット線4Lでのゲート部4の切断除去(ゲート部4をフランジ部3の一部と共に一体的に除去すること)により、図5(C),(D)に示すように、フランジ部3はD形状にカットされる。このように、ゲート部4の切断除去において、ゲート部4が設けられているフランジ部分をゲート部4と一体で除去するので、ゲートカット処理を特に簡素化しながら、ゲート部又はゲートカット跡がフランジ部の載置面やフランジ外径よりも凸になることを防止することができる。したがって、フランジ部3の側面3bを嵌合面(組立基準面等)にしたりフランジ面3aを載置面(組立基準面,成膜基準面等)にしたりすることが容易になり、相手部品の設計に制限を与えないようにすることができる。 By cutting and removing the gate portion 4 at the gate cut line 4L (removing the gate portion 4 together with a part of the flange portion 3), as shown in FIGS. Is cut into a D shape. As described above, when the gate portion 4 is cut and removed, the flange portion where the gate portion 4 is provided is removed integrally with the gate portion 4, so that the gate portion or the gate cut trace is flanged while particularly simplifying the gate cut processing. It can prevent becoming convex rather than the mounting surface of a part, or a flange outer diameter. Therefore, the side surface 3b of the flange portion 3 can be easily used as a fitting surface (assembly reference surface, etc.) or the flange surface 3a can be used as a mounting surface (assembly reference surface, film formation reference surface, etc.). It is possible not to limit the design.
 上記具体例1,2のように、ゲート部4の切断除去により載置面に突起が無いようにすれば、反射防止膜を成膜する時にケラレが生じず、所望の範囲に成膜を行うことが可能となる。また、応力歪や外観不良が無く高品質でありながら、嵌合面と載置面が高精度なプラスチックレンズ1A,1Bを得ることが可能となる。 As in the specific examples 1 and 2, if the protrusion is not formed on the mounting surface by cutting and removing the gate portion 4, no vignetting occurs when the antireflection film is formed, and the film is formed in a desired range. It becomes possible. In addition, it is possible to obtain plastic lenses 1A and 1B having high accuracy in terms of the fitting surface and the mounting surface while having high quality without stress distortion and appearance defects.
 図6に、第2の実施の形態(図2)によるD形状のプラスチックレンズ1Bとして、フランジ面3aの形状が異なる2つの具体例を示す。図6(A)はフランジ面3aが単一面から成るDカットレンズを示しており(図2(C)と同一)、図6(B)はフランジ面3aに設けられた段差部3cで高さの異なる複数の面が構成されたDカットレンズを示している。また、図6(C)は図6(B)の断面構造を示している。 FIG. 6 shows two specific examples of the flange surface 3a having different shapes as the D-shaped plastic lens 1B according to the second embodiment (FIG. 2). 6A shows a D-cut lens in which the flange surface 3a is a single surface (same as FIG. 2C), and FIG. 6B shows the height of the stepped portion 3c provided on the flange surface 3a. 2 shows a D-cut lens having a plurality of different surfaces. FIG. 6C shows a cross-sectional structure of FIG.
 上記のように、フランジ面3aは、単一面で構成されるもの以外にも、複数の高さの面を有することによって組立性や製造性を向上させたものであってもよい。このようにフランジ面3aを複数の高さの面で構成すれば、ゲートカットで生じる極微なカットバリ4bが載置面に露出して、組立時に微小傾きが発生することを防止することができる。また、フランジ部3を薄くするために、段差部3cはごく薄いものであることが好ましい。つまり、載置面を構成するフランジ面3aからの高さh(図6(C))が低いことが好ましく、例えば高さhが10μm以下の段差部3cが好ましい。 As described above, the flange surface 3a may have a plurality of heights in addition to a single surface to improve assembly and manufacturability. If the flange surface 3a is constituted by a plurality of height surfaces in this way, it is possible to prevent the minute cut burr 4b generated by the gate cut from being exposed to the mounting surface and causing a slight inclination during assembly. Moreover, in order to make the flange part 3 thin, it is preferable that the level | step-difference part 3c is a very thin thing. That is, it is preferable that the height h (FIG. 6C) from the flange surface 3a constituting the placement surface is low, for example, the stepped portion 3c having a height h of 10 μm or less is preferable.
 1A,1B  プラスチックレンズ(プラスチック光学部品)
 2  レンズ部(光学機能部)
 3  フランジ部
 3a  フランジ面
 3b  側面
 3c  段差部
 4  ゲート部
 4a  ゲートカット跡
 4b  カットバリ
 4c  ゲートカット跡
 4L  ゲートカット線
 5  ランナー部
 6  レンズホルダー
 9  樹脂
 10A,10B  樹脂成形体
 11A,11B,11C  樹脂成形体
 12  レンズ部形成空間
 13  フランジ部形成空間
 14  ゲート
 15  ランナー
 16  エンドミル
 17a,17b  鏡面コア
 18  エジェクタピン
 18a  エジェクタピン跡
 M1  固定側金型
 M2  可動側金型
1A, 1B Plastic lenses (plastic optical components)
2 Lens part (optical function part)
DESCRIPTION OF SYMBOLS 3 Flange part 3a Flange surface 3b Side surface 3c Step part 4 Gate part 4a Gate cut trace 4b Cut burr 4c Gate cut trace 4L Gate cut wire 5 Runner part 6 Lens holder 9 Resin 10A, 10B Resin molding 11A, 11B, 11C Resin molding DESCRIPTION OF SYMBOLS 12 Lens part formation space 13 Flange part formation space 14 Gate 15 Runner 16 End mill 17a, 17b Mirror surface core 18 Ejector pin 18a Ejector pin trace M1 Fixed side metal mold M2 Movable side metal mold

Claims (8)

  1.  光学機能部の外周にフランジ部を有するプラスチック光学部品を、固定側金型と可動側金型を用いた射出成形により作製する製造方法であって、
     樹脂を充填するためのゲートの空間と前記フランジ部を形成する空間とが、前記可動側金型にのみ設けられており、
     前記フランジ部を形成する空間において、前記フランジ部の側面からフランジ部の厚み方向へ拡張してフランジ面の一部に至るまでの範囲に対応する部分に、前記ゲートが配置されていることを特徴とする光学部品の製造方法。
    A manufacturing method for producing a plastic optical component having a flange part on the outer periphery of an optical function part by injection molding using a fixed side mold and a movable side mold,
    The gate space for filling the resin and the space for forming the flange portion are provided only in the movable mold,
    In the space forming the flange portion, the gate is disposed in a portion corresponding to a range extending from a side surface of the flange portion to a thickness direction of the flange portion and reaching a part of the flange surface. A method for manufacturing an optical component.
  2.  前記固定側金型及び可動側金型で形成された樹脂成形体に対して、前記ゲートに充填された樹脂から成るゲート部の切断除去を、金型外で樹脂固化後に行うことを特徴とする請求項1記載の製造方法。 The resin molded body formed of the fixed side mold and the movable side mold is cut and removed from the gate portion made of the resin filled in the gate after the resin is solidified outside the mold. The manufacturing method according to claim 1.
  3.  前記フランジ部の側面からゲート部を除去する工程と、前記フランジ面からゲート部を除去する工程と、で前記ゲート部の切断除去を行うことを特徴とする請求項2記載の製造方法。 3. The manufacturing method according to claim 2, wherein the gate portion is cut and removed in a step of removing the gate portion from a side surface of the flange portion and a step of removing the gate portion from the flange surface.
  4.  前記ゲート部の切断除去において、前記ゲート部が設けられているフランジ部分をゲート部と一体で除去することを特徴とする請求項2記載の製造方法。 3. The method according to claim 2, wherein, in cutting and removing the gate portion, the flange portion provided with the gate portion is removed integrally with the gate portion.
  5.  前記フランジ部の最大厚みが2mm以下であることを特徴とする請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the flange portion has a maximum thickness of 2 mm or less.
  6.  前記フランジ部の最大厚みが0.8mm以下であることを特徴とする請求項5記載の製造方法。 The manufacturing method according to claim 5, wherein the flange portion has a maximum thickness of 0.8 mm or less.
  7.  前記フランジ面に凹形状のゲートカット跡が形成されるようにゲート部の切断除去を行うことを特徴とする請求項2又は3記載の製造方法。 4. The method according to claim 2, wherein the gate portion is cut and removed so that a concave gate cut mark is formed on the flange surface.
  8.  前記フランジ面が複数の高さの面を有することを特徴とする請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the flange surface has a plurality of height surfaces.
PCT/JP2013/058494 2012-04-09 2013-03-25 Method for producing optical component WO2013153940A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014510102A JP5835473B2 (en) 2012-04-09 2013-03-25 Manufacturing method of optical components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012088309 2012-04-09
JP2012-088309 2012-04-09

Publications (1)

Publication Number Publication Date
WO2013153940A1 true WO2013153940A1 (en) 2013-10-17

Family

ID=49327510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058494 WO2013153940A1 (en) 2012-04-09 2013-03-25 Method for producing optical component

Country Status (2)

Country Link
JP (1) JP5835473B2 (en)
WO (1) WO2013153940A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015231661A (en) * 2014-05-15 2015-12-24 東芝機械株式会社 Method and device for machining non-circular hole, and lens
CN111908774A (en) * 2019-05-10 2020-11-10 赵崇礼 Lens array mold apparatus
US11406608B2 (en) 2016-07-20 2022-08-09 The Trustees Of Columbia University In The City Of New York Histone acetyltransferase activators and compositions and uses thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768614A (en) * 1993-09-03 1995-03-14 Olympus Optical Co Ltd Injection molding die and injection molding method for optical element
WO2009122862A1 (en) * 2008-03-31 2009-10-08 コニカミノルタオプト株式会社 Optical element manufacturing method, optical element molding die, and optical element
JP2010162798A (en) * 2009-01-16 2010-07-29 Konica Minolta Opto Inc Injection moulding apparatus and method
JP2011201192A (en) * 2010-03-26 2011-10-13 Konica Minolta Opto Inc Molding die, assembling method and molding method for molding die
JP2012153039A (en) * 2011-01-27 2012-08-16 Maxell Finetech Ltd Injection mold, method for injection molding and lens

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5254731B2 (en) * 2008-10-01 2013-08-07 株式会社エンプラス Optical element molding die and optical element manufacturing method using the same
JP5093281B2 (en) * 2010-03-31 2012-12-12 ブラザー工業株式会社 Lens and lens manufacturing method
WO2012043190A1 (en) * 2010-09-30 2012-04-05 コニカミノルタオプト株式会社 Method for manufacturing lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768614A (en) * 1993-09-03 1995-03-14 Olympus Optical Co Ltd Injection molding die and injection molding method for optical element
WO2009122862A1 (en) * 2008-03-31 2009-10-08 コニカミノルタオプト株式会社 Optical element manufacturing method, optical element molding die, and optical element
JP2010162798A (en) * 2009-01-16 2010-07-29 Konica Minolta Opto Inc Injection moulding apparatus and method
JP2011201192A (en) * 2010-03-26 2011-10-13 Konica Minolta Opto Inc Molding die, assembling method and molding method for molding die
JP2012153039A (en) * 2011-01-27 2012-08-16 Maxell Finetech Ltd Injection mold, method for injection molding and lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015231661A (en) * 2014-05-15 2015-12-24 東芝機械株式会社 Method and device for machining non-circular hole, and lens
US11406608B2 (en) 2016-07-20 2022-08-09 The Trustees Of Columbia University In The City Of New York Histone acetyltransferase activators and compositions and uses thereof
CN111908774A (en) * 2019-05-10 2020-11-10 赵崇礼 Lens array mold apparatus
CN111908774B (en) * 2019-05-10 2022-07-22 赵崇礼 Lens array mold apparatus

Also Published As

Publication number Publication date
JPWO2013153940A1 (en) 2015-12-17
JP5835473B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5634615B2 (en) Lens and lens molding method
JP6429434B2 (en) Plastic optical member and manufacturing method thereof
JP5835473B2 (en) Manufacturing method of optical components
JPWO2010035619A1 (en) Optical pickup objective lens manufacturing method, optical pickup objective lens molding die, and optical pickup objective lens
JPWO2014175019A1 (en) Mold for casting
JP4799232B2 (en) Optical element molding die and optical element
JP3814591B2 (en) Optical element, optical element molded article, molding die therefor, and injection molding method
JP4873054B2 (en) Molded lens
JP4850130B2 (en) Optical element, optical element molding die, and optical element molding method
JP4808089B2 (en) Optical element molding method
JP2012250510A (en) Injection mold, injection-molded article, and injection molding method
JP5739678B2 (en) Lens manufacturing method and lens
WO2013118488A1 (en) Optical element, imaging device provided with same, and method for producing optical element
JP6400401B2 (en) Mold for molding and molding method
JP4430475B2 (en) Manufacturing method of plastic lens
JP5434948B2 (en) Manufacturing method of cover glass plate
JP2017065113A (en) Injection molding metallic mold, method for producing molded article, and method for producing dome-shaped cover
JP5254731B2 (en) Optical element molding die and optical element manufacturing method using the same
JP2006265050A (en) Molding die for optical element
JP2014044423A (en) Plastic lens with improved eccentricity and method for manufacturing the same
JP2017185759A (en) Plastic lens and manufacturing method thereof
JP2007265617A (en) Molded lens and die for molded lens
JP2010234671A (en) Molding mold and optical element molded with the molding mold
JP2019177575A (en) Lens molding mold
JP2005007713A (en) Method for demolding plastic molding and mold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014510102

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775259

Country of ref document: EP

Kind code of ref document: A1