JP5360679B2 - Thermal control mold for injection molding and manufacturing method thereof - Google Patents

Thermal control mold for injection molding and manufacturing method thereof Download PDF

Info

Publication number
JP5360679B2
JP5360679B2 JP2009051064A JP2009051064A JP5360679B2 JP 5360679 B2 JP5360679 B2 JP 5360679B2 JP 2009051064 A JP2009051064 A JP 2009051064A JP 2009051064 A JP2009051064 A JP 2009051064A JP 5360679 B2 JP5360679 B2 JP 5360679B2
Authority
JP
Japan
Prior art keywords
layer
metal layer
mold
heat
thermal control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009051064A
Other languages
Japanese (ja)
Other versions
JP2010158881A (en
Inventor
譲 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009051064A priority Critical patent/JP5360679B2/en
Publication of JP2010158881A publication Critical patent/JP2010158881A/en
Application granted granted Critical
Publication of JP5360679B2 publication Critical patent/JP5360679B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明はプラスチック製回折レンズなどの高性能プラスチック品の射出成形用金型、殊にそのコア金型に関するものであり、熱伝導をコントロールして成型品の要部の冷却速度を均等化し、これによってタクトを短縮して生産性を向上させ、熱歪みを小さくして成形精度を向上させることができるものである。   The present invention relates to a high-performance plastic injection mold such as a plastic diffractive lens, and more particularly to a core mold thereof, and controls the heat conduction to equalize the cooling rate of the main part of the molded product. Thus, tact can be shortened to improve productivity, and thermal distortion can be reduced to improve molding accuracy.

光学レンズ等の光学素子、薄肉導光板などの高品質成型品を射出成形するときは、冷却が均等でないと熱歪みを生じるなどのために成形精度が低下する。
他方、成形体全体の冷却を緩やかにすることによってその熱歪みを抑制できるがそうするとタクトが長くなる。
また、タクトを短縮するために樹脂の充填温度を下げると、流動性が低下して微小キャビティに充填率が低下して成形精度が低下する。
成形体の表面の微細凹凸が高密度でこれが転写成形される場合は、この表面の微細凹凸の成形精度が低下し、その製品の品質を損なうことになる。これを防ぐために各部分の伝熱特性を加減(コントロール)することが一般的に知られており、その一例が下記特許文献1、特許文献2に記載されている。
また、関連する従来技術として、特許文献3,特許文献4、特許文献5、特許文献6,特許文献7に記載されているものがある。
When injection molding an optical element such as an optical lens or a high-quality molded product such as a thin light guide plate, the molding accuracy is reduced due to thermal distortion if cooling is not uniform.
On the other hand, the thermal distortion can be suppressed by gradual cooling of the entire molded body.
Further, when the resin filling temperature is lowered to shorten the tact time, the fluidity is lowered, the filling rate of the microcavities is lowered, and the molding accuracy is lowered.
When the fine irregularities on the surface of the molded body are high density and are transferred and molded, the molding accuracy of the fine irregularities on the surface is lowered, and the quality of the product is impaired. In order to prevent this, it is generally known to adjust (control) the heat transfer characteristics of each part, and examples thereof are described in Patent Document 1 and Patent Document 2 below.
Further, as related arts, there are those described in Patent Literature 3, Patent Literature 4, Patent Literature 5, Patent Literature 6, and Patent Literature 7.

〔従来技術1〕
この従来技術1は特許文献1に記載されているものであり、面状光源用偏肉導光板を射出成形する方法において、金属から成る金型の型キャビティを構成する型壁面に断熱層を被覆した断熱層被覆金型を用いて、上記断熱層の厚さを成形品の部分的な厚さの違いに応じて部分的に違えることで各部の熱伝導性を調整し、全体の冷却を均等にして熱歪みを低減するものである。これは薄型・大画面の面状光源用偏肉導光板を射出成形する金型であり、図10に示すように断面三角形の成形品の斜面に凹凸を転写成形するものであり、可動金型102に装着されたコア金型103にポリイミド樹脂製の断面三角形の熱制御層(断熱層)104を重ね、さらに、熱制御層104に金属層105が重ねられていて、当該金属層105の表面が転写用微細な粗面になっており、可動金型102、固定金型101、金属層105によって射出成形用のキャビティ106が形成されている。そして、断面三角形の熱制御層104は、キャビティ106の厚肉部で薄く、キャビティ106の薄肉部で厚い構造になっている。
そして、金属層105の粗面の凹凸は、キャビティ106の厚肉部から薄肉部に向かって密になっている。
以上のように、成形品を効率よく、高品精度で成形するために、熱制御層104の厚さを違えて、キャビティ106による成形品の冷却速度を厚肉部と薄肉部で均等化するという手段をとっているものである。
[Prior art 1]
This prior art 1 is described in Patent Document 1, and in a method of injection molding an uneven light guide plate for a planar light source, a heat insulating layer is coated on a mold wall constituting a mold cavity of a metal mold. Using the heat-insulating layer coating mold, the thermal conductivity of each part is adjusted by partially changing the thickness of the heat insulating layer according to the difference in the partial thickness of the molded product, so that the entire cooling is even Thus, thermal distortion is reduced. This is a mold for injection molding of a thin light guide plate for a planar light source having a thin and large screen, and as shown in FIG. A thermal control layer (heat insulation layer) 104 made of polyimide resin is superimposed on a core mold 103 attached to 102, and a metal layer 105 is superimposed on the thermal control layer 104, and the surface of the metal layer 105 Is a fine rough surface for transfer, and a cavity 106 for injection molding is formed by the movable mold 102, the fixed mold 101, and the metal layer 105. The triangular thermal control layer 104 is thin at the thick part of the cavity 106 and thick at the thin part of the cavity 106.
The unevenness of the rough surface of the metal layer 105 is dense from the thick part of the cavity 106 toward the thin part.
As described above, in order to mold a molded product efficiently and with high accuracy, the thickness of the thermal control layer 104 is changed, and the cooling rate of the molded product by the cavity 106 is equalized between the thick part and the thin part. It is something that takes the means.

〔従来技術2〕
特許文献2に記載されているものは従来技術2であり、その概要は、図11に示すものである。入れ子金型のキャビティを形成する面に断面形状の断熱層(熱制御層)を設けて、成形品の冷却を種々の目的に応じて様々に部分的にコントロールする(制御する)ものである。
すなわち、可動金型112にコア金型113を装着し、固定金型111とで射出成形用のキャビティ115を形成している成形金型について、キャビティが薄肉の領域(イ)に対応する面に熱制御層(断熱層)114を設け、コア金型113と熱制御層114とを薄い金属層116で被覆してあり、キャビティー115の薄肉の領域(イ)において厚いところから薄いところに向かって熱制御層114の厚さが厚くなっている。これにより、キャビティー厚肉部(図11の領域(ロ))において右側から注入されて薄い領域をその先端に向かって流れる樹脂から金型への伝熱が抑制され、キャビティの狭いところほどこの効果が高い。
以上、特許文献1、特許文献2に記載されているものにおいては、キャビティの狭い領域に達した樹脂が当該領域で冷却されてその流動性が急激に低下し充填率が低下することが防止されるものである。
[Prior art 2]
What is described in Patent Document 2 is Prior Art 2, and an outline thereof is shown in FIG. A heat insulating layer (thermal control layer) having a cross-sectional shape is provided on the surface forming the cavity of the nested mold, and cooling of the molded product is controlled (controlled) in various ways according to various purposes.
That is, in the molding die in which the core die 113 is mounted on the movable die 112 and the cavity 115 for injection molding is formed with the fixed die 111, the cavity has a surface corresponding to the thin region (A). A heat control layer (heat insulating layer) 114 is provided, and the core mold 113 and the heat control layer 114 are covered with a thin metal layer 116, and the thin region (a) of the cavity 115 is moved from a thicker portion to a thinner portion. Thus, the thickness of the heat control layer 114 is increased. As a result, heat transfer from the resin injected from the right side into the cavity thick part (region (b) in FIG. 11) and flowing through the thin region toward the tip of the cavity is suppressed. High effect.
As described above, in those described in Patent Document 1 and Patent Document 2, the resin that has reached the narrow region of the cavity is cooled in the region, and its fluidity is prevented from abruptly decreasing and the filling rate is prevented from decreasing. Is.

〔従来技術3〕
特許文献3に記載されているものは、金型内のキャビティにおいて対向する双方の面に一対のスタンパを装着し、該スタンパの少なくともいずれか一方に断熱材を内包した断熱スタンパにおいて、断熱効果を有する断熱材の膜厚が、半径方向で外周に向かうにつれて厚くなる膜厚分布を有することによって、断熱効果を半径方向で変化させ、転写性などの特性を向上させるというものである。
[Prior art 3]
In the heat insulating stamper in which a pair of stampers are mounted on both surfaces facing each other in a cavity in a mold, and a heat insulating material is included in at least one of the stampers, a heat insulating effect is disclosed in Patent Document 3. By having a film thickness distribution in which the film thickness of the heat insulating material increases in the radial direction toward the outer periphery, the heat insulating effect is changed in the radial direction, and characteristics such as transferability are improved.

〔従来技術4〕
特許文献4に記載されているものは、リング状の基板の外周側境界領域に第一、第二の凹溝と第一、第二の凸部を形成し、その内側の領域に水系塗布液を塗布する。この時塗布量不足を補うために第一凸部の外側に距離xだけ突出させた領域まで水系塗布液を塗布する。一部の塗布液は第一凸部を越えて流れるが、第二凸部でせき止められる。このようにして乾燥時にヒケや流動を抑制できるものである。
[Prior art 4]
In Patent Document 4, the first and second concave grooves and the first and second convex portions are formed in the outer peripheral side boundary region of the ring-shaped substrate, and the aqueous coating liquid is formed in the inner region. Apply. At this time, in order to make up for the shortage of the coating amount, the aqueous coating solution is applied to the area protruding by the distance x outside the first convex portion. A part of the coating liquid flows beyond the first convex portion, but is clogged by the second convex portion. In this way, sink marks and flow can be suppressed during drying.

〔従来技術5〕
特許文献5に記載されているものは、リング状の基板の外周側境界領域に第一、第二の凹溝と第一、第二の凸部を形成し、その内側の領域に水系塗布液を塗布する。この時塗布量不足を補うために境界領域で外側に十分膨らんだ塗膜を形成する。一部の塗布液は第一凸部を越えて流れるが、第二凸部でせき止められる。このようにして乾燥時にヒケや流動を抑制できる。
[Prior art 5]
In Patent Document 5, the first and second concave grooves and the first and second convex portions are formed in the outer peripheral side boundary region of the ring-shaped substrate, and the aqueous coating liquid is formed in the inner region. Apply. At this time, in order to make up for the shortage of the coating amount, a coating film swelled outwardly in the boundary region is formed. A part of the coating liquid flows beyond the first convex portion, but is clogged by the second convex portion. In this way, sink marks and flow can be suppressed during drying.

〔従来技術6〕
特許文献6に記載されているものは、リング状のディスク基板に保護層を設け、該保護層の印刷面にはリング状をなす受理層の内周側境界部と外周側境界部に断面V字の凹溝を形成しているものであり、当該凹溝の深さは受理層の中央領域の膜厚と同等以上としている。塗布液を印刷面に塗布した後乾燥処理すると、前記凹溝の厚さによって先行乾燥が抑えられ、膜厚を均一化できる。なお、これは本願の請求項5に係る発明に比較的近いものである。
[Prior Art 6]
In Patent Document 6, a protective layer is provided on a ring-shaped disk substrate, and the printing surface of the protective layer has a cross-section V at the inner peripheral side boundary portion and the outer peripheral side boundary portion of the ring-shaped receiving layer. A concave groove is formed, and the depth of the concave groove is equal to or greater than the film thickness of the central region of the receiving layer. When the coating liquid is applied to the printing surface and then dried, the prior drying is suppressed by the thickness of the groove, and the film thickness can be made uniform. This is relatively close to the invention according to claim 5 of the present application.

〔従来技術7〕
特許文献7に記載されているものは、断熱スタンパ(熱制御金型)の第二金属層(成形用の転写面を持つ層)を、電解めっきによってCrとNiの積層構造で形成して硬度を高め、スタンパの耐久性を向上させるというものである。
[Prior art 7]
Patent Document 7 describes that a second metal layer (a layer having a transfer surface for molding) of a heat insulating stamper (thermal control mold) is formed with a laminated structure of Cr and Ni by electrolytic plating, and has a hardness. This improves the durability of the stamper.

〔従来技術の問題点〕
上記従来技術1のものは、偏肉導光板を良好且つ効率良く成形するために、断熱層の厚さを変えるという手段を取っているものであるが、熱制御手段が熱制御層(断熱層)を転写面の下層に介在させ、各部の熱制御層の厚さを加減することで、各部の熱伝導性を調整しているもので、熱伝導性の微妙な調整が容易でなく、また、熱制御層上層の転写面が凹凸面である場合になおさら微妙な調整が容易でない。
また、上記従来技術2は、キャビティ厚と断熱層厚を制御して、偏肉成形品を良好且つ効率良く成形するという手段を取っているが、この場合も、従来技術1と同様に、局部的な熱伝導性の調整は熱制御層の厚さの調整によるほかはないので、熱伝導性を局部的に微妙に調整するのは容易でない。
また、従来技術3では、熱伝導材(断熱材)の厚さを場所によって変化させることによって断熱効果を理想的にしているが、断熱層を形成するための現在実用化されている方法(スピンコート、蒸着、スパッタリング、複合めっき、等)で断熱材の厚さを部位によって変えるのは容易ではなく、まして理想的な厚さ分布を実際に形成することは非常に困難なことである。
[Problems of the prior art]
In the above prior art 1, the thickness of the heat insulating layer is changed in order to form the uneven light guide plate in a good and efficient manner, but the heat control means is the heat control layer (heat insulating layer). ) In the lower layer of the transfer surface, and the thickness of the thermal control layer of each part is adjusted to adjust the thermal conductivity of each part. It is not easy to finely adjust the thermal conductivity. Further, when the transfer surface of the upper layer of the heat control layer is an uneven surface, it is not easy to make fine adjustments.
In addition, the above-mentioned conventional technique 2 takes a means of controlling the cavity thickness and the heat insulating layer thickness to form an uneven-thickness molded article in a good and efficient manner. Since there is nothing but the adjustment of the thermal conductivity by adjusting the thickness of the thermal control layer, it is not easy to finely adjust the thermal conductivity locally.
Moreover, in the prior art 3, although the heat insulation effect is made ideal by changing the thickness of the heat conduction material (heat insulation material) depending on the location, a method (spin) currently used for forming the heat insulation layer is used. It is not easy to change the thickness of the heat insulating material depending on the part by coating, vapor deposition, sputtering, composite plating, etc., and it is very difficult to actually form an ideal thickness distribution.

さらに、従来技術4、従来技術5、従来技術6では、半径数cm以上の面積のある円形の場合には有効であるが、四角形などの角のある形状や、数cm以下の微小な面積の場合には、乾燥ヒケによる膜厚変動を防ぐことは困難である。
さらに、従来技術7では、熱制御金型の耐久性を高める特許であるが、熱制御金型の熱伝導率は場所によらず一定であるため、厚さの異なる成形品の射出成形では厚肉部と薄肉部の冷却時間が異なってくるため、良好且つ効率良く成形するのが難しい。
Furthermore, in the prior art 4, the prior art 5, and the prior art 6, it is effective in the case of a circle having an area with a radius of several cm 2 or more, but a corner shape such as a square or a minute size of several cm 2 or less. In the case of area, it is difficult to prevent film thickness fluctuations due to dry sink marks.
Furthermore, although the prior art 7 is a patent that increases the durability of the thermal control mold, the thermal conductivity of the thermal control mold is constant regardless of the location. Since the cooling time for the meat part and the thin part is different, it is difficult to mold well and efficiently.

そこで、この発明は、形状に厚肉部や薄肉部といった凹凸のある成形部品の射出成形時に、金型温度を従来よりも下げつつ、かつ、溶融樹脂に対する冷却速度を容易に均一にすることによって、転写性及び成形サイクルのタクトを向上させることができる熱制御金型の構造を工夫することであり、また上記熱制御金型の製造方法を工夫することをその課題とするものである。   Therefore, the present invention makes it easy to uniform the cooling rate for the molten resin while lowering the mold temperature compared to the prior art during injection molding of a molded part having irregularities such as thick and thin portions. Further, it is an object to devise a structure of a thermal control mold capable of improving transferability and tact of a molding cycle, and to devise a manufacturing method of the thermal control mold.

〔熱制御金型の発明の手段〕
熱制御金型の発明の手段は次の(イ)〜(ホ)のとおりである。
(イ)第1金属層と第2金属層の間に、前記金属層よりも低熱伝導の熱制御層を挟んだ構造を有する射出成形用の熱制御金型A,Bであって、
(ロ)射出成形装置に装着される第1金属層上に、上記第2金属層の転写用凹形状又は転写用凸形状に準じる凹部又は凸部を有し、
(ハ)上記熱制御金型A,Bの第1金属層の上記凹部又は凸部の上から、低熱伝導耐熱樹脂のワニスを塗布して形成され、当該凹部又は凸部により厚さが変えられて上記第2金属層に対して不均一な厚みを有する熱制御層があり、
(ニ)上記熱制御層の表面に導電層を介して、樹脂成形面を有する第2金属層が積層されており、
(ホ)上記第2金属層の樹脂成形面が凹形状又は凸形状の転写面であること。
[Means for Invention of Thermal Control Mold]
Means of the invention of the heat control mold are as follows (a) to (e).
(A) Thermal control molds A and B for injection molding having a structure in which a thermal control layer having a lower thermal conductivity than the metal layer is sandwiched between the first metal layer and the second metal layer,
(B) On the first metal layer mounted on the injection molding apparatus, the second metal layer has a concave portion or a convex portion that conforms to the concave shape for transfer or the convex shape for transfer ,
(C) The first metal layer of the thermal control molds A and B is formed by applying a varnish of a low heat conductive heat-resistant resin from above the concave portion or convex portion, and the thickness is changed by the concave portion or convex portion. There is a thermal control layer having a non-uniform thickness with respect to the second metal layer ,
(D) A second metal layer having a resin molding surface is laminated on the surface of the thermal control layer via a conductive layer,
(E) The resin molding surface of the second metal layer is a concave or convex transfer surface.

さらに、上記の熱制御金型については、次の(ヘ)のようにすることができる(請求項2)。
(ヘ)上記第1金属層上の凹部又は凸部が凹形状曲面部又は凸形状曲面部であり、上記第2金属層の凸形状の転写面に階段状の成形パターンがあること。
Further, the above heat control mold can be as follows (Claim 2).
(F) The concave portion or the convex portion on the first metal layer is a concave curved surface portion or a convex curved surface portion, and there is a step-shaped molding pattern on the convex transfer surface of the second metal layer .

〔熱制御金型の製造方法の発明の手段〕
熱制御金型の製造方法の発明は次の(a)〜(f)のとおりである(請求項3)。
(a)第1金属層と第2金属層の間に、前記金属層よりも低熱伝導の熱制御層を挟んだ構造を有する射出成形用の熱制御金型A,Bの製造方法であって、
(b)射出成形装置の取付け板に装着される第1金属層上に、上記第2金属層の転写用凹形状又は転写用凸形状に準じる凹部又は凸部を形成し、
(c)上記熱制御金型A,Bの第1金属層の上記凹部又は凸部の上から、低熱伝導耐熱樹脂のワニスを塗布して加熱乾燥させ、当該凹部又は凸部により厚さが変えられて上記第2金属層に対して不均一な厚みを有する熱制御層を形成し、
(d)次に上記熱制御層の表面に導電層を形成し、
(e)その後に当該導電層上に電解めっきで第2金属層を形成し、
(f)上記第2金属層の樹脂成形面に転写用凹形状又は転写用凸形状を形成すること。
[Means for Invention of Manufacturing Method of Thermal Control Mold]
Invention of the manufacturing method of a heat-control metal mold | die is as the following (a)-(f) (Claim 3).
(A) A method of manufacturing thermal control molds A and B for injection molding having a structure in which a thermal control layer having lower thermal conductivity than the metal layer is sandwiched between a first metal layer and a second metal layer. ,
(B) On the first metal layer mounted on the mounting plate of the injection molding apparatus, a concave or convex portion conforming to the concave shape for transfer or convex shape for transfer of the second metal layer is formed,
(C) Applying a varnish of a low heat conductive heat-resistant resin from above the recesses or projections of the first metal layer of the thermal control molds A and B, heat drying, and changing the thickness by the recesses or projections Forming a thermal control layer having a non-uniform thickness with respect to the second metal layer ,
(D) Next, a conductive layer is formed on the surface of the thermal control layer,
(E) Thereafter, a second metal layer is formed on the conductive layer by electrolytic plating,
(F) A concave shape for transfer or a convex shape for transfer is formed on the resin molding surface of the second metal layer.

さらに、上記金属金型の製造方法については、次の(g)のようにすることもできる(請求項4)。
(g)上記第1金属層上の凹部又は凸部が凹形状曲面部又は凸形状曲面部であり、上記第2金属層上の凸形状の転写面に階段状の成形パターンを形成すること。
Furthermore, the manufacturing method of the metal mold can be as described in the following (g) (Claim 4).
(G) the concave portions or convex portions on the first metal layer is a concave shape curved portion or convex curved section, forming a step-like shaped pattern transfer surface of the convex shape on the second metal layer.

さらに、上記金属金型の製造方法について、次の(イ)〜(ハ)のようにすることができる(請求項5)。
(イ)上記第1金属層の上面に、金型転写面積より大きな面積で且つ熱制御層を超える深さの液溜まり部を形成し、
(ロ)該液溜まり部に溶剤に溶解させた状態の低熱伝導耐熱樹脂のワニスを所望の量吐出させてから、溶媒を乾燥除去して上記熱制御層となる樹脂層を形成し、
(ハ)その後溶媒乾燥除去時のヒケによって盛り上がった樹脂層と液溜まり部の外周部壁面を一緒に削り、熱制御層表面を平坦にすること。
さらに、次の(ニ)によるようにすることができる(請求項6)。
(ニ)上記液溜まり部外周部の最浅深さをd、所望の樹脂熱制御層深さをD、樹脂ワニスの溶媒分をPvol%、とするとき、
1.5×(D/(100−P)×0.01)>d>D/(100−P)×0.01
の関係となるように、液溜まり部外周部の最浅深さdを規定したこと。
Furthermore, about the manufacturing method of the said metal metal mold | die, it can carry out like following (A)-(C) (Claim 5).
(B) on the upper surface of the first metal layer, and forming a liquid reservoir having a depth greater than且one thermal control layer with a large area than the mold transfer area,
(Ii) the varnish of the low thermal conductive heat-resistant resin in the state dissolved in Solvent to the liquid reservoir from by the desired amount ejection and the solvent was removed by drying to form a resin layer serving as the heat control layer,
(C) After that, the resin layer raised by sink marks at the time of solvent drying and removal and the outer peripheral wall surface of the liquid reservoir part are shaved together to flatten the surface of the thermal control layer.
Further, the following (d) can be made (claim 6).
(D) When the shallowest depth of the outer peripheral portion of the liquid reservoir is d, the desired resin thermal control layer depth is D, and the solvent content of the resin varnish is Pvol%,
1.5 * (D / (100-P) * 0.01)>d> D / (100-P) * 0.01
The shallowest depth d of the outer peripheral portion of the liquid reservoir is defined so that

この発明の効果を請求項毎に整理すれば次のとおりである。
〔請求項1に係る発明〕
請求項1に係る発明(上記「熱制御金型の発明の手段」)は、第1金属層と第2金属層との間に断熱性の高い熱制御層を介在させているので、上記熱制御層の厚さを成形部品の厚肉部に当接する部分は薄く、薄肉部に当接する部分は厚くという具合に容易に局部的にその厚さを加減することができ、第1金属層と熱制御層の両方による熱制御機能があり、両者の組み合わせで局部的な熱伝達性を自在に微妙にコントロール(制御又は調節)することができる。
これによって、成形部品の厚肉部と薄肉部の冷却速度を微細に調整してほぼ均等にすることができる。したがって、成形品の熱歪みを低減し、成形部品の複屈折や機械特性といった転写性を向上させることができ、さらに、微細パターンの末端における樹脂流動性の低下が低減されるので、従来に比して金型温度を大幅に下げることができ、これにより、成形タクトを短縮することができる。
また、上記熱制御金型によって製造された成形部品は熱歪みが少なく、転写成形精度が高いので高品質である。
The effects of the present invention are summarized as follows for each claim.
[Invention of Claim 1]
In the invention according to claim 1 (the above-mentioned “means of the invention for heat control mold”), since the heat control layer having high heat insulation is interposed between the first metal layer and the second metal layer, the heat The thickness of the control layer can be easily adjusted locally, such that the part that contacts the thick part of the molded part is thin and the part that contacts the thin part is thick. There is a heat control function by both of the heat control layers, and the combination of the two makes it possible to freely and finely control (control or adjust) the local heat transferability.
Thereby, the cooling rate of the thick part and the thin part of the molded part can be finely adjusted to be substantially uniform. Therefore, the thermal distortion of the molded product can be reduced, the transferability such as the birefringence and mechanical properties of the molded part can be improved, and further, the decrease in resin fluidity at the end of the fine pattern is reduced. As a result, the mold temperature can be greatly reduced, and the molding tact time can be shortened.
In addition, the molded part manufactured by the above-described heat control mold has high quality because it has less thermal distortion and high transfer molding accuracy.

〔請求項2に係る発明〕
請求項2に係る発明は、特に第1金属層上の凸部の上の第2金属層に、凸形状の階段状成形パターンを形成してあるから、次の特有の効果を奏する。
すなわち、第2金属層の凸形状に準じる凸部第1金属層上に形成されているので、転写形状の高さの違いからくる第2金属層の厚さの違いによる冷却状態の変化を、熱制御層と第1金属層の厚さが調整しているので、転写性にばらつきが出ず、良好な転写性を得ることができる。
[Inventions according to claims 2]
The invention according to claim 2, in particular the second metal layer on the convex portion on the first metal layer, since is formed a step-like shaped pattern of convex, it exhibits the following unique effects.
That is, since the convex part according to the convex shape of the 2nd metal layer is formed on the 1st metal layer, the change of the cooling state by the difference in the thickness of the 2nd metal layer resulting from the difference in the height of the transfer shape , the thickness of the thermal control layer and the first metal layer is adjusted, not out variation in transferability, it is possible to obtain good transferability.

〔請求項3に係る発明〕
上記請求項3に係る発明(上記「物を製造する方法の発明の手段」は、第1金属層上に凹部または凸部をあらかじめ形成してから低熱伝導耐熱樹脂のワニスによる熱制御層を形成しているのであるから、請求項1に係る発明の金型(所期の熱伝導性分布を備えた金型)を容易に且つ高精度に製造することができ、また、短いタクトで成形行程を繰り返すことができるから、生産性が高い。
さらに、細かな且つ複雑な転写形状にも対処可能である。
[Invention of Claim 3]
The invention according to claim 3 (the above-mentioned “means of the invention of a method for producing an object” is the formation of a heat control layer by a varnish of a low heat conductive heat-resistant resin after forming a concave or convex portion on the first metal layer in advance. Therefore, the mold of the invention according to claim 1 (mold having a desired thermal conductivity distribution) can be manufactured easily and with high accuracy, and the molding process can be performed with a short tact. Can be repeated, so productivity is high.
Furthermore, it is possible to cope with fine and complicated transfer shapes.

〔請求項4に係る発明〕
請求項4に係る発明は、請求項3の製造方法の構成をとっているから、上記の効果の他に次の特有の効果を奏する。
すなわち、請求項2に係る発明の金型を容易に且つ高精度に製造することが可能である。
[Invention of Claim 4]
Since the invention according to claim 4 adopts the configuration of the manufacturing method according to claim 3, in addition to the effects described above, the following specific effects can be obtained.
That is, the mold of the invention according to claim 2 can be manufactured easily and with high accuracy .

〔請求項5に係る発明〕
請求項5に係る発明は、第1金属層の上面に、金型転写面積より大きな面積で且つ熱制御層を超える深さの液溜まり部を形成し、該液溜まり部に溶剤に溶解させた状態の低熱伝導耐熱樹脂のワニスを所望の量吐出させてから、溶媒を乾燥除去して樹脂層を形成し、その後溶媒乾燥除去時のヒケによって盛り上がった樹脂層と液溜まり部の外周部壁面を一緒に削り熱制御層表面を平坦化しており、このため、熱制御層の厚さむらが抑えられ、光学、機械特性に優れた回折レンズを転写性良く成形可能な熱制御金型を製造できる。
[Invention of Claim 5]
The invention according to claim 5, the upper surface of the first metal layer, forming a且one greater than the thermal control layer depth of the liquid pool portion in larger area than the die transfer area, dissolved in Solvent in the liquid reservoir After discharging a desired amount of the varnish of the low heat conductive heat-resistant resin in the state of being dried, the solvent is dried and removed to form a resin layer, and then the outer periphery of the resin layer and the liquid reservoir portion swelled by sink marks when the solvent is removed by drying and planarizing the cutting Rinetsu control layer surface walls together, Therefore, the thickness unevenness of the thermal control layer is suppressed, the optical, transferability may moldable thermally controlled mold excellent diffractive lens mechanical properties Can be manufactured.

〔請求項6に係る発明〕
請求項6に係る発明は、液溜まり部外周部の最浅深さをd、所望の樹脂熱制御層深さをD、樹脂ワニスの溶媒分をPvol%とすると、
1.5×(D/(100−P)×0.01)>d>D/(100−P)×0.01
の関係となるように、液溜まり部外周部の最浅深さdを規定しているので、乾燥硬化によって目減りする溶媒の量を見込んだ吐出量の樹脂ワニスを液溜まり部に吐出しても、樹脂ワニスが液溜まり部からあふれ出すことが無く、かつ次工程の液溜まり部端部の除去を効率良く短時間で行うことができる。
[Invention of Claim 6]
In the invention according to claim 6, when the shallowest depth of the outer peripheral portion of the liquid reservoir is d, the desired resin thermal control layer depth is D, and the solvent content of the resin varnish is Pvol%,
1.5 * (D / (100-P) * 0.01)>d> D / (100-P) * 0.01
Since the shallowest depth d of the outer peripheral portion of the liquid reservoir portion is defined so that the relationship of the above is satisfied, even if a resin varnish having a discharge amount that allows for the amount of solvent that is reduced by drying and curing is discharged to the liquid reservoir portion, In addition, the resin varnish does not overflow from the liquid reservoir, and the removal of the end of the liquid reservoir in the next process can be performed efficiently and in a short time.

削 除( Delete )

削 除( Delete )

(a)は、実施例の金型で成形する回折レンズの平面図、(b)は、上記回折レンズの端面図、(c)は、上記回折レンズの側面図(A) is a plan view of a diffractive lens molded by the mold of the embodiment, (b) is an end view of the diffractive lens, and (c) is a side view of the diffractive lens. は、金型Aの製作工程の前半を示す製作工程図Is a production process diagram showing the first half of the production process of mold A は、金型Bの製作工程の前半を示す製作工程図Is a production process diagram showing the first half of the production process of mold B は、金型Aの製作工程の後半を示す製作工程図Is a production process diagram showing the second half of the production process of mold A は、金型Bの製作工程の後半を示す製作工程図Is a production process diagram showing the second half of the production process of mold B は、金型A,Bによる射出成形装置の断面構造を模式的に示す断面図FIG. 3 is a cross-sectional view schematically showing a cross-sectional structure of an injection molding apparatus using molds A and B は、金型A,Bの熱制御層の他の形成方法による製作工程図Is a manufacturing process diagram according to another method for forming the thermal control layer of the molds A and B は、図7の実施例における金型A,Bの断面図Is a sectional view of molds A and B in the embodiment of FIG. は、図7の実施例による熱制御金型の断面図Fig. 7 is a sectional view of a thermal control mold according to the embodiment of Fig. 7 は、従来技術の説明用断面図Is a sectional view for explaining the prior art は、他の従来技術の説明用断面図Is a sectional view for explaining another prior art

この発明による熱制御金型の構成及び製造方法を、次に回折レンズの成形を実施例として示しながら説明する。
この実施例の回折レンズ1の概要は図1に示すとおりであり、その形状は、全体がシリンドリカルレンズ形状となっている。そして凹面側の短手方向に段々の段差状の回折形状パターンが刻まれている。凸面側は長手方向が直線形状で、短手方向が凸形状である。
The configuration and manufacturing method of the thermal control mold according to the invention will now be described while showing the forming of the diffractive lens as a real施例.
Summary of the diffractive lens 1 of this embodiment is as shown in FIG. 1, the shape, the entire body is a cylindrical lens shape. A stepped diffraction pattern is engraved in the widthwise direction on the concave side. A convex side in the longitudinal Direction linear shape, Tantekata direction has a convex shape.

金型は、回折レンズ1の凹部2と凸部3を両側から挟み込むようにして成形するものであり、2個の熱制御金型Aと熱制御金型Bが1セットとして製作される。回折レンズ1の凹部2を成形するのが熱制御金型A(以下これを単に「金型A」という)であり、凸部3を成形するのが熱制御金型B(以下これを単に「金型B」という)である。回折レンズ1の具体的な寸法は、長手方向が約12mm、短手方向が約4mm、レンズ厚さが約3mm。段差パターンは、一段々々の高さが1.5μmである。そして、段差幅は、中心部で約200μmで端部に行くに従って段々と狭くなり、最端部で約10μmとなる。段差数は約100段程度となっており、全体としての凹部2の深さが約150μmである。回折レンズ1の凸部3は、曲率半径(R)が約25mmの非球面形状(円弧状)となっている。
金型Aは第1金属層A1、熱制御層30、第2金属層A2によるものであり(図4(c))、金型Bも同様に、第1金属層B1と熱制御層30と第2金属層B2によるものである(図5(c))。これらの金型A,Bは次の1〜6の工程によって成形される。
The mold is formed by sandwiching the concave portion 2 and the convex portion 3 of the diffractive lens 1 from both sides, and two thermal control molds A and thermal control molds B are manufactured as one set. The concave portion 2 of the diffractive lens 1 is molded by a thermal control mold A (hereinafter simply referred to as “mold A”), and the convex portion 3 is molded by a thermal control mold B (hereinafter simply referred to as “mold”). Mold B)). Specific dimensions of the diffractive lens 1 are approximately 12 mm in the longitudinal direction, approximately 4 mm in the lateral direction, and approximately 3 mm in lens thickness. The step pattern has a height of 1.5 μm step by step. The step width is about 200 μm at the center and gradually narrows toward the end, and about 10 μm at the end. The number of steps is about 100, and the depth of the recess 2 as a whole is about 150 μm. The convex portion 3 of the diffractive lens 1 has an aspherical shape (arc shape) with a radius of curvature (R) of about 25 mm.
The mold A is composed of the first metal layer A1, the thermal control layer 30, and the second metal layer A2 (FIG. 4C), and the mold B is similarly composed of the first metal layer B1 and the thermal control layer 30. This is due to the second metal layer B2 (FIG. 5C). These molds A and B are molded by the following steps 1-6.

1.第1金属層A1,B1の形成:
射出成形装置に装着される金型Aの第1金属層A1の上面に回折レンズ1の凹部2に類似した凸部10を形成し(図2(a))、また金型Bの第1金属層B1の上面に回折レンズ1の凸部3に類似している凹部又は凸部20を形成する(図3(a))。上記第1金属層A1、第1金属層B1の材質は加工性に優れ、硬度が比較的高度であればよく、例えば、SK材やSKH材又はSTAVAX等を使用することができる。
金型Aの第2金属層A2の凸形状51の表面に回折レンズ凹部2の段差に相当する段差が形成されているが、第1金属層A1の上記凸部10の表面には上記段差は形成されていない。
金型A側は、頭頂部の高さが15μmの短手方向側が凸レンズの形状、金型B側は、底部の深さが15μmの短手方向が凹レンズの形状とする。これは、第1金属層の深さまたは高さの形状を、単純に第2金属層の転写面と同じ高さまたは深さの形状としてしまうと、後の熱制御層30の形成時に熱制御層厚さの最厚部と最薄部での違いが100μm以上となってしまうが、熱制御層30である低熱伝導耐熱樹脂と、金属とでは熱伝導率に大きな違いがあるため、ここまで熱制御層30に大きく厚さの差をつけてしまうと、成形品からの熱の伝わり方が場所によって大きく違ってきてしまい、例えば熱制御層の薄い部分はすでに冷却が終了しているのに、熱制御層の厚い部分ではまだ冷却が終了しない、といった不具合によってかえって成形性に悪影響を及ぼすからである。
なお、金型A,Bはともにその長手方向は直線状となっている。
1. Formation of the first metal layers A1, B1:
Forming a convex portion 10 which is similar to the upper surface of the first metal layer A1 in the recess 2 of the diffraction lens 1 of the mold A to be mounted on the injection molding apparatus (FIG. 2 (a)), also a first mold B A concave portion or a convex portion 20 similar to the convex portion 3 of the diffraction lens 1 is formed on the upper surface of the metal layer B1 (FIG. 3A). The material of the first metal layer A1 and the first metal layer B1 only needs to be excellent in workability and relatively high in hardness, and for example, SK material, SKH material, STAVAX, or the like can be used.
Although the step corresponding to the step of the diffractive lens concave portion 2 on the surface of the second metal layer A2 convex 51 of the mold A is formed, the step on the surface of the convex portion 10 of the first metal layer A1 Is not formed.
The mold A side has a convex lens shape on the short side with a top height of 15 μm, and the mold B side has a concave lens shape on the short side with a bottom depth of 15 μm. This is because if the shape of the depth or height of the first metal layer is simply set to the shape of the same height or depth as the transfer surface of the second metal layer, thermal control will be performed when the thermal control layer 30 is formed later. The difference between the thickest part and the thinnest part of the layer thickness is 100 μm or more, but since there is a big difference in thermal conductivity between the low thermal conductive heat-resistant resin as the thermal control layer 30 and the metal, so far If the thickness of the heat control layer 30 is greatly different, the way heat is transferred from the molded product varies greatly depending on the location. For example, the thin part of the heat control layer has already been cooled. This is because the moldability is adversely affected by the problem that cooling is not yet completed in the thick part of the heat control layer.
The molds A and B are both linear in the longitudinal direction.

上記の第1金属層A1の凸部10、第1金属層B1の凹部20は精密切削加工で成形する。加工寸法は回折レンズの円弧状凹凸の直径よりも一回り大きく座ぐり加工し、その中央部に回折レンズの直径に準じた大きさの凸部(図2(a))、又は凹部(図3(a))を形成する。なお、第1金属層A1,B1の表面には熱制御層30(ワニス)との密着性を高めるために、ドライ方法(又はウエット方法も可)による表面エッチング処理を施す(図示略)。また上記第1金属層A1,B1上面の成形加工は、上記の凸部10又は凹部20を精密加工できればよいのであるから、精密機械加工に限られるものではなく、物理、化学的な加工(湿式、乾式エッチング、デポジション)等の他の方法によることもできる。 The convex portion 10 of the first metal layer A1 and the concave portion 20 of the first metal layer B1 are formed by precision cutting. The machining dimension is counterbore processed to be slightly larger than the diameter of the arc-shaped unevenness of the diffractive lens, and a convex part (FIG. 2 (a)) or a concave part (FIG. (A)) is formed. The surface of the first metal layers A1 and B1 is subjected to a surface etching process (not shown) by a dry method (or a wet method) in order to improve the adhesion with the heat control layer 30 (varnish). Further, the forming process of the upper surfaces of the first metal layers A1 and B1 is not limited to precision machining because it is only necessary to precisely process the convex part 10 or the concave part 20, and physical or chemical processing (wet process). Other methods such as dry etching and deposition) can also be used.

2.熱制御層の形成:
第1金属層A1,B1の上面の熱制御層形成材料は、低熱伝導性、高耐熱性等の性質を有する高分子材料やセラミックス材料、または金属材料である。具体的には、高分子材料としてポリイミドやポリアミドイミド、セラミックス系としてはジルコニアがあり、金属材料としてはビスマスがあり、また、その他に低熱伝導物質のフィラーや微粒子を共析させた複合めっき皮膜も利用可能である。但しこのうち、セラミックス系材料を積層させるには1000℃以上の焼結温度が必要となり、またビスマスは剛性が低くて脆く且つ成膜時の面粗さが粗くなるため実際に利用する場合には、相応の検討が必要となる。以上のことからこの実施例においては低熱伝導性(約0.5W/m・K)で、高い耐熱性(約300℃)を持ちながら、取扱いの比較的容易なポリアミドイミドの樹脂ワニス(商品名:東洋紡製バイロマックス)を使用して熱制御層30を形成している。
2. Formation of thermal control layer:
The heat control layer forming material on the upper surfaces of the first metal layers A1 and B1 is a polymer material, a ceramic material, or a metal material having properties such as low thermal conductivity and high heat resistance. Specifically, polyimide or polyamideimide as a polymer material, zirconia as a ceramic material, bismuth as a metal material, and a composite plating film obtained by eutecting a filler or fine particles of a low thermal conductive material. Is available. However, among these, in order to laminate ceramic materials, a sintering temperature of 1000 ° C. or higher is required, and bismuth has low rigidity and is brittle and the surface roughness during film formation is rough, so when actually used. Therefore, appropriate examination is required. In view of the above, in this embodiment, a polyamide-imide resin varnish (trade name) having a low thermal conductivity (about 0.5 W / m · K), a high heat resistance (about 300 ° C.) and a relatively easy handling. : Toyobo's Viromax) is used to form the thermal control layer 30.

前記金型A,Bの凸部10又は凹部20が熱制御層30で完全に被覆されており、当該熱制御層30は、上記凸部10又は凹部20を除き、所定厚さの被覆層であり、その表面は平坦面である。
この熱制御層30を次のようにして形成する。すなわち、所要量の前記樹脂ワニスを、精密ディスペンサによって滴下し(図2(b)、図3(b))、その後一定時間(この例では約180秒)放置し、その後、加熱乾燥(200℃、40分)させる。なお樹脂ワニスの滴下時に、座ぐり部端部の樹脂ワニスが表面張力によってわずかに持ち上がって高くなるが(図2(c)、図3(c))、この部分は回折レンズの成形部分ではなく、また下記の第2金属層A2,B2によって覆われるので特に問題はない。
The convex portions 10 or the concave portions 20 of the molds A and B are completely covered with the thermal control layer 30, and the thermal control layer 30 is a coating layer having a predetermined thickness except for the convex portions 10 or the concave portions 20. And its surface is a flat surface.
The thermal control layer 30 is formed as follows. That is, a required amount of the resin varnish is dropped by a precision dispenser (FIG. 2 (b), FIG. 3 (b)), then left for a certain time (about 180 seconds in this example), and then heated and dried (200 ° C. , 40 minutes). When the resin varnish is dripped, the resin varnish at the end of the counterbore rises slightly due to surface tension (FIGS. 2 (c) and 3 (c)), but this part is not a molded part of the diffractive lens. Moreover, since it is covered with the following second metal layers A2 and B2, there is no particular problem.

熱制御層30の厚さについては、金型Aの凸部(回折レンズの凹部に対応する部分)10の頂部で15μm、その他の平坦部で厚30μmであり、金型Bの凹部(回折レンズの凹部に対応する部分)の底部で45μm、その他の平坦部で30μmである。このような厚さ分布とすることで、回折レンズの厚肉部に当たる金型部分の熱伝導性を高め、逆に薄肉部の熱伝導性を低くすることによって、成形される回折レンズの冷え方が均一になる。   The thickness of the thermal control layer 30 is 15 μm at the top of the convex portion (the portion corresponding to the concave portion of the diffractive lens) 10 of the mold A, and 30 μm in the thickness of the other flat portion. 45 μm at the bottom of the portion corresponding to the recess) and 30 μm at the other flat portions. By making such a thickness distribution, the thermal conductivity of the mold part that hits the thick part of the diffractive lens is increased, and conversely, the thermal conductivity of the thin part is lowered, thereby cooling the molded diffractive lens. Becomes uniform.

3.導電皮膜形成前処理:
熱制御層の30表面に、次工程で形成する導電層との密着強度を高めるための前処理、すなわち導電層(以下これを「導電皮膜」という)形成前処理を実施する。これが導電皮膜形成前処理である(図2(d)、図3(d))。この実施例では大気圧プラズマ表面処理法を採用しているが、大気圧プラズマ処理を採用するのは、簡便な方法でありながら、樹脂表面の活性度を高めることができ、またその効果が長時間持続するからである。この処理によって、未処理の場合(約3〜4N/cm)と比較して6〜8倍の密着強度(約25N/cm)が得られるようになる。
この導電皮膜形成前処理法としては、その他に、酸素プラズマエッチング処理、紫外線/オゾン処理等があるが、これらは酸素濃度や処理時間などのパラメータを最適化しないと、逆に密着強度を低下させてしまうことになるために取扱が難しい。これに対して大気圧プラズマ表面処理法はそのようなことはないので優れている。
3. Conductive film pre-treatment:
Pretreatment for increasing the adhesion strength with the conductive layer formed in the next step, that is, pretreatment for forming a conductive layer (hereinafter referred to as “conductive film”) is performed on the surface of the thermal control layer 30. This is a pretreatment for forming a conductive film (FIGS. 2D and 3D). In this embodiment, the atmospheric pressure plasma surface treatment method is adopted. However, the adoption of the atmospheric pressure plasma treatment is a simple method, but can increase the activity of the resin surface and has a long effect. Because it lasts for hours. By this treatment, 6 to 8 times the adhesion strength (about 25 N / cm) can be obtained as compared with the case of no treatment (about 3 to 4 N / cm).
In addition, there are oxygen plasma etching treatment, ultraviolet ray / ozone treatment, etc. as the pretreatment method for forming the conductive film. However, unless the parameters such as oxygen concentration and treatment time are optimized, the adhesion strength is reduced. It will be difficult to handle. On the other hand, the atmospheric pressure plasma surface treatment method is excellent because it does not do so.

4.導電皮膜形成処理:
上記の導電皮膜前処理を施した熱制御層表面に、導電皮膜を形成する。導電皮膜形成方法としては、アルゴンガス等による導電物質のスパッタリング法やイオンプレーティング法、その他に金属蒸着法、無電解めっき法があり、それぞれ利用できるが、界面剥離の問題を考えると、被積層対象物に金属粒子が深く浸透し、皮膜密着性が高いスパッタリング法やイオンプレーティング法が望ましい。なおスパッタリング法では、広い面積に均一な成膜が可能で、イオンプレーティング法では、飛び出した原子分子状の粒子に電界をかけて加速することによって、さらに高い密着性を得ることが可能である。
4). Conductive film formation treatment:
A conductive film is formed on the surface of the heat control layer that has been subjected to the pretreatment of the conductive film. Conductive film formation methods include sputtering methods and ion plating methods of conductive materials using argon gas, etc., as well as metal vapor deposition methods and electroless plating methods, which can be used, but considering the problem of interfacial delamination, It is desirable to use a sputtering method or an ion plating method in which metal particles penetrate deeply into the object and have high film adhesion. The sputtering method can form a uniform film over a wide area, and the ion plating method can obtain higher adhesion by accelerating the ejected atomic molecular particles by applying an electric field. .

この実施例では、導電皮膜の材質として第2金属層A2,B2と同材質のニッケルをアルゴンガスのスパッタリングによって成膜する方法を採用し、アルゴンガスのDCスパッタリングによってニッケルの成膜を実施した。そして到達真空度:2〜8×10−3Pa、アルゴンリーク圧:0.3〜1.5Pa、DCパワー:200〜700Wで、薄膜形成を実施した。膜厚は、20nmを下回ると膜形成が困難となり、200nmを超えると内部応力によるクラックが発生するので、この実施例では100nm±50nmとした(図4(a)、図5(a))。 In this example, a method of forming a film of nickel of the same material as the second metal layers A2 and B2 as a material of the conductive film by sputtering of argon gas was employed, and nickel was formed by DC sputtering of argon gas. And thin film formation was implemented by ultimate vacuum degree: 2-8 * 10 <-3> Pa, argon leak pressure: 0.3-1.5Pa, DC power: 200-700W. If the film thickness is less than 20 nm, film formation becomes difficult, and if it exceeds 200 nm, cracks due to internal stress occur. Therefore, in this example, the film thickness was set to 100 nm ± 50 nm (FIGS. 4A and 5A ).

5.第2金属層形成:
導電皮膜40を形成したワークに、第2金属層A2,B2(図4(a)、図5(a))をニッケル電解めっきによって形成する。電解めっき浴の概要を表1に示す。
5. Second metal layer formation:
Second metal layers A2 and B2 (FIGS. 4A and 5A) are formed on the work on which the conductive film 40 is formed by nickel electroplating. An outline of the electrolytic plating bath is shown in Table 1.

Figure 0005360679
ワークを入槽してから3分〜5分間、0.2A/dm2未満の弱電流密度で通電し、導電皮膜をニッケル電鋳液に馴染ませて濡れ性を向上させ、ピット発生や電鋳時剥離を防ぐようにする。弱通電終了後に通電電流値を上昇させ、最終的に、10A/dm2〜20A/dm2程度まで電流値を上昇させてから一定に保ち、所定の電鋳膜厚(200〜250μm程度)を得るまで通電を続ける(図4(b)、図5(b))。
Figure 0005360679
Energized with a weak current density of less than 0.2 A / dm2 for 3 to 5 minutes after entering the work tank, adapting the conductive film to the nickel electroforming solution, improving wettability, and generating pits and electroforming Try to prevent peeling. Energizing current value is increased after the end of weak energization, and finally the current value is increased to about 10 A / dm2 to 20 A / dm2 and then kept constant until a predetermined electroformed film thickness (about 200 to 250 μm) is obtained. The energization is continued (FIGS. 4B and 5B).

6.成形パターン形成:
上記の第2金属層A2,B2を形成した後、これらの第2金属層に回折レンズ(図1参照)の形状に対応する凸形状51、又は凹形状52を形成し、上記凸形状の表面に階段状の回折レンズの成形パターンを形成する。そしてこれらの形成方法は上記「1.第1金属層A1,B1の形成」の形成工程と同様に、精密切削加工で行う(図4(c)、図5(c))。
6). Molding pattern formation:
After forming the second metal layers A2 and B2, a convex shape 51 or a concave shape 52 corresponding to the shape of the diffractive lens (see FIG. 1) is formed on these second metal layers, and the convex surface A stepped diffractive lens molding pattern is formed on the substrate. These forming methods are performed by precision cutting as in the forming process of “1. Formation of first metal layers A1 and B1 ” (FIGS. 4C and 5C).

上記1〜6の加工工程によって、熱制御構造の金型A,Bが製作される。
この金型の熱制御は第1金属層A1,B1の伝熱抵抗、熱制御層(断熱層)30の伝熱抵抗、第2金属層A2,B2の伝熱抵抗によるものであるから、その中で熱制御層30の部分的な伝熱抵抗の調整が、第1金属層A1,B1上に形成された凹部又は凸部形状の差からくる熱制御層30の厚さの差を通してなされ、したがって、成形品の厚さの差における熱制御が容易になる。それゆえ、上記従来のものに比して、複雑な形状の転写面を備えた金型の熱制御が容易であり、且つ金型の製造も容易である。
The molds A and B having the heat control structure are manufactured by the processing steps 1 to 6 described above.
The heat control of the mold is based on the heat transfer resistance of the first metal layers A1 and B1, the heat transfer resistance of the heat control layer (heat insulating layer) 30, and the heat transfer resistance of the second metal layers A2 and B2. Among them, the adjustment of the partial heat transfer resistance of the heat control layer 30 is made through the difference in thickness of the heat control layer 30 resulting from the difference in the concave or convex shape formed on the first metal layers A1 and B1. Therefore, thermal control in the thickness difference of the molded product becomes easy. Therefore, as compared with the conventional one, the heat control of a mold having a transfer surface having a complicated shape is easy, and the mold can be easily manufactured.

次に、これらの金型による回折レンズの射出成形について説明する(図6参照)。
射出成形装置の可動金型71、固定金型72に金型A,金型Bをそれぞれ着脱離自在に装着して固定し、両金型A,Bによるキャビティに溶融樹脂を充填し、固定金型72と可動金型71で加圧する。そして所定温度まで冷却してから固定金型72と可動金型71を分離して成形品を取り出す。
Next, injection molding of a diffractive lens using these molds will be described (see FIG. 6).
A mold A and a mold B are detachably mounted on and fixed to a movable mold 71 and a fixed mold 72 of an injection molding apparatus, respectively, and a molten resin is filled in a cavity formed by both molds A and B, and a fixed mold. The mold 72 and the movable mold 71 are pressurized. Then, after cooling to a predetermined temperature, the fixed mold 72 and the movable mold 71 are separated and the molded product is taken out.

そして、この実施例では金型A,Bの加熱温度を従来の金型による場合よりも20〜30℃下げても、樹脂充填中の樹脂が流動状態を確保できる温度以上に保持され、微細構造部への充填が十分になされる。このように、金型温度が20℃〜30℃低く、また、微細形状への充填にも不具合は無いから、取り出し温度まで金型を冷却するのに要する時間が短くなり、したがって、成形タクトが短縮される。すなわち、従来の金型による場合は、成形タクトが約2分であるのに対して、この実施例では1分以下であるので、結局、成形タクトが約1分以上短縮される。仮に、熱制御層30の厚さが均一な熱制御金型で回折レンズを成形すると、成形品の厚肉部と薄肉部で冷却状態が違ってくるために、成形品の複屈折が大きくなってしまう(±200nm程度)という光学特性の不具合を生じるが、この実施例の金型A,Bによる場合は、成形品の厚さの差に応じて熱制御層の厚さを調整し、成形品の冷却時間を均一にできるから、複屈折を±100nmに抑制することができる。   In this embodiment, even if the heating temperature of the molds A and B is lowered by 20 to 30 ° C. compared to the case of using the conventional mold, the resin during the resin filling is maintained at a temperature higher than the temperature at which the fluid state can be secured, and the microstructure The part is sufficiently filled. Thus, since the mold temperature is 20 ° C. to 30 ° C. lower and there is no problem in filling the fine shape, the time required to cool the mold to the take-out temperature is shortened, and therefore the molding tact time is reduced. Shortened. That is, in the case of using a conventional mold, the molding tact is about 2 minutes, whereas in this embodiment, it is 1 minute or less, so that the molding tact is shortened by about 1 minute or more. If the diffractive lens is molded with a thermal control mold having a uniform thickness of the thermal control layer 30, the cooling state is different between the thick part and the thin part of the molded product, so that the birefringence of the molded product increases. In the case of the molds A and B of this embodiment, the thickness of the thermal control layer is adjusted according to the difference in the thickness of the molded product, and molding is performed. Since the product cooling time can be made uniform, birefringence can be suppressed to ± 100 nm.

〔第2の実施例〕
以上の実施例に加えて、以下のような方法で第1金属層と熱制御層を形成することにより、より光学特性や機械特性に優れた回折レンズを転写性良く成形可能な第2の実施例の熱制御金型を製造できる。以下の(1)〜(3)の工程でこれを説明する。ただし、この工程以降の工程は、上記の実施例についての工程4〜工程6と同じであるので、これについての説明は省略するが、最終的には、図9に示すような断面形状の熱制御金型が制作される。ただし、図7(a)〜図7(e)及び図9においては、金型A,Bに実際にある第1金属層上の凸部又は凹部の図示は省略されている。
[Second Embodiment]
In addition to the above-described embodiments, the first metal layer and the thermal control layer are formed by the following method, so that a diffractive lens having more excellent optical characteristics and mechanical characteristics can be molded with good transferability. An example thermal control mold can be manufactured. This will be described in the following steps (1) to (3). However, since the steps after this step are the same as steps 4 to 6 for the above-described embodiment, description thereof will be omitted, but finally, the heat having a cross-sectional shape as shown in FIG. Control mold is produced. However, in FIG. 7A to FIG. 7E and FIG. 9, the illustration of the convex portion or the concave portion on the first metal layer actually in the molds A and B is omitted.

(1)第1金属層形成:
成形装置の取付け板に装着する金型A,Bの第1金属層上へ、第2金属層表面の転写面に対応する凸部(金型A)及び凹部(金型B)を形成する(図2(a),図3(a)参照)。第1金属層の材質としては、加工性が良く比較的硬度の高い金属材料であればよい。回折レンズ成形のため、金型Aの第2金属層表面の凸部転写面には回折レンズ凹部に対応した段差が形成されているが、第1金属層表面には、そのような細かい形状まで形成する必要はなく、マクロなレンズ形状に対応した型を形成する。但しそのレンズ形状の寸法であるが、金型A側は、頭頂部の高さが15μmの短手方向側が凸レンズの形状、金型B側は、底部の深さが15μmの短手方向が凹レンズの形状、とする。長手方向は、金型A,Bともに直線状となっている。これは、単純に第2金属層の転写面と同じ深さの形状としてしまうと、後の熱制御層形成時に熱制御層厚さの最厚部と最薄部での違いが100μm以上となってしまい、そのため、成形品からの熱の伝わり方が場所によって大きく違ってしまうので、かえって成形性に悪影響を及ぼすからである。
(1) First metal layer formation:
Die A which is mounted on the mounting plate of the molding apparatus, the first metal layer on the B, convex portions corresponding to the transfer surface of the second metal layer surface (mold A) and forming a recess (die B) ( FIG. 2 (a) and FIG. 3 (a) ). The material of the first metal layer may be any metal material that has good workability and relatively high hardness. For forming the diffractive lens, a step corresponding to the concave part of the diffractive lens is formed on the convex transfer surface of the second metal layer surface of the mold A, but such a fine shape is formed on the surface of the first metal layer. It is not necessary to form, and a mold corresponding to a macro lens shape is formed. However, the dimension of the lens shape is such that the mold A side has a convex lens shape on the short side with a top height of 15 μm, and the mold B side has a concave lens with a bottom depth of 15 μm on the short side. The shape of In the longitudinal direction, both molds A and B are linear. If the shape is simply the same depth as the transfer surface of the second metal layer, the difference between the thickest part and the thinnest part of the heat control layer thickness will be 100 μm or more when the heat control layer is formed later. For this reason, the way heat is transmitted from the molded product varies greatly depending on the location, which adversely affects the moldability.

第2の実施例では形成方法として、精密切削加工等の機械加工を採用したが、他に研削加工等も利用できる。加工手順としては、回折レンズの転写面積よりも一回り大きいサイズの液溜まり部を座ぐって形成し(図7(a)参照)、その中央部に回折レンズ形状に準ずる形状に対応した凸部(金型A)及び凹部(金型B)を形成する(図示略)。
液溜まり部外周部の最浅深さdは、所望の熱制御層深さをD、樹脂ワニスの溶媒分をPvol%、とすると、
1.5×(D/(100−P)×0.01)>d>D/(100−P)×0.01の関係となるように設定する(図7(e)、図8参照)。このように液溜まり部外周部の最浅深さdを設定することによって、乾燥硬化によって目減りする溶媒量を見込んだ量の樹脂ワニスを液溜まり部に吐出しても、樹脂ワニスが液溜まり部からあふれ出すことが無く、かつ次工程の液溜まり部端部の除去を効率良く短時間で行うことができる。
なお、第1金属層表面は、熱制御層との密着をよくするために、ドライまたはウェット方法による表面エッチング処理を施す(図示略)。
In the second embodiment, machining such as precision cutting is employed as a forming method, but grinding or the like can also be used. As a processing procedure, a liquid reservoir having a size that is slightly larger than the transfer area of the diffractive lens is formed so as to be spotted (see FIG. 7A), and a convex portion corresponding to a shape corresponding to the shape of the diffractive lens is formed at the center ( A mold A) and a recess (mold B) are formed (not shown).
The shallowest depth d of the outer peripheral part of the liquid pool part is defined as D for the desired thermal control layer depth and Pvol% for the solvent content of the resin varnish.
1.5 × (D / (100−P) × 0.01)>d> D / (100−P) × 0.01 is set (see FIGS. 7E and 8). . By setting the shallowest depth d of the outer peripheral portion of the liquid reservoir in this manner, even if the amount of the resin varnish expected to be reduced by drying and curing is discharged to the liquid reservoir, the resin varnish remains in the liquid reservoir. And the removal of the liquid pool end in the next process can be performed efficiently and in a short time.
The surface of the first metal layer is subjected to a surface etching process (not shown) by a dry or wet method in order to improve adhesion with the heat control layer.

(2)熱制御層形成:
上記(1)の第1金属層上へ、熱制御層の形成を行う。熱制御層形成材料としては、高分子材料としてポリイミドやポリアミドイミド、セラミックス系としてはジルコニア、金属系としてはビスマスがあり、その他に低熱伝導物質のフィラーや微粒子を共析させた複合めっき皮膜も利用可能である。ただしこのうち、セラミックス系材料を積層させるには1000℃以上の焼結温度が必要となり、またビスマスは剛性が低くて脆く且つ成膜時の面粗さが粗くなるため実際に利用する場合には、相応の検討が必要となる。
(2) Thermal control layer formation:
The thermal control layer is formed on the first metal layer (1). Thermal control layer forming materials include polyimide and polyamideimide as polymer materials, zirconia as ceramics, bismuth as metals, and composite plating films in which fillers and fine particles of low thermal conductivity materials are co-deposited. Is possible. However, among these, in order to laminate ceramic materials, a sintering temperature of 1000 ° C. or higher is required, and bismuth has low rigidity and is brittle and the surface roughness during film formation is rough, so when actually used. Therefore, appropriate examination is required.

以上の点から第2の実施例では、形成材料としてポリアミドイミドの樹脂ワニス(商品名:東洋紡製バイロマックス)を使用する。前記金型A,Bの第1金属層上の凸部及び凹部が完全に埋まり、且つ予め乾燥硬化によって目減りする溶媒の量、及び次工程の機械加工による除去分を見込んで、乾燥硬化後に設定の熱制御層厚さを上回り、かつ液溜まり部から溢れないような量の前記樹脂ワニスを、精密ディスペンサによって定量滴下する(図7(b)参照)。
滴下後一定時間放置して液溜まり部全体に樹脂ワニスを拡散させる(図7(c)参照)。なお樹脂ワニスを滴下して拡散させても、樹脂ワニスの粘度が高い場合には樹脂ワニス表面が平坦にならず高さにむらができる場合がある(図7(c)参照)。この高さむらは、次工程の乾燥によって、樹脂中の溶媒が揮発し体積収縮を起こしても残る(図7(d)参照)場合があるが、最終的に機械加工によって平坦化されるので問題はない。
拡散化終了後、樹脂ワニスを加熱乾燥させる(200℃,40分)ことによって熱制御層を形成する(図7(d)参照)。
In view of the above, in the second embodiment, a polyamide-imide resin varnish (trade name: Viromax manufactured by Toyobo) is used as a forming material. Set after drying and curing, taking into account the amount of solvent that is completely filled in the protrusions and recesses on the first metal layer of the molds A and B, and reduced by drying and curing in advance, and removal by machining in the next process. exceed the thermal control layer thickness, and the resin varnish in an amount so as not to overflow from the liquid reservoir, it is added dropwise a constant amount by the precision dispenser (see FIG. 7 (b)).
After dropping, the resin varnish is allowed to diffuse for a certain period of time and diffuse throughout the liquid reservoir (see FIG. 7C). Even when the resin varnish is dropped and diffused, if the viscosity of the resin varnish is high, the surface of the resin varnish may not be flat and the height may be uneven (see FIG. 7C). This height unevenness may remain even if the solvent in the resin volatilizes and shrinks in volume due to drying in the next step (see FIG. 7D), but is finally flattened by machining. No problem.
After completion of the diffusion, the resin varnish is heated and dried (200 ° C., 40 minutes) to form a heat control layer (see FIG. 7D).

(3)液溜まり部外周部の除去及び熱制御層表面の平坦化:
上記(2)の樹脂ワニスの乾燥硬化が終わったところで、液溜まり部外周部と樹脂熱制御層を同時に機械加工によって、樹脂熱制御層の設定厚さまで削り、平坦化を行う(図7(e)参照)。
機械加工は、研削または切削加工で行うが、切削加工の場合液溜まり部外周部が金属製のためバリが樹脂熱制御層側に食い込む可能性があるため、研削加工で行うことを推奨する。また加工表面は、鏡面にはせず、梨地状とすると表面積がその分増えるため、次の導電皮膜形成時に密着性が高まる。
本発明による熱制御金型を用いて、上記回折レンズを成形すると、その成形タクト約30秒であり、従来の金型を用いて上記回折レンズを成形する場合の成形タクトが約3分強であるので、これに対して3〜6倍に生産性が向上している。
(3) Removal of the outer peripheral portion of the liquid reservoir and planarization of the surface of the thermal control layer:
When the drying and curing of the resin varnish of the above (2) is finished, the outer peripheral portion of the liquid reservoir and the resin thermal control layer are simultaneously machined to scrape to the set thickness of the resin thermal control layer and flatten (FIG. 7 (e) )reference).
Machining is performed by grinding or cutting, burr balls Ri outer peripheral portion liquid when the cutting work for the metal is due to the possibility of cutting into the resin thermal control layer side, it is recommended to perform in grinding . Further, if the processed surface is not mirror-finished but has a satin finish, the surface area increases accordingly, so that the adhesion is increased when the next conductive film is formed.
When the diffractive lens is molded using the thermal control mold according to the present invention, the molding tact time is about 30 seconds, and when the diffractive lens is molded using a conventional mold, the molding tact is about 3 minutes or more. Therefore, productivity is improved 3 to 6 times.

A,B:金型(熱制御金型)
A1:金型Aの第1金属層
B1:金型Bの第1金属層
A2:金型Aの第2金属層
B2:金型Bの第2金属層
1:回折レンズ
2:回折レンズの凹部
3:回折レンズの凸部
10:凸部
20:凹部
30:熱制御層
40:導電皮膜
51:凸形状
52:凹形状
A, B: Mold (thermal control mold)
A1: first metal layer B of mold A 1: first metal layer A2 of mold B: second metal layer B2 of mold A: second metal layer B of mold B 1: diffractive lens 2: concave portion of diffractive lens 3: Convex part 10 of the diffractive lens 10: Convex part 20: Concave part 30: Thermal control layer 40: Conductive film 51: Convex shape 52: Concave shape

特許第3884105号Japanese Patent No. 3884105 特開平10−016009号公報Japanese Patent Laid-Open No. 10-016009 特開2003−80567号公報JP 2003-80567 A 特開2007−172674号公報JP 2007-172673 A 特開2007−168087号公報JP 2007-168087 A 特開2004−355781号公報Japanese Patent Laid-Open No. 2004-355781 特開2008−221783号公報Japanese Patent Laid-Open No. 2008-221783

Claims (6)

第1金属層と第2金属層の間に、前記金属層よりも低熱伝導性の熱制御層を挟んだ構造を有する射出成形用の熱制御金型A,Bであって、
射出成形装置に装着される上記第1金属層上に、上記第2金属層の転写用凹形状又は転写用凸形状に準じる凹部又は凸部を有し、
上記熱制御金型A,Bの第1金属層の上記凹部又は凸部の上から、低熱伝導耐熱樹脂のワニスを塗布して形成され、当該凹部又は凸部により厚さが変えられて上記第2金属層に対して不均一な厚みを有する熱制御層があり、
上記熱制御層の表面に導電層を介して、樹脂成形面を有する第2金属層が積層されており、
上記第2金属層の樹脂成形面が凹形状又は凸形状の転写面であることを特徴とする射出成形用の熱制御金型。
Thermal control molds A and B for injection molding having a structure in which a thermal control layer having a lower thermal conductivity than the metal layer is sandwiched between a first metal layer and a second metal layer,
The injection molding apparatus in the first metal layer to be mounted has a concave or convex portion conforms to transfer concave or transfer convex shape of the second metal layer,
The heat control molds A and B are formed by applying a varnish of a low heat conductive heat-resistant resin from above the recesses or projections of the first metal layer of the first metal layer , and the thickness is changed by the recesses or projections. There is a thermal control layer with a non-uniform thickness for the two metal layers ,
A second metal layer having a resin molding surface is laminated on the surface of the heat control layer via a conductive layer,
A heat-control mold for injection molding, wherein the resin molding surface of the second metal layer is a concave or convex transfer surface.
上記第1金属層上の凹部又は凸部が凹形状曲面部又は凸形状曲面部であり、上記第2金属層の凸形状の転写面に階段状の成形パターンがあることを特徴とする請求項1の回折レンズ射出成形用の熱制御金型。 The recesses or projections on the first metal layer is a concave shape curved portion or convex curved portion, claims, characterized in that there is step-like shaped pattern transfer surface of the convex shape of the second metal layer 1. Thermal control mold for diffractive lens injection molding. 第1金属層と第2金属層の間に、前記金属層よりも低熱伝導性の熱制御層を挟んだ構造を有する射出成形用の熱制御金型A,Bの製造方法であって、
射出成形装置に装着される上記第1金属層上に、上記第2金属層の転写用凹形状又は転写用凸形状に準じる凹部又は凸部を形成し、
上記熱制御金型A,Bの第1金属層の上記凹部又は凸部の上から、低熱伝導耐熱樹脂のワニスを塗布して加熱乾燥させ、当該凹部又は凸部により厚さが変えられて上記第2金属層に対して不均一な厚みを有する熱制御層を形成し、
次に上記熱制御層の表面に導電層を形成し、
その後に当該導電層上に電解めっきで第2金属層を形成し、
上記第2金属層の樹脂成形面に転写用凹形状又は転写用凸形状を形成することを特徴とする射出成形用の熱制御金型の製造方法。
Between the first and second metal layers, the thermal control mold A for injection molding having the metal across the low thermal conductivity of the thermal control layer than layer structure, a manufacturing method of B,
The injection molding apparatus in the first metal layer to be attached, to form a concave or convex portion conforms to transfer concave or transfer convex shape of the second metal layer,
From above the recesses or projections of the first metal layer of the thermal control molds A and B, a varnish of a low heat conductive heat-resistant resin is applied and dried by heating, and the thickness is changed by the recesses or projections and the above Forming a thermal control layer having a non-uniform thickness with respect to the second metal layer ;
Next, a conductive layer is formed on the surface of the thermal control layer,
Thereafter, a second metal layer is formed on the conductive layer by electrolytic plating,
A method for producing a heat-control mold for injection molding, wherein a concave shape for transfer or a convex shape for transfer is formed on a resin molding surface of the second metal layer.
上記第1金属層上の凹部又は凸部が凹形状曲面部又は凸形状曲面部であり、上記第2金属層の凸形状の転写面に回折形状パターンを形成することを特徴とする請求項3の回折レンズ射出成形用の熱制御金型の製造方法。 Concave or convex portion on the first metal layer becomes concave shape curved portion or convex curved portion, claim 3, characterized in that to form a diffraction shape pattern on the transfer surface of the convex shape of the second metal layer Manufacturing method of heat control mold for diffractive lens injection molding. 上記第1金属層の上面に、金型転写面積より大きな面積で且つ上記熱制御層を超える深さの液溜まり部を形成し、該液溜まり部に溶剤に溶解させた状態の低熱伝導耐熱樹脂のワニスを所望の量吐出させてから、溶媒を乾燥除去して上記熱制御層となる樹脂層を形成し、その後溶媒乾燥除去時のヒケによって盛り上がった上記樹脂層と液溜まり部の外周部壁面を一緒に削り、熱制御層表面を平坦にすることを特徴とする請求項3の熱制御金型の製造方法。 The top surface of the first metal layer, and a large area than the die transfer area to form a liquid reservoir portion having a depth greater than the thermal control layer, the low thermal conductive heat state dissolved in Solvent in the liquid reservoir the varnish of the resin were allowed to desired amount ejection and the solvent was removed by drying to form a resin layer serving as the heat control layer, the outer peripheral portion of the subsequently the resin layer raised by shrinkage during solvent drying and removing the liquid reservoir 4. The method for producing a heat control mold according to claim 3, wherein the wall surfaces are cut together to flatten the surface of the heat control layer. 上記液溜まり部外周部の最浅深さをd、所望の樹脂熱制御層深さをD、樹脂ワニスの溶媒分をPvol%とすると、1.5×(D/(100−P)×0.01)>d>D/(100−P)×0.01の関係となるように、上記液溜まり部外周部の最浅深さdを規定したことを特徴とする請求項5の熱制御金型の製造方法。 The shallowest depth of the liquid reservoir portion outer peripheral portion d, D the desired resin thermal control layer depth, and PVOL% solvent content of the resin varnish Then, 1.5 × (D / (100 -P) × 0 .01)>d> D / (so that 100-P) × 0.01 relation, thermal control of claim 5, characterized in that defining the shallowest depth d of the liquid reservoir outer peripheral portion Mold manufacturing method.
JP2009051064A 2008-12-12 2009-03-04 Thermal control mold for injection molding and manufacturing method thereof Expired - Fee Related JP5360679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009051064A JP5360679B2 (en) 2008-12-12 2009-03-04 Thermal control mold for injection molding and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008317294 2008-12-12
JP2008317294 2008-12-12
JP2009051064A JP5360679B2 (en) 2008-12-12 2009-03-04 Thermal control mold for injection molding and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010158881A JP2010158881A (en) 2010-07-22
JP5360679B2 true JP5360679B2 (en) 2013-12-04

Family

ID=42576414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009051064A Expired - Fee Related JP5360679B2 (en) 2008-12-12 2009-03-04 Thermal control mold for injection molding and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5360679B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6085450B2 (en) * 2012-10-31 2017-02-22 ポリプラスチックス株式会社 Nested manufacturing method
WO2022185503A1 (en) * 2021-03-04 2022-09-09 株式会社Ibuki Precision decorative resin molding, metal mold, metal mold production method, and method for producing precision decorative resin molding

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08309759A (en) * 1995-03-15 1996-11-26 Asahi Chem Ind Co Ltd Heat insulating layer covered mold and molding method using the same
JPH0919928A (en) * 1995-07-07 1997-01-21 Asahi Chem Ind Co Ltd Heat insulating layer clad mold and manufacture thereof
JPH09141757A (en) * 1995-11-22 1997-06-03 Asahi Chem Ind Co Ltd Synthetic resin molded product having high transmissivity and high diffusibility and its molding method
JP2000246769A (en) * 1999-03-01 2000-09-12 Canon Inc Mold for molding and method for molding
JP4815898B2 (en) * 2004-06-29 2011-11-16 コニカミノルタオプト株式会社 Injection mold and injection molding method
JP4972760B2 (en) * 2004-06-29 2012-07-11 コニカミノルタアドバンストレイヤー株式会社 Optical element manufacturing method
JP2008221783A (en) * 2007-03-15 2008-09-25 Ricoh Co Ltd Heat insulating stamper for injection molding of plastic molded article, and its manufacturing method

Also Published As

Publication number Publication date
JP2010158881A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
EP1121234B1 (en) A matrix and method of producing said matrix
CN106746526B (en) Glass heating graphite mold and manufacturing method thereof
TWI310725B (en) Optical element forming mold and manufacturing method thereof
KR100763327B1 (en) Heat insulating stamper structure
CN111825311A (en) Micro-nano hot-press molding process for optical glass array lens
JP5360679B2 (en) Thermal control mold for injection molding and manufacturing method thereof
JP2005014278A (en) Optical disk manufacturing mold having stamper holding surface to which heat insulating layer and diamond-like carbon film are applied and molding method using it
JP2005190632A (en) Optical disk molding die on which diamond like carbon is film-deposited and optical disk molding method using the same
JP4750681B2 (en) Insulating mold, mold part, molding machine, and method of manufacturing insulating mold
JP2008074088A (en) Shaping mold of disk base plate, its mirror surface plate, shaping method of disk base plate and disk base plate
TW201943659A (en) Mold for glass-made optical component molding use, and method for manufacturing glass-made optical component using said mold
JP2009113423A (en) Mold for injection molding
JP2010201866A (en) Metal mold device, heat insulating member and method of manufacturing metal mold device
KR100716496B1 (en) Mold for forming disk substrate
JP4594486B2 (en) Cavity forming mold manufacturing method and cavity forming mold
JP5704513B2 (en) Molding equipment
JP6418619B1 (en) Mold, mold manufacturing method, resin molding apparatus and molded product molding method
JP2011062844A (en) Heat control mold and method of producing the same
JP2008284704A (en) Mold and method of manufacturing optical element
JP2005153294A (en) Mold for molding plastic, plastic molded product, optical device and optical scanning device
JP2010194805A (en) Molding die, and manufacturing method therefor
JP4887041B2 (en) High durability heat insulation mold
JPS62111713A (en) Metal mold
JP2008221783A (en) Heat insulating stamper for injection molding of plastic molded article, and its manufacturing method
JPH0525659B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130825

R151 Written notification of patent or utility model registration

Ref document number: 5360679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees