JPH0525659B2 - - Google Patents

Info

Publication number
JPH0525659B2
JPH0525659B2 JP17121989A JP17121989A JPH0525659B2 JP H0525659 B2 JPH0525659 B2 JP H0525659B2 JP 17121989 A JP17121989 A JP 17121989A JP 17121989 A JP17121989 A JP 17121989A JP H0525659 B2 JPH0525659 B2 JP H0525659B2
Authority
JP
Japan
Prior art keywords
mold
layer
copper layer
frequency induction
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17121989A
Other languages
Japanese (ja)
Other versions
JPH0336011A (en
Inventor
Takashi Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17121989A priority Critical patent/JPH0336011A/en
Priority to US07/448,544 priority patent/US5062786A/en
Publication of JPH0336011A publication Critical patent/JPH0336011A/en
Publication of JPH0525659B2 publication Critical patent/JPH0525659B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、射出成形用の金型に関し、特に高周
波誘導加熱方式により加熱される金型に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a mold for injection molding, and particularly to a mold heated by a high-frequency induction heating method.

〔従来の技術〕[Conventional technology]

従来、高周波誘導加熱方式により金型を加熱
し、射出成形することは、特開昭50−45039号等
に記載されているように、金型内に発振電極と冷
却水路を有し、外部に発振機と冷却水ポンプを備
え、樹脂の充填時に金型を金型内に設けられた発
振電極により瞬時に加熱し、樹脂の充填完了後発
振を停止し、冷却水ポンプより冷却水を金型内の
冷却水路に流し、金型を冷却して樹脂を固化させ
る方法が提案されている。
Conventionally, injection molding is performed by heating a mold using a high-frequency induction heating method, as described in Japanese Patent Laid-Open No. 50-45039. Equipped with an oscillator and a cooling water pump, the mold is instantaneously heated by an oscillating electrode installed inside the mold when filling with resin, the oscillation is stopped after resin filling is completed, and cooling water is pumped into the mold by the cooling water pump. A method has been proposed in which the resin is poured into a cooling channel inside the mold to cool the mold and solidify the resin.

また、特開昭58−40504号公報には、熱可塑性
樹脂を射出成形するにあたり、射出成形品に接す
る金型表面を予め該熱可塑性樹脂の熱変形温度以
上に高周波誘導加熱方式により加熱して射出成形
する方法が提案されている。
Furthermore, Japanese Patent Application Laid-open No. 58-40504 discloses that when injection molding a thermoplastic resin, the surface of the mold in contact with the injection molded product is heated in advance to a temperature higher than the thermal deformation temperature of the thermoplastic resin using a high-frequency induction heating method. A method of injection molding has been proposed.

このような高周波誘導加熱方式による射出成形
用の金型としては、圧延鋼材(SS)、機械構造用
炭素鋼(SS、SCK)、工具鋼(SK、SKS)、高速
度鋼(SNC)、クロムモリブデン鋼等の鋼材を鋳
造、圧延加工するか、または熱処理し、その後、
切削加工、仕上げ組み立て加工により形成したも
のが用いられている。
Molds for injection molding using this high-frequency induction heating method include rolled steel (SS), carbon steel for mechanical structures (SS, SCK), tool steel (SK, SKS), high-speed steel (SNC), and chrome steel. Steel materials such as molybdenum steel are cast, rolled, or heat treated, and then
Those formed by cutting and finishing assembly are used.

特に上述の鉄系金型材料は、前述の高周波誘導
加熱方式による金型に適している。
In particular, the above-mentioned iron-based mold material is suitable for the above-mentioned high-frequency induction heating mold.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

光学部品、例えば、レンズ・フレネルレンズ等
は、表面の仕上げ精度、レンズ曲率の形状精度に
極めて高い精度が要求されている。レンズの場
合、金型のキヤビテイに射出された溶融樹脂は、
射出終了後、金型の冷却により冷却固化が進み、
これによりレンズ形状が形成されるが、このとき
金型の冷却温度の制御が適切でないとレンズ表面
にひけを生じ、レンズの主となるレンズ曲率の形
状が所望の通りにできない。
Optical components, such as lenses and Fresnel lenses, are required to have extremely high precision in surface finishing and shape precision in lens curvature. In the case of lenses, the molten resin injected into the mold cavity is
After injection, the mold cools and solidifies.
This forms the lens shape, but if the cooling temperature of the mold is not properly controlled at this time, sink marks will occur on the lens surface and the main lens curvature shape of the lens will not be as desired.

第2図に示すフレネルレンズの場合も、やはり
金型の温度制御が適切に行なわれないと、頂角部
100Åの先端の鋭角部の成形が所望する通りに行
なうことができない。
In the case of the Fresnel lens shown in Figure 2, if the temperature of the mold is not properly controlled, the apex
The sharp corner of the 100 Å tip cannot be formed as desired.

金型の加熱を高周波誘導加熱方式にて行なう
と、金型を短時間のうちに高温度に加熱操作する
ことができる。金型材料としては前述の鉄系金属
材料を用いると加熱が効率的に行なわれる。
When the mold is heated by high-frequency induction heating, the mold can be heated to a high temperature in a short time. Heating can be performed efficiently if the above-mentioned iron-based metal material is used as the mold material.

しかしながら、鉄系金属材料、特に昨今多用さ
れている鋼系材は切削加工性に難点がある。即
ち、超硬度な材質であるために、キヤビテイ面を
高精度の表面粗さを保つて切削加工により曲面創
製したり、キヤビテイ面にフレネル形状を加工す
ること、特にフレネルレンズの場合、μmオーダ
ーの凹凸部を形成することは困難である。
However, iron-based metal materials, especially steel-based materials that are frequently used these days, have difficulty in machinability. In other words, since it is a super hard material, it is necessary to create a curved surface by cutting the cavity surface while maintaining a high-precision surface roughness, or to process a Fresnel shape on the cavity surface, especially in the case of a Fresnel lens. It is difficult to form uneven parts.

キヤビテイ面への微細凹凸形状の形成のために
は、加工性の良い金型材料が好ましく、銅系また
はアルミニウム系材料が適しているが、これらの
材料は非磁性で電気抵抗が小さいため、金型加熱
に前述の高周波誘導加熱方式が採用できない。ま
た、鏡面加工時にピンホール等の欠陥が生じやす
く、金型材料として不適当である。
In order to form fine irregularities on the cavity surface, a mold material with good workability is preferable, and copper-based or aluminum-based materials are suitable, but since these materials are non-magnetic and have low electrical resistance, gold is preferred. The aforementioned high-frequency induction heating method cannot be used for mold heating. Furthermore, defects such as pinholes are likely to occur during mirror finishing, making it unsuitable as a mold material.

本発明は、キヤビテイ面に微細凹凸形状を切削
加工することが可能で、かつ、キヤビテイ内に射
出される溶融樹脂がキヤビテイ内の微細凹凸部に
注入しやすい高周波誘導加熱方式による加熱操作
が可能な金型を提供することを目的とする。
The present invention is capable of cutting a finely uneven shape on the cavity surface, and also enables heating operation using a high-frequency induction heating method that allows the molten resin injected into the cavity to be easily injected into the finely uneven parts of the cavity. The purpose is to provide molds.

また表面粗さ精度に極めて高い精度が要求され
るレンズ・フレネルレンズ等の光学部品を成形す
るために、金型表面の鏡面加工精度を向上し、ピ
ンホール等の欠陥の殆ど無い金型を提供すること
を目的とする。
In addition, in order to mold optical components such as lenses and Fresnel lenses that require extremely high precision in surface roughness, we improve the mirror finishing precision of the mold surface and provide molds with almost no defects such as pinholes. The purpose is to

〔課題が解決するための手段〕[Means to solve the problem]

本発明者らは上記課題を解決するために鋭意検
討した結果、高周波誘導加熱方式により加熱され
た射出成形用の金型において、鉄系金属基材上に
電鋳ニツケル層、電鋳銅層を順次積層した後、該
電鋳銅層に切削加工を施し、その後、該加工面上
にクロームメツキ層またはチタン化合物層を積層
することにより、上記目的が達成されることを見
出した。
As a result of intensive studies to solve the above problems, the present inventors found that an electroformed nickel layer and an electroformed copper layer are formed on a ferrous metal base material in an injection mold heated by a high-frequency induction heating method. It has been found that the above object can be achieved by sequentially laminating the electroformed copper layers, cutting the electroformed copper layers, and then laminating a chrome plating layer or a titanium compound layer on the processed surface.

即ち、金型の基材として鉄系金型材料を用いる
ことにより、高周波加熱により効率よく加熱する
ことができ、銅層は電鋳により形成するためにピ
ンホール等の欠陥が殆ど無く、切削加工性に優れ
るために、高度の鏡面加工が可能となる。更に、
基材の鉄系金属材料と、銅層との間に、電鋳法に
よりニツケル層を設けることにより、鉄系金属と
銅層との密着力が向上し、機械加工、熱衝撃時の
剥離等が完全に防止される。
In other words, by using iron-based mold material as the base material of the mold, it can be heated efficiently by high-frequency heating, and since the copper layer is formed by electroforming, there are almost no defects such as pinholes, and cutting processing is possible. Due to its excellent properties, it is possible to achieve a high degree of mirror finishing. Furthermore,
By providing a nickel layer between the base iron metal material and the copper layer by electroforming, the adhesion between the iron metal and the copper layer is improved, making it difficult to peel off during machining or thermal shock. is completely prevented.

また、銅層は表面硬度、弾性率が低くキズが付
きやすく変形しやすいために、切削加工のなされ
た銅層の表面にクロームメツキ層または窒化チタ
ン等のチタン化合物層を積層することで、微細凹
凸部または鏡面性を保持しつつ、キズや変形に強
い金型表面を得ることが可能となる。
In addition, since the copper layer has low surface hardness and modulus of elasticity and is easily scratched and deformed, by laminating a chrome plating layer or a titanium compound layer such as titanium nitride on the surface of the cut copper layer, fine particles can be created. It becomes possible to obtain a mold surface that is resistant to scratches and deformation while maintaining unevenness or specularity.

基材表面に形成される電鋳ニツケル層は、5〜
100μm程度の厚さに積層すればよく、また銅層
は50〜200μm程度の厚みで形成されるのが好ま
しい。このときニツケル層、銅層を厚付けした場
合には、200〜350℃にて熱アニールを行ない、膜
付けの際の応力を緩和することが好ましい。
The electroformed nickel layer formed on the surface of the base material has a thickness of 5 to
The copper layers may be laminated to a thickness of about 100 μm, and the copper layer is preferably formed to have a thickness of about 50 to 200 μm. At this time, when the nickel layer or copper layer is thickly formed, it is preferable to perform thermal annealing at 200 to 350°C to relieve stress during film formation.

また、銅層の切削加工後に積層されるクローム
メツキ層は、1〜20μmの厚さに成形するのが好
ましい。チタン化合物層は蒸着法により0.1〜3μ
mの厚さに積層されるのが好ましい。
Further, the chrome plating layer laminated after the copper layer is cut is preferably formed to have a thickness of 1 to 20 μm. The titanium compound layer is 0.1~3μ by vapor deposition method.
Preferably, the layers are laminated to a thickness of m.

チタン化合物としては、窒化チタン、炭化チタ
ン等の硬度の極めて高いものが使用できる。
As the titanium compound, those having extremely high hardness such as titanium nitride and titanium carbide can be used.

〔実施例〕〔Example〕

以下実施例により本発明を具体的に説明する。 The present invention will be specifically explained below using Examples.

実施例 1 第3図に示すように基材11としてSKD61鋼
材を用い、これに切削、研削等により機械加工を
施す。次に第4図に示すように基材11の上に電
鋳法によりニツケル層を20μmの厚みでつける。
更にこのニツケル層51の上に電鋳法により銅層
21を100μmの厚みでつける。この後、250℃に
て熱アニールを行なう。
Example 1 As shown in FIG. 3, SKD61 steel is used as the base material 11, and machined by cutting, grinding, etc. Next, as shown in FIG. 4, a nickel layer with a thickness of 20 μm is applied on the base material 11 by electroforming.
Furthermore, a copper layer 21 with a thickness of 100 μm is formed on the nickel layer 51 by electroforming. After this, thermal annealing is performed at 250°C.

次に第5図に示すように前記3層からなる金型
に外径仕上げ加工を施し、金型中央に鏡面レンズ
コア用の穴を穿ち、そのなかへダミーコア61を
挿入した。
Next, as shown in FIG. 5, the outer diameter of the three-layer mold was finished, a hole for a mirror lens core was drilled in the center of the mold, and a dummy core 61 was inserted into the hole.

第6図に示す工程では銅層21をダイヤモンド
バイトを用いてフレネルレンズ用の鏡面切削加工
を施す。このとき同時にダミーコアにも切削加工
を施すことにより最終的に鏡面コア62を嵌合さ
せた際に、クリアランスが良くなる。
In the step shown in FIG. 6, the copper layer 21 is cut into a mirror surface for a Fresnel lens using a diamond cutting tool. By cutting the dummy core at the same time, the clearance will be improved when the mirror core 62 is finally fitted.

次に第7図に示すように、ダミーコア61を取
り去り、ニツケルエマージング鋼製の鏡面コア6
2を挿入、嵌合させ、全体に1μm厚のクローム
メツキを施した。
Next, as shown in FIG. 7, the dummy core 61 is removed, and the mirror-polished core 6 made of nickel emerging steel is
2 was inserted and fitted, and the whole was plated with 1 μm thick chrome plating.

このようにして得られた金型の鏡面性(面粗
さ)は、0.01μm、高周波誘導加熱方式による加
熱速度は20℃/secであつた。
The specularity (surface roughness) of the mold thus obtained was 0.01 μm, and the heating rate by high frequency induction heating was 20° C./sec.

実施例 2 基材としてS55C鋼材を用い、実施例1と同様
にしてニツケル層、銅層をそれぞれ10μm、200μ
m厚に形成した。これを第8図に示すような鏡面
加工を施した後、窒化チタン膜を0.5μmの厚みに
真空蒸着により形成した。
Example 2 Using S55C steel as the base material, the nickel layer and copper layer were respectively 10 μm and 200 μm in the same manner as in Example 1.
It was formed to have a thickness of m. After mirror-finishing this as shown in FIG. 8, a titanium nitride film was formed to a thickness of 0.5 μm by vacuum evaporation.

このようにして得られた金型の鏡面性は0.01μ
m、加熱速度は20℃/secであつた。
The specularity of the mold thus obtained is 0.01μ
m, and the heating rate was 20°C/sec.

比較例 1 S45C(炭素鋼)を用いて金型を製作した。金型
は加熱速度22℃/secの加熱速度を示したが、鏡
面加工を施すことができなかつた。
Comparative Example 1 A mold was manufactured using S45C (carbon steel). Although the mold showed a heating rate of 22°C/sec, mirror finishing could not be performed.

比較例 2 リン青銅を用いて金型を作製した。実施例同様
に鏡面加工を施したところ、鏡面性0.01μmが得
られたが、高周波誘導加熱方式による加熱速度は
3℃/secであり、この金型を用いてフレネルレ
ンズを射出成形すると、ひけが発生した。
Comparative Example 2 A mold was produced using phosphor bronze. When mirror finishing was performed in the same manner as in the example, a mirror finish of 0.01 μm was obtained, but the heating rate by the high frequency induction heating method was 3°C/sec, and when a Fresnel lens was injection molded using this mold, there was no shrinkage. There has occurred.

〔発明の効果〕 以上説明したように、鉄系金属基材上に電鋳ニ
ツケル層、電鋳銅層を積層し、切削加工した後、
その表面にクロームメツキまたはチタン化合物層
を積層することにより、高周波誘導加熱の際の加
熱特性に優れ、かつ優れた鏡面性と、機械的、熱
的強度をもつ金型を提供することが可能となつ
た。
[Effects of the Invention] As explained above, after laminating an electroformed nickel layer and an electroformed copper layer on a ferrous metal base material and cutting them,
By laminating a chrome plating or titanium compound layer on the surface, it is possible to provide a mold with excellent heating characteristics during high-frequency induction heating, as well as excellent specularity and mechanical and thermal strength. Summer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1例を示す金型の断面図、第
2図はその斜視図、第3図〜第7図は本発明の金
型の製造工程の1例を示す概略断面図、第8図は
本発明の他の実施例による金型の断面図である。 1……基材、2……銅層、3……硬質膜層、4
……フレネルレンズ面、5……ニツケル層、6…
…鏡面コア、7……非球面レンズ面。
FIG. 1 is a sectional view of a mold showing an example of the present invention, FIG. 2 is a perspective view thereof, and FIGS. 3 to 7 are schematic sectional views showing an example of the manufacturing process of the mold of the present invention. FIG. 8 is a sectional view of a mold according to another embodiment of the present invention. 1...Base material, 2...Copper layer, 3...Hard film layer, 4
... Fresnel lens surface, 5 ... Nickel layer, 6 ...
...Mirror core, 7...Aspherical lens surface.

Claims (1)

【特許請求の範囲】[Claims] 1 高周波誘導加熱方式により加熱される射出成
形用の金型において、鉄系金属基材上に電鋳ニツ
ケル層、電鋳銅層を順次積層した後、該電鋳銅層
に切削加工を施し、その後、該加工面上にクロー
ムメツキ層またはチタン化合物層を積層したこと
を特徴とする高周波加熱用金型。
1. In an injection mold heated by a high-frequency induction heating method, an electroformed nickel layer and an electroformed copper layer are sequentially laminated on a ferrous metal base material, and then the electroformed copper layer is subjected to a cutting process, A high-frequency heating mold characterized in that a chrome plating layer or a titanium compound layer is then laminated on the processed surface.
JP17121989A 1988-12-12 1989-07-04 Die for high frequency heating Granted JPH0336011A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17121989A JPH0336011A (en) 1989-07-04 1989-07-04 Die for high frequency heating
US07/448,544 US5062786A (en) 1988-12-12 1989-12-11 Molding device for molding optical elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17121989A JPH0336011A (en) 1989-07-04 1989-07-04 Die for high frequency heating

Publications (2)

Publication Number Publication Date
JPH0336011A JPH0336011A (en) 1991-02-15
JPH0525659B2 true JPH0525659B2 (en) 1993-04-13

Family

ID=15919250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17121989A Granted JPH0336011A (en) 1988-12-12 1989-07-04 Die for high frequency heating

Country Status (1)

Country Link
JP (1) JPH0336011A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702735A (en) * 1994-06-10 1997-12-30 Johnson & Johnson Vision Products, Inc. Molding arrangement to achieve short mold cycle time
JP4874834B2 (en) * 2007-02-19 2012-02-15 日東電工株式会社 Seamless belt manufacturing method
JP2008221773A (en) * 2007-03-15 2008-09-25 Konica Minolta Opto Inc Injection molding mold

Also Published As

Publication number Publication date
JPH0336011A (en) 1991-02-15

Similar Documents

Publication Publication Date Title
US4793953A (en) Mold for optical thermoplastic high-pressure molding
US6607614B1 (en) Amorphous non-laminar phosphorous alloys
US2336578A (en) Molding equipment
JPH0525659B2 (en)
JP3423908B2 (en) Mold for plastic molding and method for producing the same
US20020079026A1 (en) Process for preparing novel amorphous non-laminar phosphate alloys
JPS63303714A (en) Aluminum mold and injection molding
JP3408975B2 (en) Mold for resin molding and method of manufacturing the same
US4220190A (en) Method of making tooling
EP1032719B1 (en) Amorphous non-laminar nickel and/or cobalt phosphorous alloys, their process of manufacture and uses
JP5360679B2 (en) Thermal control mold for injection molding and manufacturing method thereof
JPH0617044B2 (en) Mold
JP2005161798A (en) Resin forming mold
JP3003436B2 (en) Method for manufacturing mold for flat molded product
JP2829106B2 (en) Casting mold
JPH0453690B2 (en)
JPH10166368A (en) Manufacture of mold for molding, and mold for molding
JPS62284711A (en) Highly heat conductive molding die
JPH0225310A (en) Aluminum alloy mold and manufacture thereof
JPH11268044A (en) Resin molding die and manufacture thereof
JPH11922A (en) Precision molding die and manufacture thereof
KR100769931B1 (en) Gate bush producing method by electroforming
KR100186642B1 (en) Method of manufacturing curved hose mould
JP3219460B2 (en) Optical element mold and method of manufacturing the same
US683615A (en) Method of duplicating phonographic records.

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees