JP4815898B2 - Injection mold and injection molding method - Google Patents

Injection mold and injection molding method Download PDF

Info

Publication number
JP4815898B2
JP4815898B2 JP2005190620A JP2005190620A JP4815898B2 JP 4815898 B2 JP4815898 B2 JP 4815898B2 JP 2005190620 A JP2005190620 A JP 2005190620A JP 2005190620 A JP2005190620 A JP 2005190620A JP 4815898 B2 JP4815898 B2 JP 4815898B2
Authority
JP
Japan
Prior art keywords
mold
heat insulating
insulating material
resin
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005190620A
Other languages
Japanese (ja)
Other versions
JP2006044247A (en
Inventor
佳弘 奥村
篤 内藤
幹司 関原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2005190620A priority Critical patent/JP4815898B2/en
Publication of JP2006044247A publication Critical patent/JP2006044247A/en
Application granted granted Critical
Publication of JP4815898B2 publication Critical patent/JP4815898B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、射出成形用金型及び射出成形方法、特に、レンズや導光板など小型軽量の光学素子を成形するための射出成形用金型及び該金型を用いた射出成形方法に関する。   The present invention relates to an injection mold and an injection molding method, and more particularly to an injection mold for molding a small and light optical element such as a lens and a light guide plate, and an injection molding method using the mold.

近年では、樹脂材料及び射出成形技術の発展により、小型軽量のレンズ、プリズムプレート(モバイル機器などに用いられるLED照明板)、導光板などが種々開発されており、光ピックアップ装置の対物レンズ、コリメートレンズなどや携帯電話などの光学素子としての需要が高まっている。この種の光学素子にあっては、回折のための微細形状、プリズム面やブレーズ面などの微細形状、あるいは、平滑面を高精度に転写することのできる射出成形用金型が要求されている。   In recent years, the development of resin materials and injection molding technology has led to the development of various types of small and lightweight lenses, prism plates (LED lighting plates used in mobile devices, etc.), light guide plates, etc. There is an increasing demand for optical elements such as lenses and mobile phones. In this type of optical element, there is a demand for an injection mold that can accurately transfer a fine shape for diffraction, a fine shape such as a prism surface or a blaze surface, or a smooth surface. .

従来、特許文献1には、高精度での転写性を達成するため、図10に示すように、型板51の中央部分に配置したコア型52と表面加工層54との間に断熱材53を設けた成形用金型50が提案されている。微細形状であるブレーズ面54aを形成した表面加工層54とコア型55との間に樹脂成形空間60が形成されている。断熱材53は好ましくはセラミックの溶射層であり、表面加工層54は好ましくはニッケルのメッキ層である。   Conventionally, in Patent Document 1, in order to achieve high-accuracy transferability, as shown in FIG. 10, a heat insulating material 53 is provided between a core mold 52 and a surface processed layer 54 disposed in the center portion of a template 51. There has been proposed a molding die 50 provided with. A resin molding space 60 is formed between the surface processed layer 54 on which the blazed surface 54 a having a fine shape is formed and the core die 55. The heat insulating material 53 is preferably a ceramic sprayed layer, and the surface treatment layer 54 is preferably a nickel plating layer.

この金型50では、微細形状(ブレーズ面54a)の背部に断熱材53が配置されているため、樹脂充填後におけるブレーズ面54aの保温性が向上し、微細形状を成形品に高精度で転写することが可能になった。しかし、ブレーズ面54aに隣接する樹脂成形空間部分51aでは、熱伝導率が比較的大きい型板51が露出しており、この部分51aでは充填された溶融樹脂の放熱が大きく、微細形状への転写性に悪影響を与えるという問題点が見出された。
特開2002−96335号公報
In this mold 50, since the heat insulating material 53 is arranged on the back of the fine shape (blazed surface 54a), the heat retaining property of the blaze surface 54a after resin filling is improved, and the fine shape is transferred to the molded product with high accuracy. It became possible to do. However, in the resin molding space 51a adjacent to the blaze surface 54a, the template 51 having a relatively high thermal conductivity is exposed, and the heat radiation of the filled molten resin is large in this portion 51a, and the transfer to the fine shape is performed. The problem of adversely affecting sex was found.
JP 2002-96335 A

そこで、本発明の目的は、微細形状の転写性のより一層の向上を図ることのできる射出成形用金型及び射出成形方法を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an injection mold and an injection molding method that can further improve the transferability of a fine shape.

以上の目的を達成するため、第1の発明は、溶融された樹脂材の樹脂成型空間への充填を開始してから金型を温度調整せずに保圧工程へ移行し、保圧工程の後に冷却工程を経て成型品を取り出す射出成型方法で光学素子を射出成形するための射出成形用金型において、光学面を成形するための金型コアと、該金型コアを取り囲むように配置された金型キャビティとが組み合わされて構成され、前記金型コアは第1の断熱材によって樹脂成形空間を構成する面が形成され、前記金型キャビティが樹脂成形空間に臨む部分に第2の断熱材を設け、前記第2の断熱材はヒータを介することなく前記樹脂成形空間に臨んでいること、を特徴とする。前記金型コアは第1の断熱材のみで構成されていてもよく、あるいは、該第1の断熱材を保持するコア型を備えていてもよい。 In order to achieve the above object, the first invention starts the filling of the molten resin material into the resin molding space and then proceeds to the pressure holding step without adjusting the temperature of the mold. In an injection molding mold for injection molding of an optical element by an injection molding method that takes out a molded product through a cooling process later, a mold core for molding an optical surface and a mold core are arranged so as to surround the mold core. The mold core is formed with a surface that forms a resin molding space by a first heat insulating material, and a second heat insulation is formed at a portion where the mold cavity faces the resin molding space. A material is provided, and the second heat insulating material faces the resin molding space without a heater. The mold core may be composed of only the first heat insulating material, or may be provided with a core mold that holds the first heat insulating material.

