JP2006273655A - Method for designing molding face shape in mold - Google Patents

Method for designing molding face shape in mold Download PDF

Info

Publication number
JP2006273655A
JP2006273655A JP2005094786A JP2005094786A JP2006273655A JP 2006273655 A JP2006273655 A JP 2006273655A JP 2005094786 A JP2005094786 A JP 2005094786A JP 2005094786 A JP2005094786 A JP 2005094786A JP 2006273655 A JP2006273655 A JP 2006273655A
Authority
JP
Japan
Prior art keywords
shape
mold
optical element
surface shape
temporary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005094786A
Other languages
Japanese (ja)
Inventor
Akihiro Shimizu
章弘 清水
Akira Komatsu
朗 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005094786A priority Critical patent/JP2006273655A/en
Publication of JP2006273655A publication Critical patent/JP2006273655A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3835Designing moulds, e.g. using CAD-CAM
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/03Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for designing the molding face shape in a mold where a proper mold can be obtained with the frequency of correction reduced. <P>SOLUTION: In the designing method, a temporary molding face shape for producing a desired lens is designed (S2), the shape after thermal expansion of the temporary molding face shape in the glass transition point (Tg) of a glass raw material for the lens is calculated (S3), from the temporary molding face shape after thermal expansion, the shape of the lens after thermal expansion is obtained (S4), from the shape of the lens after thermal expansion, the shape of the lens at ordinary temperature is calculated (S5), and, the calculated shape of the lens and the shape of the desired lens are compared, and whether the shape error lies within an allowable range or not is judged (S6). In the case the shape error lies within the allowable range, the temporary molding face is decided as the molding face shape. Since, in this designing method, upon designing the temporary molding face shape, the deformation of the temporary molding face shape caused by thermal expansion from the ordinary temperature of the raw material glass material to the glass transition point (Tg) of the raw material glass material, and the deformation of the lens caused by thermal shrinkage generated from the glass transition point (Tg) to the ordinary temperature are considered, the temporary molding face shape can be made close to the desired molding face shape. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ガラスからなる光学素子の金型の成形面形状の設計方法に関する。   The present invention relates to a method for designing a molding surface shape of a mold of an optical element made of glass.

ガラスからなる光学素子は、樹脂からなる光学素子と比較して、硬く化学的にも安定しているところから、信頼性を要求されるデバイスに使用されている。非球面レンズ等の光学素子の製造には、原料硝材を研磨して製造する方法があるが、量産性の点から、金型の中で原料硝材をガラス転移点(Tg)以上に加熱し、その後加圧することによって光学素子を製造する熱成形方式の製造方法が用いられている。
熱成形用金型(以後、金型とする)を利用して光学素子を製造する場合、熱膨張による金型の変形、加圧による金型の変形、熱収縮による光学素子の変形等の変形によって、設計された金型から所望の形状の光学素子を得るのは難しい。
そのため、まず、仮金型を作製し、この仮金型を用いて光学素子を製造し、この仮金型から製造された光学素子の形状を測定し、この測定された形状と所望の光学素子の形状とを比較して得られる形状誤差をもとに、仮金型の補正を繰り返して行い、最終的に最適な金型を得ていることが従来行われている。
Optical elements made of glass are used in devices that require reliability because they are harder and more chemically stable than optical elements made of resin. In the production of optical elements such as aspherical lenses, there is a method of polishing a raw material glass material, but from the viewpoint of mass productivity, the raw material glass material is heated to a glass transition point (Tg) or higher in a mold, Thereafter, a thermoforming manufacturing method for manufacturing an optical element by applying pressure is used.
When manufacturing an optical element using a thermoforming mold (hereinafter referred to as a mold), deformation of the mold due to thermal expansion, deformation of the mold due to pressurization, deformation of the optical element due to thermal contraction, etc. Therefore, it is difficult to obtain an optical element having a desired shape from the designed mold.
Therefore, first, a temporary mold is prepared, an optical element is manufactured using the temporary mold, the shape of the optical element manufactured from the temporary mold is measured, and the measured shape and the desired optical element are measured. Based on the shape error obtained by comparing with the shape, the correction of the temporary mold is repeatedly performed to finally obtain the optimum mold.

この金型の設計方法において、仮金型から製造された光学素子と所望の光学素子との形状誤差を求める方法として、従来では、仮金型から製造された光学素子を三次元形状測定機により形状測定を行い、これを所望の値を比較する方法がある(例えば、特許文献1及び特許文献2参照)。
さらに、仮金型から製造された光学素子と所望の光学素子との形状誤差を求める従来の方法として、仮金型で製造された光学素子の球面収差を測定し、この側定値を所望の値と比較する方法(例えば、特許文献3参照)や、仮金型で製造された光学素子の波面収差を測定し、この測値と所望の値とを比較する方法がある(例えば、特許文献4参照)。
In this mold design method, as a method for obtaining a shape error between an optical element manufactured from a temporary mold and a desired optical element, conventionally, an optical element manufactured from a temporary mold is measured by a three-dimensional shape measuring machine. There is a method of measuring the shape and comparing this with a desired value (see, for example, Patent Document 1 and Patent Document 2).
Further, as a conventional method for obtaining a shape error between an optical element manufactured from a temporary mold and a desired optical element, the spherical aberration of the optical element manufactured from the temporary mold is measured, and this lateral value is set to a desired value. (For example, see Patent Document 3) and a method for measuring the wavefront aberration of an optical element manufactured with a temporary mold and comparing the measured value with a desired value (for example, Patent Document 4). reference).

特開平5−96572号公報(段落番号[0009]、図1)Japanese Patent Laid-Open No. 5-96572 (paragraph number [0009], FIG. 1) 特開2001−62871号公報(段落番号[0016])JP 2001-62871 A (paragraph number [0016]) 特開2002−96344号公報(段落番号[0019]〜[0034]、図2)JP 2002-96344 A (paragraph numbers [0019] to [0034], FIG. 2) 特開2004−299934号公報(段落番号[0015]〜[0024]、図2)JP 2004-299934 A (paragraph numbers [0015] to [0024], FIG. 2)

しかし、これらの従来の方法では、まず、仮金型で光学素子を製造し、この光学素子の形状や光学特性を測定し、その測定値が所望値であるか否かを判断しているため、仮金型の補正を繰り返すことになる。
これは、仮金型設計時に、熱膨張による金型の変形及び熱収縮による光学素子の変形が考慮されていないためである。
そのため、仮金型の補正を繰り返しても所望の光学素子の形状と仮金型から製造された光学素子の形状との形状誤差がなかなか許容範囲に収まらず、仮金型の補正回数が多くなっている。
光学素子を量産するにあたり、仮金型の補正回数が多いと、量産開始が遅れることにもなり、金型製造コストが高いものになるという不都合が生じる。
However, in these conventional methods, first, an optical element is manufactured with a temporary mold, the shape and optical characteristics of the optical element are measured, and it is determined whether or not the measured value is a desired value. Then, the correction of the temporary mold is repeated.
This is because the deformation of the mold due to thermal expansion and the deformation of the optical element due to thermal contraction are not considered at the time of designing the temporary mold.
For this reason, even if the correction of the temporary mold is repeated, the shape error between the shape of the desired optical element and the shape of the optical element manufactured from the temporary mold is not easily within the allowable range, and the number of corrections of the temporary mold increases. ing.
In mass production of optical elements, if the number of corrections of the temporary mold is large, the start of mass production will be delayed, resulting in inconvenience that the mold manufacturing cost becomes high.

本発明の目的は、少ない補正回数で最適な金型が得られる金型の成形面形状の設計方法を提供することにある。   An object of the present invention is to provide a method for designing a molding surface shape of a mold that can obtain an optimal mold with a small number of corrections.

本発明の金型の成形面形状の設計方法は、所望の光学素子を製造するための金型の仮成形面形状を設計する第1工程と、常温から前記光学素子の原料硝材が有するガラス転移点(Tg)までの温度変化に伴う熱膨張後の前記金型の仮成形面形状を算出する第2工程と、前記第2工程で算出された前記熱膨張後の金型の仮成形面形状を、熱膨張後の前記光学素子の形状であると仮定して仮光学素子の形状を算出する第3工程と、前記第3工程で算出された前記仮光学素子の形状に基づき、前記原料硝材のガラス転移点(Tg)から常温まで冷却した際の温度変化に伴う熱収縮後の前記仮光学素子の形状を算出する第4工程と、前記第4工程で算出された前記熱収縮後の仮光学素子の表面形状と所望の光学素子の表面形状とを比較し、前記表面形状の光軸方向における寸法差である第1寸法差が許容範囲内か否かを判断する第5工程とを含み、前記第5工程における前記第1寸法差が許容範囲内のときは、前記第1工程で設計した前記金型の仮成形面形状を金型の成形面形状とする ことを特徴とする   The molding surface shape design method of the present invention includes a first step of designing a temporary molding surface shape of a mold for producing a desired optical element, and a glass transition of a raw material glass material of the optical element from room temperature. A second step of calculating a temporary molding surface shape of the mold after thermal expansion accompanying a temperature change up to a point (Tg), and a temporary molding surface shape of the mold after thermal expansion calculated in the second step A third step of calculating the shape of the temporary optical element on the assumption that it is the shape of the optical element after thermal expansion, and the raw material glass material based on the shape of the temporary optical element calculated in the third step A fourth step of calculating the shape of the temporary optical element after thermal contraction accompanying a temperature change when cooled from the glass transition point (Tg) to room temperature, and the temporary contraction after the thermal contraction calculated in the fourth step The surface shape of the optical element is compared with the surface shape of the desired optical element. A fifth step of determining whether or not a first dimensional difference that is a dimensional difference in the optical axis direction is within an allowable range, and when the first dimensional difference in the fifth step is within an allowable range, The temporary molding surface shape of the mold designed in one step is the molding surface shape of the mold.

ここで、金型の仮成形面形状の熱膨張後の形状を算出するにあたり、光学素子の原料硝材のガラス転移点(Tg)を基準としたのは次の理由による。
ガラス製光学素子を熱成形により製造する場合においては、原料硝材をガラス転移点(Tg)付近よりもっと高い温度まで加熱し、さらに、プレス力を加える。そのため、金型には熱膨張による変形とプレスによる機械変形が発生しており、その変形量は大きい。しかし、ガラス転移点(Tg)付近まで冷却させた時には、プレス力が開放されているので、金型の変形はガラス転移点付近での金型の熱膨張だけと見なすことができる。そして、この時、原料硝材は金型のキャビティ(凹部)に密着しているので、その形状が原料硝材自体の形状と見なすことができる。
Here, in calculating the shape after the thermal expansion of the temporary molding surface shape of the mold, the glass transition point (Tg) of the raw material glass material of the optical element was used as a reference for the following reason.
In the case of producing a glass optical element by thermoforming, the raw glass material is heated to a temperature higher than the vicinity of the glass transition point (Tg), and a pressing force is further applied. Therefore, deformation due to thermal expansion and mechanical deformation due to pressing have occurred in the mold, and the amount of deformation is large. However, since the pressing force is released when it is cooled to near the glass transition point (Tg), the deformation of the mold can be regarded as only the thermal expansion of the mold near the glass transition point. At this time, since the raw glass material is in close contact with the cavity (concave portion) of the mold, the shape can be regarded as the shape of the raw glass material itself.

この発明によれば、金型の仮成形面形状を設計する際に、原料硝材のガラス転移点(Tg)における熱膨張による金型の仮成形面形状の変形及びガラス転移点(Tg)付近から常温までに発生する熱収縮による光学素子の変形が考慮されているから、一度設計した金型の仮成形面形状の形状が所望の光学素子の形状に近づくことになる。
従って、仮成形面形状から光学素子を製造し、これを所望の光学素子の形状等と比較する従来例に比べて、仮成形面形状の補正回数が少なくなり、金型の作成までの時間や費用が削減される。
According to this invention, when designing the temporary molding surface shape of the mold, the deformation of the temporary molding surface shape of the mold due to thermal expansion at the glass transition point (Tg) of the raw glass material and the vicinity of the glass transition point (Tg). Since deformation of the optical element due to thermal shrinkage that occurs until normal temperature is taken into consideration, the shape of the temporary molding surface shape of the mold once designed approaches the shape of the desired optical element.
Therefore, the number of corrections for the shape of the temporary molding surface is reduced compared to the conventional example in which the optical element is manufactured from the shape of the temporary molding surface and compared with the shape of the desired optical element, etc. Cost is reduced.

本発明では、前記第5工程で前記第1寸法差が許容範囲外のときは、前記第1寸法差を補正する条件を前記第1工程における仮成形面形状の設計条件に付加した上で、前記第1工程から前記第4工程を繰り返す構成が好ましい。
この発明では、熱膨張による金型の仮成形面形状の変形及び熱収縮による光学素子の変形を考慮した補正を繰り返すことにより、より仮成形面形状が所望の光学素子の形状が得られる金型の形状に近づき、仮成形面形状の補正回数が少なくなる。
In the present invention, when the first dimensional difference is outside the allowable range in the fifth step, after adding a condition for correcting the first dimensional difference to the design condition of the temporary molding surface shape in the first step, A configuration in which the first step to the fourth step are repeated is preferable.
In this invention, a mold in which the shape of the optical element with a desired temporary molding surface shape can be obtained by repeating the correction considering the deformation of the temporary molding surface shape of the mold due to thermal expansion and the deformation of the optical element due to thermal contraction. The number of corrections of the temporary molding surface shape is reduced.

本発明では、前記金型成形面形状を用いて作成された金型により製造された光学素子の表面形状を測定し、この表面形状と所望の光学素子の表面形状とを比較し、前記表面形状の光軸方向における寸法差である第2寸法差に基づき前記第2工程における前記熱膨張後の仮成形面形状を補正する第6工程を備える構成が好ましい。
この発明では、熱膨張による金型の仮成形面形状の変形及び熱収縮による光学素子の変形を考慮した補正を行う他に、実際に製造された光学素子を所望の光学素子と形状を比較して形状誤差の補正を行うので、より仮成形面形状の形状が所望の光学素子の形状が得られる金型の形状に近づき、仮成形面形状の補正回数が少なくなる。
In the present invention, the surface shape of an optical element manufactured by a mold created using the mold molding surface shape is measured, and the surface shape is compared with the surface shape of a desired optical element. Preferably, the configuration includes a sixth step of correcting the shape of the temporary molding surface after the thermal expansion in the second step based on a second dimensional difference that is a dimensional difference in the optical axis direction.
In this invention, in addition to performing correction in consideration of deformation of the temporary molding surface shape of the mold due to thermal expansion and deformation of the optical element due to thermal contraction, the actually manufactured optical element is compared with the desired optical element in shape. Since the shape error is corrected, the shape of the temporary molding surface becomes closer to the shape of the mold that can obtain the shape of the desired optical element, and the number of corrections of the temporary molding surface shape is reduced.

以下、本発明の一実施形態を図面に基づいて説明する。
図1には、本発明の一実施形態にかかる金型の設計方法で使用する光学素子の断面が示されている。本実施形態では、光学素子は片面非球面のレンズ1であり、この片側非球面のレンズ1を製造するため、非球面2側に対応した金型と、球面3側に対応した金型とを使用する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a cross section of an optical element used in a mold designing method according to an embodiment of the present invention. In the present embodiment, the optical element is a single-sided aspherical lens 1, and in order to manufacture the single-sided aspherical lens 1, a mold corresponding to the aspherical surface 2 side and a mold corresponding to the spherical surface 3 side are provided. use.

レンズ1は種々のガラスレンズを使用できる。例えば、材質としてOHARA社製L−LAL13を使用することもできる。
レンズ1は、種々の形状が採用できるが、例えば、直径φが30mmで、二つの凸面を有する凸レンズを採用できる。二つの凸面は、片側が非球面2で他方が球面3となっている片面非球面レンズである。ここで、非球面2の形状は、光軸方向の座標値Zと光軸からの高さhの座標とで表すことが可能であり、具体的には、数式1の一般式で表すことができる。
The lens 1 can use various glass lenses. For example, OHARA L-LAL13 can be used as the material.
Although various shapes can be employed for the lens 1, for example, a convex lens having a diameter φ of 30 mm and two convex surfaces can be employed. The two convex surfaces are single-sided aspherical lenses in which one side is an aspherical surface 2 and the other is a spherical surface 3. Here, the shape of the aspherical surface 2 can be represented by the coordinate value Z in the optical axis direction and the coordinate of the height h from the optical axis. Specifically, it can be represented by the general formula of Formula 1. it can.

本実施形態では、Rが−45.25、Kが−9.451、Aが9.21836E−7、Aが−1.51528E−8、Aが1.02209E−10、A10が5.0119E−14のものを用いると、レンズは数式2で表すことができる。 In this embodiment, R is −45.25, K is −9.451, A 4 is 9.21836E-7, A 6 is −1.51528E-8, A 8 is 1.02209E-10, and A 10 is If the one of 5.0119E-14 is used, the lens can be expressed by Equation 2.

このレンズ1の製造のために、金型の内部に原料硝材を投入し、この状態で、原料硝材がガラス転移点(Tg)を越えて屈伏点(Ts)付近まで加熱され、その後、一つの金型が近接してプレス成形が行われる。
その後、転移点温度(Tg)までプレス力を保持したまま、もしくは間欠的にプレスしながら冷却し、転移点温度(Tg)付近までにプレス力を解除する。その後、冷却を継続させていく。
原料硝材においては、プレス後、屈伏点温度(Ts)から転移点温度(Tg)までは塑性変形、
転移点温度(Tg)以下では熱収縮による熱弾性変形すると見なすことができる。
本実施形態で使用される原料硝材は、ガラス転移点(Tg)が500〜600℃のガラスである。ガラス転移点(Tg)は300℃程度の低融点ガラスも使用可能であるが、原料硝材4のガラス転移点(Tg)が高いほど、加熱による変形量も大きいので本実施形態の金型の設計方法が有効に利用できる。
In order to manufacture the lens 1, a raw material glass material is introduced into the mold, and in this state, the raw material glass material is heated to the vicinity of the sag point (Ts) over the glass transition point (Tg). Press molding is performed in close proximity to the mold.
Thereafter, while maintaining the pressing force up to the transition point temperature (Tg) or cooling while pressing intermittently, the pressing force is released to the vicinity of the transition point temperature (Tg). Thereafter, cooling is continued.
In the raw glass material, plastic deformation from the yield point temperature (Ts) to the transition point temperature (Tg) after pressing,
Below the transition temperature (Tg), it can be regarded as thermoelastic deformation due to heat shrinkage.
The raw glass material used in the present embodiment is glass having a glass transition point (Tg) of 500 to 600 ° C. Although a glass transition point (Tg) having a low melting point of about 300 ° C. can be used, the higher the glass transition point (Tg) of the raw material glass material 4 is, the larger the deformation amount due to heating is. The method can be used effectively.

図2のうち(A)は片面非球面のレンズ1を製造する金型のうち非球面2側の金型10の一部を破断した斜視図が示されており、(B)は、その断面図が示され、(C)は、その斜視図が示されている。
図2において、金型10は、略短寸円柱状に形成されており、プレスに伴う加圧に耐えられるようにある程度の厚みを有している。そして、その円柱の片側の底面には、凸面である非球面2の形状に対応した凹部11が形成されている。この凹部11はキャビティを形成するものであり、レンズ1の材料となる原料硝材4(図3参照)が投入される。
球面3側に対応した金型については図示していないが、凹部11が球面3の形状に対応して形成されている以外は、金型10と略同様の形状を有している。
2A is a perspective view in which a part of the mold 10 on the aspherical surface 2 side of the mold for manufacturing the single-sided aspherical lens 1 is broken, and FIG. 2B is a sectional view thereof. The figure is shown, and (C) is a perspective view thereof.
In FIG. 2, the mold 10 is formed in a substantially short cylindrical shape, and has a certain thickness so that it can withstand the pressurization associated with the press. And the recessed part 11 corresponding to the shape of the aspherical surface 2 which is a convex surface is formed in the bottom face of the one side of the cylinder. The recess 11 forms a cavity, and a raw material glass material 4 (see FIG. 3) which is a material of the lens 1 is input.
Although the mold corresponding to the spherical surface 3 side is not shown, it has substantially the same shape as the mold 10 except that the concave portion 11 is formed corresponding to the shape of the spherical surface 3.

図2(B)において、仮想直線Lに沿ったT1、T2、T3で示すように、金型10の厚みは、その場所によって異なる。従って、金型10の温度が上昇した場合、熱膨張による形状変形量も場所によって異なる。特に、片面非球面レンズ1の非球面度が大きくなると、T1とT3とでの熱膨張による形状変化量の差が大きくなる。また、直径φ方向への熱膨張による変化量も大きくなる。
なお、金型10は、例えば、超硬合金、窒化炭素、炭化珪素等の高強度高耐熱性材料により構成されている。
In FIG. 2B, as indicated by T1, T2, and T3 along the virtual straight line L, the thickness of the mold 10 varies depending on the location. Therefore, when the temperature of the mold 10 rises, the amount of shape deformation due to thermal expansion also varies depending on the location. In particular, when the asphericity of the single-sided aspherical lens 1 increases, the difference in the amount of change in shape due to thermal expansion between T1 and T3 increases. Further, the amount of change due to thermal expansion in the diameter φ direction also increases.
In addition, the metal mold | die 10 is comprised with high intensity | strength high heat resistant materials, such as a cemented carbide alloy, carbon nitride, silicon carbide, for example.

図3には、加熱前の原料硝材4と金型10との接触の様子を示した一部断面図が示されている。図4には、金型10及び原料硝材4を加熱、加圧した後、ガラス転移点(Tg)まで冷却した時の、原料硝材4と金型10との接触の様子を示した一部断面が示されている。この時プレス力は開放されている。図5は、図4を室温まで冷却した状態における原料硝材4と金型10との接触の様子を示した一部断面が示されている。ここで、原料硝材4と球面3に対応する仮成形面形状との接触の様子は省略してあるが、原料硝材4と金型10との接触の様子と同様である。
図3において、加熱前の状態では、原料硝材4は熱弾性領域内の物性を持つ。金型10は、その中心部の厚みがT3であり、外周部の厚みがT1である。また、金型10の直径はfであり、金型10の凹部11の形状に変化がない。
FIG. 3 is a partial cross-sectional view showing a state of contact between the raw material glass material 4 and the mold 10 before heating. FIG. 4 is a partial cross-section showing the contact between the raw material glass material 4 and the mold 10 when the mold 10 and the raw material glass material 4 are heated and pressurized and then cooled to the glass transition point (Tg). It is shown. At this time, the pressing force is released. FIG. 5 shows a partial cross section showing a state of contact between the raw glass material 4 and the mold 10 in a state where FIG. 4 is cooled to room temperature. Here, although the state of contact between the raw material glass material 4 and the temporary molding surface shape corresponding to the spherical surface 3 is omitted, it is the same as the state of contact between the raw material glass material 4 and the mold 10.
In FIG. 3, the raw glass material 4 has physical properties in the thermoelastic region in a state before heating. The mold 10 has a central portion T3 and an outer peripheral portion T1. The diameter of the mold 10 is f, and the shape of the concave portion 11 of the mold 10 is not changed.

図4において、原料硝材4と金型10とがガラス転移点(Tg)以上に加熱されると、原料硝材4は、塑性変形領域の物性を持ち始める。金型10の形状は、以下のように変化する。
図4においては、金型10の厚み方向への変形量を簡略化するため、中心部の厚みT3の変化はほとんどないように示している。外周部の厚みは、熱膨張による厚みの変化ΔT1分だけ伸びて(T1+ΔT1)となる。金型10は径方向にも膨張するので、金型10の直径はfから(f+Δf)となる。これらの膨張によって、金型10の非球面に対応する凹部11の形状は、熱膨張後の凹部12の形状となる。
In FIG. 4, when the raw glass material 4 and the mold 10 are heated to the glass transition point (Tg) or higher, the raw glass material 4 starts to have physical properties in the plastic deformation region. The shape of the mold 10 changes as follows.
In FIG. 4, in order to simplify the amount of deformation in the thickness direction of the mold 10, it is shown that there is almost no change in the thickness T <b> 3 at the center. The thickness of the outer peripheral portion is increased by the thickness change ΔT1 due to thermal expansion to (T1 + ΔT1). Since the mold 10 also expands in the radial direction, the diameter of the mold 10 is changed from f to (f + Δf). Due to these expansions, the shape of the recess 11 corresponding to the aspherical surface of the mold 10 becomes the shape of the recess 12 after thermal expansion.

原料硝材4と金型10とがガラス転移点(Tg)まで加熱された状態で、図示しない球面3側の金型10によって原料硝材4が加圧されると、原料硝材4は、熱膨張後の金型10の凹部12に倣って塑性変形する。
図5において、加熱された金型10を室温まで冷却すると、金型10及び原料硝材4が収縮し、金型10は元の状態に戻る。
When the raw material glass material 4 and the mold 10 are heated up to the glass transition point (Tg) and the raw material glass material 4 is pressed by the mold 10 on the spherical surface 3 side (not shown), the raw material glass material 4 is subjected to thermal expansion. The plastic deformation follows the recess 12 of the mold 10.
In FIG. 5, when the heated mold 10 is cooled to room temperature, the mold 10 and the raw glass material 4 contract, and the mold 10 returns to the original state.

次に、本実施形態にかかる金型の設計方法を図6に基づいて説明する。
図6は、本実施形態の金型の設計方法に係るフローチャートである。球面3側に対応した金型についても同様の設計方法で設計できる。
以下に図6のフローチャートに基づいて本実施形態を詳しく説明する。
[第1工程]
まず、所望のレンズ(光学素子)を設計する(S1)。このレンズの設計にあたり、数1及び数2の式に従ってレンズ1を設計する。
その後、所望のレンズ1の外径形状に合わせた凹部11を有する金型の仮成形面形状を設計する(S2)。この時点では、片面非球面レンズ1の非球面2及び球面3の形状と金型10の凹部の形状は同じであってよい。
Next, a mold designing method according to the present embodiment will be described with reference to FIG.
FIG. 6 is a flowchart according to the mold designing method of the present embodiment. A mold corresponding to the spherical surface 3 side can also be designed by the same design method.
The present embodiment will be described in detail below based on the flowchart of FIG.
[First step]
First, a desired lens (optical element) is designed (S1). In designing this lens, the lens 1 is designed according to the formulas (1) and (2).
Thereafter, the shape of the temporary molding surface of the mold having the recess 11 matched with the outer diameter shape of the desired lens 1 is designed (S2). At this time, the shape of the aspherical surface 2 and the spherical surface 3 of the single-sided aspherical lens 1 and the shape of the concave portion of the mold 10 may be the same.

[第2工程]
その後、レンズ1の材料となる原料硝材4の常温からガラス転移点(Tg)における金型の仮成形面形状の熱膨張後の形状を算出する(S3)。
この熱膨張後の仮成形面形状の計算には、有限要素法を用いた熱伝導解析法を使用する。この方法では、仮成形面形状を有限の要素に分けて、その要素における温度変化を求め、それに応じた熱膨張による変化量をシミュレーションにより求める。熱伝導解析法によれば、精度よくシミュレーションが可能で、実際に仮金型を作製してガラス転移点(Tg)まで加熱して形状の測定を行なわなくても、熱膨張による形状の変化が予測可能である。
[Second step]
Thereafter, the shape after thermal expansion of the temporary molding surface shape of the mold at the glass transition point (Tg) is calculated from the normal temperature of the raw material glass material 4 which is the material of the lens 1 (S3).
A heat conduction analysis method using a finite element method is used to calculate the shape of the temporarily formed surface after the thermal expansion. In this method, the temporary molding surface shape is divided into finite elements, a temperature change in the element is obtained, and a change amount due to thermal expansion corresponding thereto is obtained by simulation. According to the heat conduction analysis method, simulation can be performed with high accuracy, and the shape change due to thermal expansion can be achieved without actually preparing a temporary mold and heating the glass transition point (Tg) to measure the shape. Predictable.

この熱膨張後の形状算出のために、三次元CADソフトや熱解析ソフトを使用することができる。三次元CADソフトは、種々のものを利用できるが、例えば、PTC社の「PRO/ENGINEER」を使用できる。熱解析ソフトは、種々のものを利用できるが、例えば、PTC社の「PRO/MECHANICA」を使用できる。この「PRO/MECHANICA」は構造解析機能や熱伝導解析機能等の種々の機能を有するソフトであり、構造解析にあっては有限要素法が用いられる。この有限要素法は、複雑な三次元形状の物体を単純な形状の個々の要素に分割することで、より単純な式の重ね合わせとし、多元の連立方程式を解くことで、物体の応力や変形等を求める方式である。   In order to calculate the shape after the thermal expansion, three-dimensional CAD software or thermal analysis software can be used. Various three-dimensional CAD software can be used, for example, “PRO / ENGINEER” of PTC can be used. Various thermal analysis software can be used. For example, PPRO's “PRO / MECHANAICA” can be used. This “PRO / MECHANAICA” is software having various functions such as a structural analysis function and a heat conduction analysis function, and a finite element method is used for the structural analysis. This finite element method divides a complex three-dimensional object into individual elements of simple shapes, superimposing simpler expressions, and solving multi-dimensional simultaneous equations, thereby stress and deformation of the object Etc.

[第3工程]
その後、原料硝材4のガラス転移点(Tg)における原料硝材4の熱膨張量を算出する(S4)。第2工程で算出した仮成形面形状の熱膨張後の凹部形状12に倣って原料硝材4が塑性変形したとして、仮成形面形状の熱膨張後の形状が、原料硝材4の熱膨張後の形状(仮光学素子)であるとする。

[第4工程]
さらに、仮光学素子である熱膨張後の原料硝材4の形状を元に、ガラス転移点(Tg)から常温まで、冷却した時の原料硝材4の熱収縮量を求める。この熱収縮量に基づいて、常温での光学素子(レンズ1)の形状を算出する(S5)。この算出にあたり、第2工程で使用したソフトを利用する。
[Third step]
Thereafter, the thermal expansion amount of the raw glass material 4 at the glass transition point (Tg) of the raw glass material 4 is calculated (S4). Assuming that the raw material glass material 4 is plastically deformed following the recessed shape 12 after the thermal expansion of the temporary molding surface calculated in the second step, the shape after the thermal expansion of the temporary molding surface shape is the same as that after the thermal expansion of the raw material glass material 4. Suppose that it is a shape (temporary optical element).

[Fourth step]
Furthermore, based on the shape of the raw glass material 4 after thermal expansion, which is a temporary optical element, the amount of thermal shrinkage of the raw material glass material 4 when cooled from the glass transition point (Tg) to room temperature is obtained. Based on this heat shrinkage, the shape of the optical element (lens 1) at room temperature is calculated (S5). For this calculation, the software used in the second step is used.

[第5工程]
この算出された光学素子(レンズ1)の形状と所望の光学素子の形状とを比較し、形状誤差が許容範囲内か否かを判断する(S6)。
この判断のため、所望の光学素子に対して算出された光学素子の表面の寸法差(第1寸法差)がどれだけあるかを求める。
例えば、図7に示される通り、所望の光学素子の表面と算出された光学素子の表面との光軸方向の寸法差を光学素子の直径に沿って求め、この寸法差の最大値P(Peak)と最小値V(Valley)との差(P+V)を形状誤差とし、この第1寸法差が予め既定した許容値以下であれば形状誤差が許容範囲内であると判断し、許容値を超えるものであれば形状誤差が許容範囲外であると判断する。
図7で示されるグラフは前述の「PRO/MECHANICA」から出力されるデータを処理するソフトを作成し、このソフトで自動的に求めるものであってもよい。
[Fifth step]
The calculated shape of the optical element (lens 1) is compared with the shape of the desired optical element, and it is determined whether or not the shape error is within an allowable range (S6).
For this determination, it is determined how much the dimensional difference (first dimensional difference) of the surface of the optical element is calculated for the desired optical element.
For example, as shown in FIG. 7, the dimensional difference in the optical axis direction between the surface of the desired optical element and the calculated surface of the optical element is obtained along the diameter of the optical element, and the maximum value P (Peak ) And the minimum value V (Valley) (P + V) as a shape error. If this first dimensional difference is less than or equal to a predetermined tolerance, it is determined that the shape error is within the allowable range and exceeds the allowable value. If it is, it is determined that the shape error is outside the allowable range.
The graph shown in FIG. 7 may be obtained by creating software for processing data output from the above-mentioned “PRO / MECHANAICA” and automatically obtaining it.

[第6工程]
第5工程で形状誤差が許容範囲内であると判断した場合には、金型の仮成形面形状を金型の成形面形状として設計し(S7)、この設計された金型で光学素子を製造し(S8)、製造された光学素子(レンズ1)の形状測定を三次元測定機で行う(S9)。この三次元測定機は、例えば、PANASONIC社のUA3Pを用いることができる。
三次元測定機を用いて光学素子の形状を測定し、この測定された形状と所望の光学素子の形状とを比較して形状誤差が許容範囲か否かを判断する(S10)。所望の光学素子に対して測定された光学素子の表面の寸法差(第2寸法差)がどれだけあるかを求める。
以上のS8〜S10の手順は、例えば、特開平5−96572号公報や特開2001−62871号公報で示される手順であってもよい。
形状誤差(第2寸法差)が許容範囲内であれば、金型が完成したことになり(S11)、一連の金型の設計作業が終了する。一方、形状誤差が許容範囲外であれば、形状誤差を補正する光学素子を再設計し(S12)、S3で示されるステップに戻る。
[Sixth step]
If it is determined in the fifth step that the shape error is within the allowable range, the temporary molding surface shape of the mold is designed as the molding surface shape of the mold (S7), and the optical element is designed using the designed mold. The manufactured optical element (lens 1) is measured with a three-dimensional measuring machine (S9). As this coordinate measuring machine, for example, UA3P manufactured by PANASONIC can be used.
The shape of the optical element is measured using a three-dimensional measuring machine, and the measured shape is compared with the shape of the desired optical element to determine whether or not the shape error is within an allowable range (S10). It is determined how much the dimensional difference (second dimensional difference) of the surface of the optical element is measured with respect to the desired optical element.
The procedures of S8 to S10 described above may be procedures shown in, for example, Japanese Patent Application Laid-Open No. 5-96572 and Japanese Patent Application Laid-Open No. 2001-62871.
If the shape error (second dimensional difference) is within the allowable range, the mold is completed (S11), and a series of mold design work is completed. On the other hand, if the shape error is outside the allowable range, the optical element for correcting the shape error is redesigned (S12), and the process returns to the step indicated by S3.

第5工程で形状誤差が許容範囲外であると判断した場合には、形状誤差を補正する光学素子を再設計する(S12)。この光学素子の再設計にあたり、図7で示されるグラフを作業者が見て、数1で示される数式の数値を作業者の経験に基づいて変更する。
光学素子を再設計したなら、これに適合する仮成形面形状を再設計し(S13)、S3で示されるステップに戻る。
つまり、第5工程で形状誤差が許容範囲外であると判断した場合には、第1工程から前記第4工程を繰り返すことになる。
If it is determined in the fifth step that the shape error is outside the allowable range, the optical element for correcting the shape error is redesigned (S12). In redesigning this optical element, the operator looks at the graph shown in FIG. 7 and changes the numerical value of the mathematical formula expressed by Equation 1 based on the experience of the operator.
If the optical element is redesigned, a temporary molding surface shape conforming to the optical element is redesigned (S13), and the process returns to the step indicated by S3.
That is, if it is determined in the fifth step that the shape error is outside the allowable range, the fourth step is repeated from the first step.

このような本実施形態によれば、次の効果がある。
(1)所望のレンズ1を製造するための仮成形面形状を設計する第1工程と、レンズ1の原料硝材4の常温から前記光学素子の原料硝材が有するガラス転移点(Tg)までにおける仮成形面形状の熱膨張後の形状を算出する第2工程と、この熱膨張後の仮成形面形状から熱膨張後の光学素子の形状を求める第3工程と、この熱膨張後のレンズ1の形状から常温でのレンズ1の形状を算出する第4工程と、この算出されたレンズ1の形状と所望のレンズ1の形状とを比較し、形状誤差が許容範囲内か否かを判断する第5工程とを含み、この第5工程における形状誤差が許容範囲内のときは、第1工程で設計した仮成形面形状を金型の成形面形状とする構成とした。そのため、仮成形面形状を設計する際に、原料硝材4の常温から前記光学素子の原料硝材が有するガラス転移点(Tg)までにおける熱膨張による仮成形面形状の変形及びガラス転移点(Tg)から常温までに発生する熱収縮による片面非球面レンズ1の変形を考慮するので、設計する仮成形面形状を、所望の片面非球面レンズ1の形状が得られる金型の形状により近づけることができる。
従って、仮成形面形状の補正回数を少なくできるから、金型の作成までの時間や費用が削減される。
According to this embodiment, there are the following effects.
(1) A first step of designing a temporary molding surface shape for manufacturing a desired lens 1 and a provisional temperature from the normal temperature of the raw material glass material 4 of the lens 1 to the glass transition point (Tg) of the raw material glass material of the optical element. A second step of calculating the shape of the molding surface after thermal expansion, a third step of obtaining the shape of the optical element after thermal expansion from the temporary molding surface shape after thermal expansion, and the lens 1 after thermal expansion The fourth step of calculating the shape of the lens 1 at room temperature from the shape is compared with the calculated shape of the lens 1 and the desired shape of the lens 1 to determine whether or not the shape error is within an allowable range. When the shape error in the fifth step is within an allowable range, the temporary molding surface shape designed in the first step is used as the molding surface shape of the mold. Therefore, when designing the temporary molding surface shape, the deformation of the temporary molding surface shape due to thermal expansion and the glass transition point (Tg) from the normal temperature of the raw material glass material 4 to the glass transition point (Tg) of the raw material glass material of the optical element. Since the deformation of the single-sided aspherical lens 1 due to thermal contraction that occurs from the normal temperature to the normal temperature is taken into consideration, the shape of the temporary molding surface to be designed can be made closer to the shape of the mold that can obtain the desired shape of the single-sided aspherical lens 1 .
Therefore, since the number of corrections of the temporary molding surface shape can be reduced, the time and cost until the mold is created can be reduced.

(2)第5工程で形状誤差が許容範囲外のときは、第1工程から前記第4工程を繰り返す構成とした。そのため。熱膨張による仮成形面形状の変形及び熱収縮による片面非球面レンズ1の変形を考慮した補正を繰り返すことにより、より仮成形面形状が所望の片面非球面レンズ1の形状が得られる金型10の形状に近づけることができ、仮成形面形状の補正回数を少なくできる。 (2) When the shape error is outside the allowable range in the fifth step, the fourth step is repeated from the first step. for that reason. A mold 10 that can obtain the shape of the single-sided aspherical lens 1 having a desired temporary-shaped surface shape by repeating the correction in consideration of the deformation of the temporary-shaped surface shape due to thermal expansion and the deformation of the single-sided aspherical lens 1 due to thermal contraction. The number of times of correction of the temporary molding surface shape can be reduced.

(3)熱膨張による仮成形面形状の変形及び熱収縮による片面非球面レンズ1の変形を考慮した補正の他に、加圧による仮成形面形状の変形等を含む変形に対する誤差を補正する第6工程を備えるので、より仮成形面形状を所望の片面非球面レンズ1の形状が得られる金型の形状に近づけることができ、仮成形面形状の補正回数を少なくできる。 (3) In addition to correction taking into account deformation of the temporary molding surface shape due to thermal expansion and deformation of the single-sided aspherical lens 1 due to thermal contraction, errors for deformation including deformation of the temporary molding surface shape due to pressurization are corrected. Since the six steps are provided, the shape of the temporary molding surface can be made closer to the shape of a mold that can obtain the shape of the desired single-sided aspherical lens 1, and the number of corrections of the temporary molding surface shape can be reduced.

(4)仮成形面形状及び片面非球面レンズ1の形状が複雑であっても、熱伝導解析法により温度分布のシミュレーションが可能で、それをもとに現実により近い熱膨張による形状の変化を予測できる。
従って、仮成形面形状を所望の片面非球面レンズ1の形状が得られる金型10の形状により近づけることができ、仮成形面形状の修正回数を少なくできる。
(4) Even if the shape of the temporary molding surface and the shape of the single-sided aspherical lens 1 are complex, it is possible to simulate the temperature distribution by the thermal conduction analysis method, and based on this, the shape change due to thermal expansion closer to reality Predictable.
Therefore, the shape of the temporary molding surface can be made closer to the shape of the mold 10 from which the desired shape of the single-sided aspherical lens 1 can be obtained, and the number of corrections of the temporary molding surface shape can be reduced.

(5)第5工程の形状誤差が許容範囲か否かの判定は、算出されたレンズ1の表面寸法と所望のレンズ1の表面寸法とを対比し、この表面寸法の差を表面に沿って算出するとともに、その算出した寸法差の最大値Pと最小値Vとの差(P+V)が許容値より大きいか否かで求める構成としたので、形状誤差の許容範囲を、数値により客観的に判断できることから、仮成形面形状を金型の成形面形状として使用できるか否かを正確に判断することができる。 (5) The determination as to whether or not the shape error in the fifth step is within an allowable range is made by comparing the calculated surface dimension of the lens 1 with the surface dimension of the desired lens 1 and determining the difference in surface dimension along the surface. Since the calculation is performed and the difference (P + V) between the maximum value P and the minimum value V of the calculated dimensional difference is determined to be larger than the allowable value, the allowable range of the shape error is objectively expressed by a numerical value. Since it can be determined, it can be accurately determined whether or not the temporary molding surface shape can be used as the molding surface shape of the mold.

なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、前記実施形態では、光学素子をレンズとして説明したが、本発明はプリズムの設計でも適用することができる。
また、本発明では、第6工程を省略し、第1工程から第5工程までを実行するものでもよい。
It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
For example, in the above-described embodiment, the optical element has been described as a lens, but the present invention can also be applied to a prism design.
Moreover, in this invention, a 6th process may be abbreviate | omitted and a 1st process to a 5th process may be performed.

また、本発明を実施するための最良の方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。つまり、本発明は、主に特定の実施形態に関して説明されているが、本発明の技術的思想及び目的の範囲から逸脱することなく、以上述べた実施形態に対し、使用する材料、温度、処理時間、その他の詳細な事項において、当業者が様々な変形を加えることができるものである。
従って、上記に開示した材料、温度、処理時間などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの材料、温度、処理時間などの限定の一部もしくは全部の限定を外した記載は、本発明に含まれるものである。
The best method for carrying out the present invention has been disclosed in the above description, but the present invention is not limited to this. In other words, the present invention has been described mainly with respect to specific embodiments, but the materials, temperatures, and treatments used for the above-described embodiments can be used without departing from the scope of the technical idea and object of the present invention. Various modifications may be made by those skilled in the art in terms of time and other details.
Accordingly, the descriptions of the materials, temperatures, processing times, and the like disclosed above are exemplary for ease of understanding of the present invention, and are not intended to limit the present invention. Descriptions excluding some or all of the limitations on materials, temperature, processing time, etc. are included in the present invention.

本発明は、デジタルビデオ、デジタルカメラ、携帯電話向けカメラモジュール、監視カメラ、CCDやCMOSなどの固体撮像素子を用いたカメラレンズモジュール用ガラスレンズ、プロジェクタやスキャナ等のレンズモジュールにも利用することができる。   The present invention can also be used for digital video, digital cameras, camera modules for mobile phones, surveillance cameras, glass lenses for camera lens modules using solid-state image sensors such as CCD and CMOS, and lens modules such as projectors and scanners. it can.

本発明の一実施形態にかかる金型の設計方法で使用する光学素子の断面図。Sectional drawing of the optical element used with the design method of the metal mold | die concerning one Embodiment of this invention. 前記実施形態で使用する金型を示すもので、(A)は一部を破断した斜視図、(B)は断面図、(C)は斜視図。The metal mold | die used by the said embodiment is shown, (A) is the perspective view which fractured | ruptured one part, (B) is sectional drawing, (C) is a perspective view. 加熱前の原料硝材と仮成形面形状との様子を示した一部断面図。The partial cross section figure which showed the mode of the raw material glass material before heating, and a temporary molding surface shape. 加熱/加圧後、ガラス転移点まで冷却した時の原料硝材と仮成形面形状との様子を示した一部断面図。The partial cross section figure which showed the mode of the raw material glass material and temporary molding surface shape when it cooled to a glass transition point after heating / pressurization. 加圧後、室温まで冷却した状態の原料硝材と仮成形面形状との様子を示した一部断面図。The partial cross section figure which showed the mode of the raw material glass material of the state cooled to room temperature after pressurization, and a temporary molding surface shape. 前記実施形態にかかる金型の設計方法のフローチャート。5 is a flowchart of a mold design method according to the embodiment. 所望の光学素子の表面と算出された光学素子の表面との光軸方向の寸法差と光学素子の直径方向との関係を示すグラフ。The graph which shows the relationship between the dimensional difference of the optical axis direction of the surface of a desired optical element, and the calculated surface of an optical element, and the diameter direction of an optical element.

符号の説明Explanation of symbols

1…片面非球面のレンズ(光学素子)、4…原料硝材、10…金型   DESCRIPTION OF SYMBOLS 1 ... Single-sided aspherical lens (optical element), 4 ... Raw material glass material, 10 ... Mold

Claims (3)

所望の光学素子を製造するための金型の仮成形面形状を設計する第1工程と、
常温から前記光学素子の原料硝材が有するガラス転移点(Tg)までの温度変化に伴う熱膨張後の前記金型の仮成形面形状を算出する第2工程と、
前記第2工程で算出された前記熱膨張後の金型の仮成形面形状を、熱膨張後の前記光学素子の形状であると仮定して仮光学素子の形状を算出する第3工程と、
前記第3工程で算出された前記仮光学素子の形状に基づき、前記原料硝材のガラス転移点(Tg)から常温まで冷却した際の温度変化に伴う熱収縮後の前記仮光学素子の形状を算出する第4工程と、
前記第4工程で算出された前記熱収縮後の仮光学素子の表面形状と所望の光学素子の表面形状とを比較し、前記表面形状の光軸方向における寸法差である第1寸法差が許容範囲内か否かを判断する第5工程とを含み、
前記第5工程における前記第1寸法差が許容範囲内のときは、前記第1工程で設計した前記金型の仮成形面形状を金型の成形面形状とする、
ことを特徴とする金型の成形面形状の設計方法。
A first step of designing a temporary molding surface shape of a mold for producing a desired optical element;
A second step of calculating a temporary molding surface shape of the mold after thermal expansion accompanying a temperature change from room temperature to a glass transition point (Tg) of the raw glass material of the optical element;
A third step of calculating the shape of the temporary optical element on the assumption that the shape of the temporary molding surface of the mold after the thermal expansion calculated in the second step is the shape of the optical element after the thermal expansion;
Based on the shape of the temporary optical element calculated in the third step, the shape of the temporary optical element after thermal contraction due to a temperature change when cooled from the glass transition point (Tg) of the raw material glass material to room temperature is calculated. And a fourth step to
The surface shape of the temporary optical element after the thermal contraction calculated in the fourth step is compared with the surface shape of the desired optical element, and a first dimensional difference that is a dimensional difference in the optical axis direction of the surface shape is allowed. A fifth step of determining whether or not it is within the range,
When the first dimensional difference in the fifth step is within an allowable range, the temporary molding surface shape of the mold designed in the first step is a molding surface shape of the mold,
A method for designing a molding surface shape of a mold.
請求項1に記載された金型の成形面形状の設計方法において、
前記第5工程で前記第1寸法差が許容範囲外のときは、前記第1寸法差を補正する条件を前記第1工程における仮成形面形状の設計条件に付加した上で、前記第1工程から前記第4工程を繰り返す
ことを特徴とする金型の成形面形状の設計方法。
In the design method of the molding surface shape of the mold according to claim 1,
When the first dimensional difference is outside the allowable range in the fifth step, the first step is performed after adding a condition for correcting the first dimensional difference to the design condition of the temporary molding surface shape in the first step. The fourth step is repeated. A method for designing the molding surface shape of a mold.
請求項1又は請求項2に記載された金型の設計方法において、
前記金型の成形面形状を用いて作成された金型により製造された光学素子の表面形状を測定し、この表面形状と所望の光学素子の表面形状とを比較し、前記表面形状の光軸方向における寸法差である第2寸法差に基づき前記第2工程における前記熱膨張後の仮成形面形状を補正する第6工程を備える
ことを特徴とする金型の成形面形状の設計方法。
In the method for designing a mold according to claim 1 or 2,
Measure the surface shape of the optical element manufactured by the mold created using the molding surface shape of the mold, compare the surface shape with the surface shape of the desired optical element, and the optical axis of the surface shape A method for designing a molding surface shape of a mold, comprising: a sixth step of correcting the temporary molding surface shape after the thermal expansion in the second step based on a second dimensional difference that is a dimensional difference in a direction.
JP2005094786A 2005-03-29 2005-03-29 Method for designing molding face shape in mold Withdrawn JP2006273655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005094786A JP2006273655A (en) 2005-03-29 2005-03-29 Method for designing molding face shape in mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005094786A JP2006273655A (en) 2005-03-29 2005-03-29 Method for designing molding face shape in mold

Publications (1)

Publication Number Publication Date
JP2006273655A true JP2006273655A (en) 2006-10-12

Family

ID=37208755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005094786A Withdrawn JP2006273655A (en) 2005-03-29 2005-03-29 Method for designing molding face shape in mold

Country Status (1)

Country Link
JP (1) JP2006273655A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069654A (en) * 2008-09-17 2010-04-02 Mitsubishi Electric Corp Structural analysis method, structural analysis apparatus, structural analysis program, physical property calculation method for structural analysis, physical property calculation apparatus for structural analysis, and physical property calculation program for structural analysis
CN111086132A (en) * 2019-12-30 2020-05-01 天津银宝山新科技有限公司 Plastic grid pre-deformation mold design method
CN111186078A (en) * 2020-01-07 2020-05-22 宁波公牛电器有限公司 Injection molding method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069654A (en) * 2008-09-17 2010-04-02 Mitsubishi Electric Corp Structural analysis method, structural analysis apparatus, structural analysis program, physical property calculation method for structural analysis, physical property calculation apparatus for structural analysis, and physical property calculation program for structural analysis
CN111086132A (en) * 2019-12-30 2020-05-01 天津银宝山新科技有限公司 Plastic grid pre-deformation mold design method
CN111086132B (en) * 2019-12-30 2022-04-12 天津银宝山新科技有限公司 Plastic grid pre-deformation mold design method
CN111186078A (en) * 2020-01-07 2020-05-22 宁波公牛电器有限公司 Injection molding method
CN111186078B (en) * 2020-01-07 2021-12-07 宁波公牛电器有限公司 Injection molding method

Similar Documents

Publication Publication Date Title
US6829109B2 (en) Holder-mounted optical element
JP4972760B2 (en) Optical element manufacturing method
JP2004287319A (en) Method for manufacturing optical element with holder
JP2006273655A (en) Method for designing molding face shape in mold
JP2004299934A (en) Method for designing mold to form optical element
TWI249465B (en) Optical lens molding apparatus
JP4728280B2 (en) Bonding optical element
JP7088681B2 (en) Manufacturing method of molded product
JP4347460B2 (en) Optical element molding die processing method
TW200909900A (en) Barrel, method for making same and lens module
JP2002326230A (en) Method and apparatus for manufacturing mold, and mold and molding
JP2007125780A (en) Mold, method for producing mold, and method for molding thermoplastic material
JP4751818B2 (en) Mold for forming and manufacturing method thereof
JP4886409B2 (en) Optical component, imaging device, optical component design method, and optical component manufacturing method
JP5219617B2 (en) Optical element and manufacturing method thereof
JP5254731B2 (en) Optical element molding die and optical element manufacturing method using the same
JP3938107B2 (en) Hybrid mold
JP2005272279A (en) Apparatus and method for forming optical element
JP6582584B2 (en) Method for manufacturing plastic optical element
JP4813305B2 (en) Optical element manufacturing method
JP5231364B2 (en) Lens array, imaging lens, and lens array mold
JP5312968B2 (en) Optical component and method of manufacturing optical component
JP2009203096A (en) Glass lens molding device and glass lens molding method
JP2006159659A (en) Optical element and its molding method
JP2005247640A (en) Mold for molding optical element and manufacturing method for optical element

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070404

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603