第1の発明に係る射出成形用金型においては、光学面を成形するための金型コアが第1の断熱材によって樹脂成形空間を構成する面が形成されているため、樹脂成形空間に充填された樹脂の保温性が良好であり、特に、樹脂成形空間の構成面に形成された微細形状の転写性が向上する。さらに、金型キャビティが樹脂成形空間に臨む部分に第2の断熱材を設けたため、微細形状に隣接する部分で樹脂の放熱が少なくなり、微細形状の転写性がより一層向上する。   In the injection mold according to the first aspect of the invention, the mold core for molding the optical surface is formed by the first heat insulating material so that the surface constituting the resin molding space is formed, so the resin molding space is filled. The heat retaining property of the resin thus obtained is good, and in particular, the transferability of the fine shape formed on the constituent surface of the resin molding space is improved. Further, since the second heat insulating material is provided in the portion where the mold cavity faces the resin molding space, the heat radiation of the resin is reduced in the portion adjacent to the fine shape, and the transferability of the fine shape is further improved.

第2の発明は、溶融された樹脂材の樹脂成型空間への充填を開始してから金型を温度調整せずに保圧工程へ移行し、保圧工程の後に冷却工程を経て成型品を取り出す射出成型方法で光学素子を射出成形するための射出成形用金型において、光学面を成形するための金型コアと、該金型コアを取り囲むように配置された金型キャビティとが組み合わされて構成され、前記金型コアは第1の断熱材を備え、該第1の断熱材の表面に別の素材で樹脂成形空間を構成する面が形成され、前記金型キャビティが樹脂成形空間に臨む部分に第2の断熱材を設け、前記第2の断熱材はヒータを介することなく前記樹脂成形空間に臨んでいること、を特徴とする。前記金型コアは前記第1の断熱材と樹脂成形空間構成面のみで構成されていてもよく、あるいは、該第1の断熱材を保持するコア型を備えていてもよい。 In the second invention , the filling of the molten resin material into the resin molding space is started, and then the mold is transferred to the pressure holding process without adjusting the temperature. After the pressure holding process, the molded product is passed through the cooling process. In an injection mold for injection molding an optical element by an injection molding method to be taken out , a mold core for molding an optical surface and a mold cavity arranged so as to surround the mold core are combined. The mold core includes a first heat insulating material, a surface that forms a resin molding space with another material is formed on the surface of the first heat insulating material, and the mold cavity is formed in the resin molding space. A second heat insulating material is provided at the facing portion, and the second heat insulating material faces the resin molding space without a heater. The mold core may be constituted only by the first heat insulating material and the resin molding space constituting surface, or may be provided with a core mold for holding the first heat insulating material.

第2の発明に係る射出成形用金型においては、光学面を成形するための金型コアが第1の断熱材を備えているため、かつ、金型キャビティが樹脂成形空間に臨む部分に第2の断熱材を設けたため、前記第1の発明に係る射出成形用金型と同様に、樹脂成形空間に充填された樹脂の保温性が良好であり、微細形状の転写性が向上する。   In the injection mold according to the second invention, the mold core for molding the optical surface is provided with the first heat insulating material, and the mold cavity faces the resin molding space. Since the second heat insulating material is provided, the heat retaining property of the resin filled in the resin molding space is good and the transferability of the fine shape is improved as in the injection mold according to the first invention.

第1及び第2の発明に係る射出成形用金型において、第1及び第2の断熱材の熱伝導率は20W/m・K以下であることが好ましい。それらの材料としては、ステンレス鋼、チタン合金、ニッケル合金、セラミック又は耐熱性樹脂のいずれかを用いることが好ましい。   In the injection molds according to the first and second inventions, the thermal conductivity of the first and second heat insulating materials is preferably 20 W / m · K or less. As these materials, it is preferable to use any of stainless steel, titanium alloy, nickel alloy, ceramic, or heat resistant resin.

第3の発明に係る射出成形方法は前記第1又は第2の発明に係る射出成形用金型を用いて樹脂材から光学素子を成形することを特徴とする。前記射出成形用金型の利点を活かして高性能の光学素子を得ることができる。   An injection molding method according to a third invention is characterized in that an optical element is molded from a resin material using the injection mold according to the first or second invention. A high-performance optical element can be obtained by taking advantage of the injection mold.

第3の発明に係る射出成形方法において、樹脂成形空間への樹脂の充填が完了して保圧工程へ移行する際の、樹脂成形空間を構成する面の温度及び第2の断熱材の樹脂成形空間に臨む面の温度がともにガラス転移点温度以上であることが好ましい。保圧工程へ移行する際にも樹脂の流動性が保持され、樹脂成形空間での収縮分を補う樹脂がゲート部分を通じて補充される。これにて、より高性能の光学素子を得ることができる。   In the injection molding method according to the third invention, the temperature of the surface constituting the resin molding space and the resin molding of the second heat insulating material when the resin molding space is completely filled with the resin and the process proceeds to the pressure holding step It is preferable that the temperatures of the surfaces facing the space are both equal to or higher than the glass transition temperature. The flowability of the resin is maintained also when the process proceeds to the pressure holding process, and the resin that supplements the shrinkage in the resin molding space is replenished through the gate portion. Thereby, a higher performance optical element can be obtained.

以下、本発明に係る射出成形用金型及び射出成形方法の実施例について、添付図面を参照して説明する。なお、各実施例を示す図面においては、共通する部材には同じ符号を付し、重複した説明は省略する。   Hereinafter, embodiments of an injection mold and an injection molding method according to the present invention will be described with reference to the accompanying drawings. In the drawings showing the embodiments, common members are given the same reference numerals, and redundant descriptions are omitted.

(第1実施例、図1参照)
第1実施例である金型1Aは、図1に示すように、可動側金型10と固定側金型20とからなる。可動側金型10は、一様に中実な型板11と、一様に中実なコア型12と、断熱材13と、表面加工層14とで構成されている。固定側金型20は一様に中実なコア型22にて構成されている。コア型12、断熱材13及び表面加工層14を金型コアと称し、型板11を金型キャビティと称する。
(See the first embodiment, FIG. 1)
A mold 1 </ b> A according to the first embodiment includes a movable mold 10 and a fixed mold 20 as shown in FIG. 1. The movable mold 10 includes a uniformly solid template 11, a uniformly solid core mold 12, a heat insulating material 13, and a surface processed layer 14. The fixed-side mold 20 is configured by a uniformly solid core mold 22. The core mold 12, the heat insulating material 13, and the surface processing layer 14 are referred to as a mold core, and the mold plate 11 is referred to as a mold cavity.

表面加工層14は、レンズ、ミラー、プリズムプレート、導光板などの成形品(光学素子)の光学面形状に対応して仕上げられており、回折格子、プリズム面やブレーズ面などの微細形状14aが形成されている。また、樹脂成形空間30は表面加工層14とコア型22と型板11の内周上縁部とで構成されている。   The surface processing layer 14 is finished corresponding to the optical surface shape of a molded product (optical element) such as a lens, a mirror, a prism plate, and a light guide plate, and has a fine shape 14a such as a diffraction grating, a prism surface, or a blaze surface. Is formed. The resin molding space 30 is composed of the surface processed layer 14, the core mold 22, and the inner peripheral upper edge of the template 11.

コア型12,22は、通常の金型母材材料、例えば、炭素鋼やステンレス鋼などの金属材料で製作されている。炭素鋼の熱伝導率は50W/m・Kであり、汎用熱間ダイス鋼(JIS規格、SKD61)の熱伝導率は34W/m・Kである。   The core molds 12 and 22 are made of a normal mold base material, for example, a metal material such as carbon steel or stainless steel. Carbon steel has a thermal conductivity of 50 W / m · K, and general-purpose hot die steel (JIS standard, SKD61) has a thermal conductivity of 34 W / m · K.

一方、型板11は断熱材にて形成されている。ここでの断熱材は、熱伝導率が前記コア型12,22よりも低い種々の材料が用いられ、熱伝導率が20W/m・K以下であることが好ましい。例えば、マルテンサイト系ステンレス鋼(熱伝導率20W/m・K)、オーステナイト系ステンレス鋼(16W/m・K)、チタン合金(Ti−6Al−4V、熱伝導率7.5W/m・K)、ニッケル合金(インコネル、熱伝導率15W/m・K)、セラミックである窒化珪素(Si、20W/m・K)やチタン酸アルミニウム(Al・TiO、1.2W/m・K)などである。勿論、これら以外の材料を使用することは可能であり、セラミックは各種組成のものを使用でき、金属はステンレス合金、チタン合金、ニッケル合金を好適に使用できる。 On the other hand, the template 11 is formed of a heat insulating material. As the heat insulating material, various materials having a thermal conductivity lower than that of the core molds 12 and 22 are used, and the thermal conductivity is preferably 20 W / m · K or less. For example, martensitic stainless steel (thermal conductivity 20 W / m · K), austenitic stainless steel (16 W / m · K), titanium alloy (Ti-6Al-4V, thermal conductivity 7.5 W / m · K) , Nickel alloy (Inconel, thermal conductivity 15 W / m · K), ceramic silicon nitride (Si 3 N 4 , 20 W / m · K), aluminum titanate (Al 2 O 3 · TiO 2 , 1.2 W / m · K). Of course, it is possible to use materials other than these, ceramics having various compositions can be used, and metals such as stainless steel alloys, titanium alloys, and nickel alloys can be suitably used.

断熱材13は、コア型12上に溶射したセラミック、ポリイミド樹脂などの有機系材料(耐熱性重合体)、低熱伝導材である焼結セラミック、チタン合金(Ti−6Al−4V、Ti−3Al−2.5V、Ti−6Al−7Nbなど)、サーメット(チタン酸アルミニウム、TiO−Al)、ステンレス鋼(フェライト系、オーステナイト系など)、ニッケル合金(インコネル、FeNi)などにより形成されている。前記セラミックとしては、ジルコニア系、窒化珪素系、窒化チタンなどを用いることができる。表面加工層14は、断熱材13上に非鉄金属材料、例えば、ニッケルをメッキして形成されている。 The heat insulating material 13 is a ceramic sprayed onto the core mold 12, an organic material (heat resistant polymer) such as polyimide resin, a sintered ceramic which is a low thermal conductive material, a titanium alloy (Ti-6Al-4V, Ti-3Al-). 2.5V, such Ti-6Al-7Nb), cermet (aluminum titanate, TiO 2 -Al 2 O 3) , stainless steel (ferritic, etc. austenitic) is formed by a nickel alloy (Inconel, FeNi) Yes. As the ceramic, zirconia, silicon nitride, titanium nitride, or the like can be used. The surface processed layer 14 is formed by plating a non-ferrous metal material, for example, nickel on the heat insulating material 13.

また、断熱材13及び断熱材である型板11は、前記の材料に限定されるものではなく、熱伝導率がコア型12,22よりも低い材料、例えば、熱伝導率が20W/m・K以下であればいかなる材料であってもよい。ポリイミド樹脂などの有機系材料(耐熱性重合体)でもよい。   In addition, the heat insulating material 13 and the template 11 that is a heat insulating material are not limited to the above materials, and a material having a lower thermal conductivity than the core molds 12 and 22, for example, a thermal conductivity of 20 W / m · Any material may be used as long as it is K or less. Organic materials (heat-resistant polymer) such as polyimide resin may be used.

本第1実施例によれば、コア型12と表面加工層14との間に断熱材13を備えているため、樹脂成形空間30に充填された樹脂の保温性が良好であり、特に、表面加工層14に形成された微細形状14aの転写性が向上する。   According to the first embodiment, since the heat insulating material 13 is provided between the core mold 12 and the surface processed layer 14, the heat retaining property of the resin filled in the resin molding space 30 is good. The transferability of the fine shape 14a formed on the processed layer 14 is improved.

さらに、樹脂成形空間30の一部を構成する型板11は表面加工層14に隣接する部分11aを有しているが、型板11の全体が断熱材にて形成されているため、微細形状14aに隣接する部分11aでの樹脂の放熱が少なくなり、微細形状14aの転写性がより一層向上する。   Furthermore, although the template 11 which comprises a part of resin molding space 30 has the part 11a adjacent to the surface processing layer 14, since the whole template 11 is formed with the heat insulating material, it is fine shape. The heat radiation of the resin in the portion 11a adjacent to 14a is reduced, and the transferability of the fine shape 14a is further improved.

(第2実施例、図2参照)
第2実施例である金型1Bは、図2に示すように、可動側金型10を構成する型板11の内周上縁部であって樹脂成形空間30の一部を構成する部分に、換言すれば、型板11と表面加工層14との間に環状の断熱材15を介在させたものである。
(See the second embodiment, FIG. 2)
As shown in FIG. 2, the mold 1 </ b> B according to the second embodiment is an inner peripheral upper edge part of the mold plate 11 constituting the movable mold 10 and a part constituting the resin molding space 30. In other words, an annular heat insulating material 15 is interposed between the template 11 and the surface processed layer 14.

この金型1Bにおいて、型板11は通常の金型母材材料で製作されている。断熱材15は、第1実施例で示した熱伝導率の低い種々のステンレス鋼、チタン合金、ニッケル合金にて形成されている。あるいは、セラミックである窒化珪素(Si34、20W/m・K)やチタン酸アルミニウム(Al23・TiO2、1.2W/m・K)などで形成してもよい。さらに、ポリイミド樹脂(熱伝導率0.28W/m・K)などの耐熱性重合体で形成することも可能である。勿論、これら以外の材料を使用することは可能であり、セラミックは各種の組成のものを使用できる。なお、他の部材及びその材料は第1実施例である金型1Aと同じである。 In this mold 1B, the template 11 is made of a normal mold base material. The heat insulating material 15 is formed of various stainless steels, titanium alloys, and nickel alloys having low thermal conductivity shown in the first embodiment. Alternatively, it may be formed of ceramic silicon nitride (Si 3 N 4 , 20 W / m · K), aluminum titanate (Al 2 O 3 · TiO 2 , 1.2 W / m · K), or the like. Further, it can be formed of a heat resistant polymer such as polyimide resin (thermal conductivity 0.28 W / m · K). Of course, materials other than these can be used, and ceramics having various compositions can be used. Other members and their materials are the same as those of the mold 1A according to the first embodiment.

本第2実施例によれば、コア型12と表面加工層14との間に断熱材13を備えているため、樹脂成形空間30に充填された樹脂の保温性が良好であり、特に、表面加工層14に形成された微細形状14aの転写性が向上する。   According to the second embodiment, since the heat insulating material 13 is provided between the core mold 12 and the surface processing layer 14, the heat retaining property of the resin filled in the resin molding space 30 is good. The transferability of the fine shape 14a formed on the processed layer 14 is improved.

さらに、樹脂成形空間30の一部を構成する型板11と表面加工層14との間に断熱材15が介在されているため、微細形状14aに隣接する部分での樹脂の放熱が少なくなり、微細形状14aの転写性がより一層向上する。   Furthermore, since the heat insulating material 15 is interposed between the template 11 constituting the part of the resin molding space 30 and the surface processed layer 14, the heat radiation of the resin in the portion adjacent to the fine shape 14a is reduced, The transferability of the fine shape 14a is further improved.

(第3実施例、図3参照)
第3実施例である金型1Cは、図3に示すように、前記第2実施例である金型1Bにおける断熱材15に代えて断熱材16を設けたものである。断熱材16の材料は断熱材15と同様であり、他の構成及び材料は第2実施例と同様である。従って、その作用効果も第2実施例と同様である。
(Refer to the third embodiment, FIG. 3)
As shown in FIG. 3, the mold 1C according to the third embodiment is provided with a heat insulating material 16 instead of the heat insulating material 15 in the mold 1B according to the second embodiment. The material of the heat insulating material 16 is the same as that of the heat insulating material 15, and other structures and materials are the same as those of the second embodiment. Therefore, the effect is the same as that of the second embodiment.

(第4実施例、図4参照)
第4実施例である金型1Dは、図4に示すように、可動側金型10のみならず固定側金型20も、一様に中実な型板21と、一様に中実なコア型22と、断熱材23と、表面加工層24とで構成したものである。表面加工層24は、表面加工層14と同様に、成形品(光学素子)の光学面形状に対応して仕上げられており、微細形状24aが形成されている。
(Refer to the fourth embodiment, FIG. 4)
As shown in FIG. 4, the mold 1D according to the fourth embodiment includes not only the movable mold 10 but also the fixed mold 20 with the uniformly solid mold plate 21 and the uniformly solid mold 20. A core mold 22, a heat insulating material 23, and a surface processed layer 24 are configured. Similar to the surface processed layer 14, the surface processed layer 24 is finished corresponding to the optical surface shape of the molded product (optical element), and a fine shape 24a is formed.

断熱材23及び表面加工層24の材料は前記第1実施例と同様である。また、型板11,21は断熱材にて形成されている。その材料は、第1実施例で型板11の材料として示したものと同様である。また、コア型12,22の材料も第1実施例でコア型12の材料として示したものと同様である。   The materials of the heat insulating material 23 and the surface processed layer 24 are the same as those in the first embodiment. Moreover, the template 11,21 is formed with the heat insulating material. The material is the same as that shown as the material of the template 11 in the first embodiment. The material of the core molds 12 and 22 is the same as that shown as the material of the core mold 12 in the first embodiment.

本第4実施例によれば、コア型12,22と表面加工層14,24との間に断熱材13,23を備えているため、樹脂成形空間30に充填された樹脂の保温性が良好であり、特に、表面加工層14、24に形成された微細形状14a,24aの転写性が向上する。   According to the fourth embodiment, since the heat insulating materials 13 and 23 are provided between the core molds 12 and 22 and the surface processed layers 14 and 24, the heat retaining property of the resin filled in the resin molding space 30 is good. In particular, the transferability of the fine shapes 14a and 24a formed on the surface processed layers 14 and 24 is improved.

さらに、樹脂成形空間30の一部を構成する型板11,21は表面加工層14,24に隣接する部分11a,21aを有しているが、型板11,21の全体が断熱材にて形成されているため、微細形状14a,24aに隣接する部分11a,21aでの樹脂の放熱が少なくなり、微細形状14a,24aの転写性がより一層向上する。また、樹脂はその表裏面で保温されるため、成形品に反りが発生するおそれもなくなる。   Furthermore, although the mold plates 11 and 21 constituting a part of the resin molding space 30 have portions 11a and 21a adjacent to the surface processed layers 14 and 24, the entire mold plates 11 and 21 are made of a heat insulating material. Since it is formed, the heat radiation of the resin in the portions 11a and 21a adjacent to the fine shapes 14a and 24a is reduced, and the transferability of the fine shapes 14a and 24a is further improved. In addition, since the resin is kept warm on the front and back surfaces, there is no risk of warping of the molded product.

(第5実施例、図5参照)
第5実施例である金型1Eは、図5に示すように、型板11,21の内周縁部であって樹脂成形空間30の一部を構成する部分に環状の断熱材17,27を設けたものである。この断熱材17,27の材料は前記第2実施例で断熱材15の材料として示したものと同様である。
(Refer to the fifth embodiment, FIG. 5)
As shown in FIG. 5, the mold 1 </ b> E according to the fifth embodiment is provided with annular heat insulating materials 17 and 27 on the inner peripheral edge portions of the mold plates 11 and 21 and constituting a part of the resin molding space 30. It is provided. The materials of the heat insulating materials 17 and 27 are the same as those shown as the material of the heat insulating material 15 in the second embodiment.

他の構成及びその材料は、型板11,21が通常の金型母材材料で製作されている以外は、前記第4実施例と同様である。また、その作用効果も第4実施例と同様である。   Other configurations and materials thereof are the same as those in the fourth embodiment except that the mold plates 11 and 21 are made of a normal mold base material. In addition, the effect is the same as that of the fourth embodiment.

(第6実施例、図6参照)
第6実施例である金型1Fは、図6に示すように、湾曲したレンズを成形するためのもので、各構成部材は前記第3実施例である金型1Cと同様であり、その材料も同じである。従って、その作用効果も第3実施例と同様である。
(See the sixth embodiment, FIG. 6)
As shown in FIG. 6, the mold 1F according to the sixth embodiment is for molding a curved lens, and each component is the same as the mold 1C according to the third embodiment, and its material Is the same. Therefore, the effect is the same as that of the third embodiment.

第7実施例である金型1Gは、図7に示すように、コア型12を断熱材にて構成し、該コア型12の表面に微細形状12aを形成したものである。ここでのコア型12の材料は前記第1実施例などで説明した断熱材13と同じであり、他の構成も第1実施例と同様である。   As shown in FIG. 7, the mold 1 </ b> G according to the seventh embodiment includes a core mold 12 made of a heat insulating material and a fine shape 12 a formed on the surface of the core mold 12. The material of the core mold 12 here is the same as that of the heat insulating material 13 described in the first embodiment, and the other configuration is the same as that of the first embodiment.

第8実施例である金型1Hは、図8に示すように、断熱材からなるコア型12に表面加工層14を設けたものである。ここでのコア型12の材料は前記第1実施例などで説明した断熱材13と同じであり、他の構成も第1実施例と同様である。   As shown in FIG. 8, the mold 1H according to the eighth embodiment is obtained by providing a surface mold layer 14 on a core mold 12 made of a heat insulating material. The material of the core mold 12 here is the same as that of the heat insulating material 13 described in the first embodiment, and the other configuration is the same as that of the first embodiment.

第9実施例である金型1Iは、図9に示すように、コア型12上に断熱材13を設け、該断熱材13の表面に微細形状13aを形成したものである。他の構成は前記第1実施例と同様である。   As shown in FIG. 9, the mold 1 </ b> I according to the ninth embodiment is provided with a heat insulating material 13 on a core mold 12 and a fine shape 13 a formed on the surface of the heat insulating material 13. Other configurations are the same as those of the first embodiment.

(成形方法)
ここで、前記金型1A〜1Iを用いた射出成形方法についてその概略を説明する。
(Molding method)
Here, an outline of an injection molding method using the molds 1A to 1I will be described.

まず、所定の温度に溶融された樹脂(例えば、非晶質ポリオレフィン樹脂)を樹脂成形空間30内に充填し、充填が完了すると直ちに保圧工程に入る。保圧工程は樹脂成形空間30に充填された樹脂が温度低下によって若干収縮する分を補うために樹脂に対して所定の圧力を保持しておく工程である。保圧工程の後、冷却工程(自然冷却)に入り、少なくとも樹脂(成形品)の表面が熱変形温度以下にまで低下した時点で型開きを行い、成形品を図示しないエジェクトピンなどで突き出す。   First, a resin (for example, amorphous polyolefin resin) melted at a predetermined temperature is filled into the resin molding space 30, and immediately after the filling is completed, the pressure holding step is started. The pressure holding step is a step of maintaining a predetermined pressure on the resin in order to compensate for the amount of shrinkage of the resin filled in the resin molding space 30 due to a decrease in temperature. After the pressure-holding step, the cooling step (natural cooling) is entered, and at least when the surface of the resin (molded product) is lowered to the heat deformation temperature or lower, the mold is opened, and the molded product is ejected with an eject pin (not shown).

以上の成形工程において、樹脂は比較的高温の溶融状態で樹脂成形空間30に充填される。この充填開始時において、樹脂成形空間30に面する金型各要素の成形面の表面温度、具体的には、金型キャビティの樹脂成形空間30を構成する面(部分11aや断熱材15,16など)の温度Tcaと、コア型の樹脂成形空間30を構成する面(表面加工層14など)の温度Tcoは樹脂のガラス転移点温度Tgよりも低い。   In the above molding process, the resin is filled into the resin molding space 30 in a relatively high temperature molten state. At the start of filling, the surface temperature of the molding surface of each mold element facing the resin molding space 30, specifically, the surface (part 11 a or heat insulating material 15, 16 constituting the resin molding space 30 of the mold cavity). ) And the temperature Tco of the surface (such as the surface processed layer 14) constituting the core-shaped resin molding space 30 are lower than the glass transition temperature Tg of the resin.

充填が開始されると、充填された樹脂の熱を受けて樹脂成形空間30の温度が上昇し、断熱効果によって前記温度Tca、Tcoは前記温度Tgよりも高くなり、その状態を保持する。そして、樹脂の充填が終了して保圧工程が始まる時点においても、前記温度Tca、Tcoは前記温度Tg以上に保持される。このような温度設定は、金型の温度調整を行うことによっても可能であるが、本発明に係る金型を用いれば、その断熱効果にて金型をことさら温度調整する必要がなく、保圧工程へ移行する際の温度Tca、Tcoを温度Tg以上に保持することができる。   When filling is started, the temperature of the resin molding space 30 rises due to the heat of the filled resin, and the temperatures Tca and Tco become higher than the temperature Tg due to the heat insulation effect, and the state is maintained. The temperatures Tca and Tco are maintained at the temperature Tg or higher even when the resin filling is completed and the pressure holding process starts. Such temperature setting is also possible by adjusting the temperature of the mold, but if the mold according to the present invention is used, there is no need to further adjust the temperature of the mold due to its heat insulation effect, and pressure holding The temperatures Tca and Tco at the time of shifting to the process can be maintained at the temperature Tg or higher.

このような温度設定により、樹脂成形空間30での収縮分についての樹脂の供給がなされ、転写性が向上する。なお、前記温度Tca、Tcoは、前記温度Tg以上であれば同じ温度である必要はない。   By such temperature setting, the resin is supplied for the shrinkage in the resin molding space 30 and the transferability is improved. The temperatures Tca and Tco do not have to be the same as long as they are equal to or higher than the temperature Tg.

樹脂成形空間30内において、樹脂は充填完了直後から低下し始める。しかし、前記金型1A〜1Iにおいては、微細形状14a,24aの背部には断熱材13,23が配置されているため、樹脂成形空間30に射出された樹脂の保温性が良好であり、また、樹脂成形空間30を構成する金型の少なくとも一部分が断熱材にて形成されているため、樹脂の放熱が少なくなり、微細形状14a,24aの転写性が向上する。   In the resin molding space 30, the resin begins to decrease immediately after the completion of filling. However, in the molds 1A to 1I, since the heat insulating materials 13 and 23 are arranged on the back portions of the fine shapes 14a and 24a, the heat retaining property of the resin injected into the resin molding space 30 is good. Since at least a part of the mold constituting the resin molding space 30 is formed of a heat insulating material, the heat radiation of the resin is reduced, and the transferability of the fine shapes 14a and 24a is improved.

(実験結果)
本発明者らは、前記第4実施例である金型1Dを用いて両面に回折構造を有する光学素子を実験的に成形し、その光学性能を測定した。また、比較のため、従来の一様な素材からなる金型を用いて同様の光学素子を成形した。
(Experimental result)
The inventors experimentally molded an optical element having a diffractive structure on both surfaces using the mold 1D of the fourth embodiment, and measured the optical performance. For comparison, a similar optical element was molded using a conventional mold made of a uniform material.

成形に用いた樹脂は非晶質ポリオレフィン樹脂である日本ゼオン社製ZEONEX E48Rであり、ブルーレイ/DVD/CD互換ピックアップ用の回折素子を成形した。本発明に係る金型によれば、樹脂成形空間30の周囲に配置した断熱材の熱伝導率が20W/m・K以下において回折構造は良好に転写され、回折効率は82.5%以上であった。また、成形サイクルタイムは従来の金型と同じで、量産にも問題なく適用でき、メンテナンスにも支障は生じなかった。   The resin used for molding was ZEONEX E48R manufactured by Nippon Zeon Co., Ltd., which is an amorphous polyolefin resin, and a diffraction element for a Blu-ray / DVD / CD compatible pickup was molded. According to the mold of the present invention, the diffractive structure is well transferred when the thermal conductivity of the heat insulating material arranged around the resin molding space 30 is 20 W / m · K or less, and the diffraction efficiency is 82.5% or more. there were. In addition, the molding cycle time is the same as that of the conventional mold, so that it can be applied to mass production without any problems, and maintenance is not hindered.

一方、従来の金型で成形した場合、転写性が低くて回折効率が80%を下回り、しかも、金型への樹脂の付着が発生してメンテナンス性に劣っていた。   On the other hand, when molded with a conventional mold, the transferability is low, the diffraction efficiency is less than 80%, and the resin adheres to the mold, resulting in poor maintainability.

(他の実施例)
なお、本発明に係る射出成形用金型及び射出成形方法は前記実施例に限定するものではなく、その要旨の範囲内で種々に変更できる。
(Other examples)
The injection mold and the injection molding method according to the present invention are not limited to the above-described embodiments, and can be variously changed within the scope of the gist.

特に、金型構造の細部は任意であり、使用材料として前記実施例で示した具体的な材料は例示であることは勿論である。また、図1〜図9において、金型10が固定側であり、金型20が可動側であってもよい。あるいは、中間金型部材を備えたスリープレート方式の成形金型であってもよい。   In particular, the details of the mold structure are arbitrary, and it is needless to say that the specific materials shown in the above-described embodiments are examples. 1 to 9, the mold 10 may be a fixed side and the mold 20 may be a movable side. Alternatively, it may be a sleep rate type molding die provided with an intermediate die member.

本発明に係る金型の第1実施例を示す断面図である。It is sectional drawing which shows 1st Example of the metal mold | die which concerns on this invention. 本発明に係る金型の第2実施例を示す断面図である。It is sectional drawing which shows 2nd Example of the metal mold | die which concerns on this invention. 本発明に係る金型の第3実施例を示す断面図である。It is sectional drawing which shows 3rd Example of the metal mold | die which concerns on this invention. 本発明に係る金型の第4実施例を示す断面図である。It is sectional drawing which shows 4th Example of the metal mold | die which concerns on this invention. 本発明に係る金型の第5実施例を示す断面図である。It is sectional drawing which shows 5th Example of the metal mold | die which concerns on this invention. 本発明に係る金型の第6実施例を示す断面図である。It is sectional drawing which shows 6th Example of the metal mold | die which concerns on this invention. 本発明に係る金型の第7実施例を示す断面図である。It is sectional drawing which shows 7th Example of the metal mold | die which concerns on this invention. 本発明に係る金型の第8実施例を示す断面図である。It is sectional drawing which shows 8th Example of the metal mold | die which concerns on this invention. 本発明に係る金型の第9実施例を示す断面図である。It is sectional drawing which shows 9th Example of the metal mold | die which concerns on this invention. 従来の射出成形用金型を示す断面図である。It is sectional drawing which shows the conventional metal mold | die for injection molding.

符号の説明Explanation of symbols

1A〜1I…金型
11,21…型板
12,22…コア型
13,23…断熱材
14,24…表面加工層
14a,24a…微細形状
15,16,17,27…断熱材
30…樹脂成形空間
DESCRIPTION OF SYMBOLS 1A-1I ... Metal mold | die 11,21 ... Template 12,22 ... Core type | mold 13,23 ... Heat insulating material 14, 24 ... Surface processed layer 14a, 24a ... Fine shape 15, 16, 17, 27 ... Heat insulating material 30 ... Resin Molding space

Claims (9)

溶融された樹脂材の樹脂成型空間への充填を開始してから金型を温度調整せずに保圧工程へ移行し、保圧工程の後に冷却工程を経て成型品を取り出す射出成型方法で光学素子を射出成形するための射出成形用金型において、
光学面を成形するための金型コアと、該金型コアを取り囲むように配置された金型キャビティとが組み合わされて構成され、
前記金型コアは第1の断熱材によって樹脂成形空間を構成する面が形成され、
前記金型キャビティが樹脂成形空間に臨む部分に第2の断熱材を設け、
前記第2の断熱材はヒータを介することなく前記樹脂成形空間に臨んでいること、
を特徴とする射出成形用金型。
After filling the molten resin material into the resin molding space, the mold is moved to the pressure holding process without adjusting the temperature, and after the pressure holding process, the molded product is taken out through the cooling process. In an injection mold for injection molding an element,
A mold core for molding an optical surface and a mold cavity arranged so as to surround the mold core are combined,
The mold core has a surface forming a resin molding space formed by the first heat insulating material,
A second heat insulating material is provided in a portion where the mold cavity faces the resin molding space,
The second heat insulating material faces the resin molding space without a heater;
Mold for injection molding characterized by
前記金型コアは前記第1の断熱材を保持するコア型を備えていることを特徴とする請求
項1に記載の射出成形用金型。
The injection mold according to claim 1, wherein the mold core includes a core mold that holds the first heat insulating material.
溶融された樹脂材の樹脂成型空間への充填を開始してから金型を温度調整せずに保圧工程へ移行し、保圧工程の後に冷却工程を経て成型品を取り出す射出成型方法で光学素子を射出成形するための射出成形用金型において、
光学面を成形するための金型コアと、該金型コアを取り囲むように配置された金型キャビティとが組み合わされて構成され、
前記金型コアは第1の断熱材を備え、該第1の断熱材の表面に別の素材で樹脂成形空間を構成する面が形成され、
前記金型キャビティが樹脂成形空間に臨む部分に第2の断熱材を設け、
前記第2の断熱材はヒータを介することなく前記樹脂成形空間に臨んでいること、
を特徴とする射出成形用金型。
After filling the molten resin material into the resin molding space, the mold is moved to the pressure holding process without adjusting the temperature, and after the pressure holding process, the molded product is taken out through the cooling process. In an injection mold for injection molding an element,
A mold core for molding an optical surface and a mold cavity arranged so as to surround the mold core are combined,
The mold core includes a first heat insulating material, and a surface that forms a resin molding space with another material is formed on the surface of the first heat insulating material,
A second heat insulating material is provided in a portion where the mold cavity faces the resin molding space,
The second heat insulating material faces the resin molding space without a heater;
Mold for injection molding characterized by
前記金型コアは前記第1の断熱材を保持するコア型を備えていることを特徴とする請求項3に記載の射出成形用金型。   The injection mold according to claim 3, wherein the mold core includes a core mold for holding the first heat insulating material. 前記第1及び第2の断熱材の熱伝導率は20W/m・K以下であることを特徴とする請求項1ないし請求項4のいずれかに記載の射出成形用金型。   The injection mold according to any one of claims 1 to 4, wherein the thermal conductivity of the first and second heat insulating materials is 20 W / m · K or less. 前記第1及び第2の断熱材はステンレス鋼、チタン合金、ニッケル合金、セラミック又は耐熱性樹脂のいずれかからなることを特徴とする請求項1ないし請求項5のいずれかに記載の射出成形用金型。   The said 1st and 2nd heat insulating material consists of either stainless steel, a titanium alloy, a nickel alloy, a ceramic, or a heat resistant resin, For injection molding in any one of Claim 1 thru | or 5 characterized by the above-mentioned. Mold. 前記第1及び第2の断熱材はジルコニア系、窒化珪素系、窒化チタン又はチタン酸アルミニウムから選ばれるセラミックからなることを特徴とする請求項1ないし請求項5のいずれかに記載の射出成形用金型。   6. The injection molding according to claim 1, wherein the first and second heat insulating materials are made of a ceramic selected from zirconia-based, silicon nitride-based, titanium nitride, and aluminum titanate. Mold. 請求項1ないし請求項7のいずれかに記載の射出成形用金型を用いて樹脂材から光学素子を成形することを特徴とする射出成形方法。   An injection molding method comprising molding an optical element from a resin material using the injection mold according to any one of claims 1 to 7. 樹脂成形空間への樹脂の充填が完了して保圧工程へ移行する際の、樹脂成形空間を構成する面の温度及び第2の断熱材の樹脂成形空間に臨む面の温度がともにガラス転移点温度以上であることを特徴とする請求項8に記載の射出成形方法。   When the resin filling into the resin molding space is completed and the process proceeds to the pressure holding process, the temperature of the surface constituting the resin molding space and the temperature of the surface facing the resin molding space of the second heat insulating material are both glass transition points. It is more than temperature, The injection molding method of Claim 8 characterized by the above-mentioned.
JP2005190620A 2004-06-29 2005-06-29 Injection mold and injection molding method Expired - Fee Related JP4815898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005190620A JP4815898B2 (en) 2004-06-29 2005-06-29 Injection mold and injection molding method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004191837 2004-06-29
JP2004191837 2004-06-29
JP2005190620A JP4815898B2 (en) 2004-06-29 2005-06-29 Injection mold and injection molding method

Publications (2)

Publication Number Publication Date
JP2006044247A JP2006044247A (en) 2006-02-16
JP4815898B2 true JP4815898B2 (en) 2011-11-16

Family

ID=36023338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005190620A Expired - Fee Related JP4815898B2 (en) 2004-06-29 2005-06-29 Injection mold and injection molding method

Country Status (1)

Country Link
JP (1) JP4815898B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101344093B1 (en) 2006-09-20 2014-01-15 엘지전자 주식회사 Injection molded product
JPWO2008053732A1 (en) * 2006-10-31 2010-02-25 コニカミノルタオプト株式会社 Mold for molding and manufacturing method thereof
JP5360679B2 (en) * 2008-12-12 2013-12-04 株式会社リコー Thermal control mold for injection molding and manufacturing method thereof
FR2943268B1 (en) * 2009-03-20 2014-02-28 Arcil THERMALLY INSULATING THERMOFROMING MOLD AND ASSOCIATED METHOD.
CN102821926A (en) * 2010-03-30 2012-12-12 柯尼卡美能达先进多层薄膜株式会社 Die
WO2012008372A1 (en) * 2010-07-12 2012-01-19 神戸セラミックス株式会社 Heat-insulating die and production method thereof
JP5846994B2 (en) * 2012-03-30 2016-01-20 Hoya株式会社 Method for manufacturing optical lens mold and method for manufacturing plastic lens
DE102013110702B4 (en) * 2013-09-27 2019-11-14 Leonhard Kurz Stiftung & Co. Kg Method, mold insert and injection mold for producing a plastic molding
KR101548818B1 (en) * 2013-11-25 2015-08-31 삼성전기주식회사 Mold for forming rens
JP6271303B2 (en) * 2014-03-10 2018-01-31 リョービ株式会社 Die casting mold insert and die casting method
JP7068117B2 (en) * 2018-09-18 2022-05-16 株式会社日立ハイテク Charged particle beam device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211619A (en) * 1985-07-09 1987-01-20 Ricoh Co Ltd Process of injection molding
JP2537231B2 (en) * 1987-05-07 1996-09-25 キヤノン株式会社 Plastic lens molding method
JPH02164516A (en) * 1988-12-19 1990-06-25 Hitachi Ltd Molding method of plastic concave lens and die
JP3476841B2 (en) * 1991-09-27 2003-12-10 オリンパス株式会社 Plastic lens injection molding method
JP3385491B2 (en) * 1994-06-21 2003-03-10 コニカ株式会社 Injection molding method
JP4135304B2 (en) * 2000-09-25 2008-08-20 コニカミノルタオプト株式会社 Manufacturing method of mold for molding optical element
JP2002240110A (en) * 2001-02-19 2002-08-28 Olympus Optical Co Ltd Method for injection molding plastic optical element

Also Published As

Publication number Publication date
JP2006044247A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP4815898B2 (en) Injection mold and injection molding method
US20130249128A1 (en) Injection mold and method for molding an optical element
JP4815897B2 (en) Injection mold and injection molding method
JP4972760B2 (en) Optical element manufacturing method
KR100998865B1 (en) Resin molding apparatus and method of resin molding
US20070231575A1 (en) Apparatus and method for molding object with enhanced transferability of transfer face and object made by the same
JP4135304B2 (en) Manufacturing method of mold for molding optical element
JPWO2017212565A1 (en) Low pressure casting mold
JP4799232B2 (en) Optical element molding die and optical element
JP4650514B2 (en) Optical element molding method
JP4919413B2 (en) Method and apparatus for manufacturing plastic molded product
JP4223537B2 (en) Mold for molding disk substrate, mirror plate thereof, method for molding disk substrate, and disk substrate
JP5203259B2 (en) Manufacturing method of optical components
JP4057385B2 (en) Molding method of plastic molded product and injection mold
JP2009113423A (en) Mold for injection molding
JP5103772B2 (en) Optical lens injection mold
JP5103768B2 (en) Optical lens injection mold
JP2006044246A (en) Injection mold and injection molding method
JP2006265050A (en) Molding die for optical element
JP2006051822A (en) Plastic part and its shaping method
JP2003326566A (en) Injection molding die
JP2008087407A (en) Injection-molding method
JP2005162547A (en) Optical element shaping die, optical element manufacturing apparatus and method for manufacturing optical element
JP2009241297A (en) Method for manufacturing optical element, optical element molding mold, and optical element
JP7255415B2 (en) Injection mold and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4815898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees