JP3219460B2 - Optical element mold and method of manufacturing the same - Google Patents

Optical element mold and method of manufacturing the same

Info

Publication number
JP3219460B2
JP3219460B2 JP11799292A JP11799292A JP3219460B2 JP 3219460 B2 JP3219460 B2 JP 3219460B2 JP 11799292 A JP11799292 A JP 11799292A JP 11799292 A JP11799292 A JP 11799292A JP 3219460 B2 JP3219460 B2 JP 3219460B2
Authority
JP
Japan
Prior art keywords
optical element
molding
mold
molding die
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11799292A
Other languages
Japanese (ja)
Other versions
JPH05294650A (en
Inventor
健 川俣
弘 伊藤
孝 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP11799292A priority Critical patent/JP3219460B2/en
Publication of JPH05294650A publication Critical patent/JPH05294650A/en
Application granted granted Critical
Publication of JP3219460B2 publication Critical patent/JP3219460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/03Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/05Press-mould die materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光学素子を押圧成形す
る成形型と、その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold for press-molding an optical element and a method for producing the same.

【0002】[0002]

【従来の技術】ガラス素材を加熱軟化して光学素子を加
圧成形する技術は知られている。この加圧成形する成形
型の型形状をガラス素材に正確に転写することが重要と
なるが、肉厚差が大きい成形品などを成形する場合にお
いて、ガラス素材内部の温度分布の差が大きくなり、い
わゆるヒケと称する現象が生じてしまう。このような現
象を防ぐために、従来例として、例えば特開平1−14
8716号公報がある。この公報に記載されている技術
は、型成形面部を同芯にいくつかの部材に分割してそれ
ぞれを独立に温度制御することでガラスの冷却速度に差
をつけるという技術である。なお、詳しくは図8に基づ
いて説明する。
2. Description of the Related Art A technique for heat-softening a glass material to press-mold an optical element is known. It is important to accurately transfer the shape of the molding die to be pressed to the glass material.However, when molding a molded product with a large thickness difference, the difference in temperature distribution inside the glass material increases. A phenomenon referred to as sink occurs. In order to prevent such a phenomenon, for example, Japanese Patent Application Laid-Open No.
No. 8716. The technique described in this publication is a technique in which the mold forming surface is divided into several members concentrically, and the temperature is controlled independently of each other, thereby providing a difference in the cooling rate of the glass. Details will be described with reference to FIG.

【0003】図8は、上記公報に記載された第1図で、
成形用金型の成形中の状態を示す正面よりの断面図であ
る。押圧型30は、上側成形型31と、上側成形型31
に対向して配置されている下側型部材32とから構成さ
れている。下側型部材32は、軸方向に同心円状に分割
された分割型33と分割型34とから構成されている。
上記構成からなる押圧型30にてガラス素材35を押圧
成形する際、各分割型33,34をそれぞれ独立して温
度制御することにより、ガラス素材35に対して同心円
状に温度差をつけているという構成の技術である。
FIG. 8 is a diagram shown in FIG.
It is sectional drawing from the front which shows the state during the shaping | molding of the shaping die. The press mold 30 includes an upper mold 31 and an upper mold 31.
And a lower mold member 32 disposed opposite to the lower mold member 32. The lower mold member 32 includes a split mold 33 and a split mold 34 which are concentrically split in the axial direction.
When the glass material 35 is pressed and formed by the pressing die 30 having the above-described configuration, the temperature of each of the split dies 33 and 34 is controlled independently, so that the temperature difference is made concentric with the glass material 35. This is the technology of the configuration.

【0004】[0004]

【発明が解決しようとする課題】上記公報の押圧型によ
る成形方法を実施するに当たっては、成形装置の温度制
御手段やその構成が複雑化して、原価高となるという問
題があった。また、同芯円状に分割された型を製造する
には、極めて困難が伴うという問題があった。即ち、分
割された型同志の間に生ずる隙間や段差が少しでも生ず
れば、そこにガラスが食い込んで成形された光学素子に
バリの発生が生じてしまうという問題があった。
In carrying out the molding method using the pressing die disclosed in the above publication, there has been a problem that the temperature control means of the molding apparatus and its configuration are complicated and the cost is increased. Further, there is a problem that it is extremely difficult to manufacture a mold divided into concentric circles. That is, if any gap or step is generated between the divided molds, there is a problem that the glass penetrates there and burrs are generated in the molded optical element.

【0005】また、上記隙間や段差を小さく構成するた
めには、同芯円状に組み合わせる部分の内外径の寸法や
円筒精度などの公差を極めてシビアな寸法に形成しなか
ればならず、非常に加工が難しい。特に、ガラス光学素
子成形用型として利用される耐熱材料は、超硬合金や各
種セラミックスなどであり、これらの難削材を上記した
ようなシビアな公差で加工するということは実質的困難
である。また、上記加工することができたとしても、そ
れぞれの部材の隙間が非常に小さいがために、組み合わ
せることが極めて困難であり、作業性が悪く従って、上
記の状態で組み合わせる際に、微かでも傾きがあれば両
部材がコジッテしまうという虞があり、更に全く隙間が
無く組み合わせて造ることは、現実的には無理である。
従って上記公報記載の方法の型にて成形できるのは、少
々のバリが発生しても使用上差しかえないものの光学素
子の成形か、または成形後のおける諸加工を施し大巾に
原価高となってもよい場合の光学素子に限られるという
制約があった。
In order to reduce the gap and the step, the tolerances such as the inner and outer diameters and cylindrical accuracy of the parts to be combined concentrically must be extremely severe. Difficult to process. In particular, heat-resistant materials used as glass optical element molding dies are cemented carbides and various ceramics, and it is substantially difficult to process these difficult-to-cut materials with severe tolerances as described above. . Even if the above processing can be performed, it is extremely difficult to combine them because the gaps between the members are very small, and the workability is poor. If there is, there is a risk that both members may be damaged, and it is practically impossible to combine them without any gap.
Therefore, it is possible to mold with the mold of the method described in the above-mentioned gazette, but it is not inevitable to use even if a little burr occurs, but molding of the optical element, or performing various processing after molding, greatly increasing the cost There is a restriction that the optical element is limited to the optical element that can be used.

【0006】本発明は、上記諸問題に鑑みてなされたも
ので、簡単な構成で、かつ安価な成形型にてヒケを防止
した高品質の光学素子を成形する光学素子の成形型とそ
の製造方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has a simple structure and a mold for forming an optical element for molding a high-quality optical element which prevents sink marks with an inexpensive mold. It is intended to provide a method.

【0007】[0007]

【課題を解決するための手段】本発明の成形型は、光学
素子を押圧成形する成形型において、成形する光学素子
の薄肉部と肉厚部に対応して、上記成形型内に設けた気
孔の比率を異ならせた光学素子成形型である。また本発
明の成形型は、光学素子を押圧成形する成形型におい
て、成形する光学素子の薄肉部と肉厚部に対応して、上
記成形型の型基材内に設けた気孔の比率を異ならせかつ
上記型基材の成形面側に上記光学素子の成形時の融着防
止用の薄膜を形成した光学素子成形型である。また本発
明の成形型は、光学素子を押圧成形する成形型におい
て、成形する光学素子の薄肉部と肉厚部に対応して、上
記成形型の型基材内の熱伝導率を異ならせかつ上記型基
材の成形面側に上記光学素子の成形時の融着防止用の薄
膜を形成した光学素子成形型である。また本発明の成形
型の製造方法は、光学素子を押圧成形する成形型の製造
方法において、型基材内に含有する特定成分を、成形す
る光学素子の形状に対応して、エッチングにてその気孔
率を変化させて形成した光学素子成形型の製造方法であ
る。また本発明の成形型の製造方法は、光学素子を押圧
成形する成形型の製造方法において、成形する光学素子
の形状に対応して、焼結体からなる基材内に含浸剤を含
浸させ、該基材内の焼結部と融合させて気孔率を変化さ
せて成形した光学素子成形型の製造方法である。
According to the present invention, there is provided a mold for press-molding an optical element, wherein pores provided in the mold correspond to thin and thick portions of the optical element to be molded. Are optical element molding dies having different ratios. Further, in the molding die of the present invention, in the molding die for press-molding the optical element, the ratio of the pores provided in the mold base of the molding die is different depending on the thin portion and the thick portion of the optical element to be molded. An optical element molding die, wherein a thin film for preventing fusion during molding of the optical element is formed on the molding surface side of the mold base. Further, the mold of the present invention, in a mold for press-molding an optical element, corresponding to the thin portion and the thick portion of the optical element to be molded, differing the thermal conductivity in the mold base of the mold and An optical element molding die in which a thin film for preventing fusion during molding of the optical element is formed on the molding surface side of the mold base. Further, the method for manufacturing a mold according to the present invention is a method for manufacturing a mold for press-molding an optical element, wherein the specific component contained in the mold base is etched by etching in accordance with the shape of the optical element to be molded. This is a method for manufacturing an optical element mold formed by changing the porosity. Further, the manufacturing method of the molding die of the present invention, in the method of manufacturing a molding die for press-molding an optical element, corresponding to the shape of the optical element to be molded, impregnating a substrate made of a sintered body with an impregnating agent, This is a method for manufacturing an optical element molding die formed by fusing with a sintered portion in the base material and changing the porosity.

【0008】[0008]

【作用】上記構成の光学素子成形型にて成形すると気孔
率が変わり、熱伝導率は大きく変化する。気体の熱伝導
率は、固体の熱伝導率と比較して、例えば、空気=0.
02w/m・k,グラファイト=100w/m・kと、
2〜4桁も小さいため、気孔の存在により熱伝導率は著
しく小さくなる。即ち、気孔率の大きい方が熱伝導率が
小さくなる。従って、光学素子を成形する場合成形品の
薄肉部に対応する部分の気孔率を大きく、厚肉部に対応
する部分の気孔率を小さくすることで、成形品内部の温
度分布を小さくしてヒケを防止するようにした。上記し
た概念に基づいて、型基材の特定成分をエッチング、ま
たは含浸剤を含浸させるという手法を用いて、一体のも
のから内外周で気孔率の異なるもの、「即ち、一体の基
材内でその内外周の気孔率(あるいは熱伝導率)が異な
るもの」を製造することにより、簡単な構造で、かつ安
価に成形型が製造できると共に、その型を用いて光学素
子を成形することにより、ヒケの無い高品質の光学素子
が生産性よく成形できる。
The porosity changes when molded with the optical element mold of the above construction, and the thermal conductivity changes significantly. The thermal conductivity of a gas is, for example, air = 0.
02 w / mk, graphite = 100 w / mk,
Because it is two to four orders of magnitude smaller, the presence of the pores significantly reduces the thermal conductivity. That is, the higher the porosity, the lower the thermal conductivity. Therefore, when molding an optical element, the temperature distribution inside the molded product is reduced by increasing the porosity of the portion corresponding to the thin portion of the molded product and decreasing the porosity of the portion corresponding to the thick portion of the molded product. Was prevented. Based on the concept described above, using a technique of etching a specific component of the mold base material, or impregnating with an impregnating agent, one having a different porosity at the inner and outer circumferences from the integrated one, `` that is, within the integrated base material By manufacturing a material having a different porosity (or thermal conductivity) on the inner and outer circumferences, a mold can be manufactured with a simple structure and at low cost, and by molding an optical element using the mold, High quality optical elements without sink marks can be molded with high productivity.

【0009】[0009]

【実施例1】本発明の光学素子成形型とその製造方法の
具体例を図面に基づいて説明する。図1〜図3は、本発
明の光学素子成形型の製造方法に係わる実施例1の成形
型の製造工程を示す。図1は、溶液を満たした容器内に
型基材を浸した状態を示す正面よりの断面図である。図
2は、図1に続く工程を示した正面よりの断面図であ
る。図3は、本実施例により製造された成形型を成形機
に装着した状態の要部を示す正面よりの断面図である。
[Embodiment 1] A specific example of an optical element molding die and a method of manufacturing the same according to the present invention will be described with reference to the drawings. 1 to 3 show the steps of manufacturing the mold of Example 1 according to the method of manufacturing an optical element mold of the present invention. FIG. 1 is a front sectional view showing a state in which a mold base is immersed in a container filled with a solution. FIG. 2 is a front sectional view showing a step following FIG. FIG. 3 is a cross-sectional view from the front showing a main part in a state where the mold manufactured according to the present embodiment is mounted on a molding machine.

【0010】型基材を造るため、SiO76wt%,
13wt%,NaO6wt%,Al
wt%、その他不可避不純物から成る組成のガラス粉末
をルツボ内に投入し、混合して1100℃にて1時間溶
解したのち、ルツボを傾けて溶解したガラスを水槽内に
投入し、水中にて急冷することにより不定形状のガラス
塊を得る。更に、急冷したガラス塊を加熱炉にて510
℃で100時間熱処理して分相を生じさせる。次に、上
記ガラス塊を所望の寸法に形成すべく研削加工工程に回
送されて研削加工される。本実施例においては、例え
ば、φ8mm,長さ20mm形状の丸棒3に研削形成さ
れる。
In order to form a mold base, 76% by weight of SiO 2 ,
B 2 O 3 13wt%, Na 2 O6wt%, Al 2 O 3 4
A glass powder having a composition of wt% and other unavoidable impurities is charged into a crucible, mixed and melted at 1100 ° C. for 1 hour. By doing so, an irregular shaped glass lump is obtained. Further, the quenched glass ingot is heated in a heating furnace for 510 minutes.
Heat treatment at 100 ° C. for 100 hours to cause phase separation. Next, the glass lump is sent to a grinding step to form the glass lump to a desired size and is ground. In this embodiment, for example, it is formed by grinding into a round bar 3 having a shape of φ8 mm and a length of 20 mm.

【0011】上記研削工程により形成されたガラス素材
(丸棒)3を図1に矢印にて示すように、HSO
液2を満たした容器1内に投入して吊架にて240時間
浸せきする。この浸せきにより、ガラス塊3内に含まれ
ているB相、NaO相が溶液内に溶出してい
く。上記溶出方法により製造したガラス棒3を径方向に
切断した断面を観たところ、外周から3mm程度深さの
範囲まで多数の細孔が形成されていた。しかし中心部
(軸中心)からφ2の範囲では、細孔は見られなかっ
た。また、中心部と外周部とをガラス素材1から切り出
して熱伝導率を測定したところ、中心部は、1.13w
/m・k,外周部は0.77w/m・kであった。
As shown by the arrow in FIG. 1, the glass material (round bar) 3 formed by the above-mentioned grinding step is put into a container 1 filled with an H 2 SO 4 solution 2 and suspended for 240 hours by a suspension. Soak. By this immersion, the B 2 O 3 phase and the Na 2 O phase contained in the glass lump 3 elute into the solution. When a cross section of the glass rod 3 produced by the above-mentioned dissolution method was cut in a radial direction, a large number of pores were formed from the outer periphery to a depth of about 3 mm. However, no pore was observed in the range of φ2 from the center (axial center). When the center and the outer periphery were cut out of the glass material 1 and the thermal conductivity was measured, the center was 1.13 watts.
/ Mk, and the outer peripheral portion was 0.77 w / mk.

【0012】図2に示すように、上記方法により製造さ
れた一対のガラス棒3のうちの一方のガラス棒3に成形
される光学素子の形状に対応した成形面を形成すべく研
削工程に回送される。この研削工程において、まず溶出
したガラス塊3の下端部5を5mm切断し、更に、切断
した下端面8に近軸曲率半径が例えばR10.3mmの
凹面状の非球面6を研削研磨加工される。上記研削研磨
加工された非球面6に、付着力強化のための中間層を介
して、CrN、BNなどのガラス成形の際に融着防止効
果の高い薄膜がコートされて成形型の製造は終了する。
As shown in FIG. 2, the grinding process is performed to form a molding surface corresponding to the shape of an optical element formed on one of the pair of glass bars 3 manufactured by the above method. Is done. In this grinding step, first, the lower end 5 of the eluted glass lump 3 is cut by 5 mm, and the cut lower end surface 8 is ground and polished with a concave aspheric surface 6 having a paraxial curvature radius of, for example, R10.3 mm. . The above-mentioned ground and polished aspheric surface 6 is coated with a thin film having a high effect of preventing fusion when glass such as CrN or BN is formed via an intermediate layer for enhancing the adhesive force, and the production of the molding die is completed. I do.

【0013】上記方法により製造した成形型を用いて平
凸のガラス光学素子を成形する成形装置の構成を図3に
基づいて説明する。上記した方法により製造された一対
の成形型10,14は、それぞれにその基端部7と16
を装置に対向して配設した上型マウント11,下型マウ
ント17に、その成形面を互に対向して固定装着されて
いる。上型10を装着した上型マウント11内には、上
型10を加熱するため上型ヒータ13が埋設されて装置
に固定装着されている。また、下型14を装着した下型
マウント17内にも、下型14を加熱するための下型ヒ
ータ18が埋設されており、下型マウントは、成形され
るガラス素材を載置上昇して、上型10に当接して押圧
成形されるように上下動自在に構成されている。
The configuration of a molding apparatus for molding a plano-convex glass optical element using the molding die manufactured by the above method will be described with reference to FIG. The pair of molds 10 and 14 manufactured by the above-described method have their base ends 7 and 16 respectively.
Are fixedly mounted on the upper die mount 11 and the lower die mount 17 disposed facing the apparatus, with their molding surfaces facing each other. An upper mold heater 13 for heating the upper mold 10 is embedded in the upper mold mount 11 to which the upper mold 10 is attached, and is fixedly attached to the apparatus. Also, a lower mold heater 18 for heating the lower mold 14 is embedded in a lower mold mount 17 to which the lower mold 14 is attached, and the lower mold mount mounts a glass material to be formed and rises. The upper mold 10 is configured to be movable up and down so as to be pressed against the upper mold 10.

【0014】即ち、上型10と下型14との間に被ガラ
ス成形素材の転移点近くまでに加熱軟化されたガラス素
材を搬送し、下型14の上昇により、上型10と当接し
押圧成形される。この押圧成形の結果において、ヒケの
無く形状精度の良好な光学素子が得られた。また、本実
施例において、ガラス材料を多孔質化して型として用い
た例を示したが、本実施例はこれに限定するものではな
く、例えばセラミックスなどの耐熱材料であっても本実
施例と同様の結果が得られることが判った。
That is, the glass material heated and softened is conveyed between the upper mold 10 and the lower mold 14 to near the transition point of the glass molding material, and is brought into contact with the upper mold 10 when the lower mold 14 is lifted and pressed. Molded. As a result of the press molding, an optical element having good shape accuracy without sink marks was obtained. Further, in the present embodiment, an example in which a glass material is made porous and used as a mold has been described, but the present embodiment is not limited to this. It was found that similar results were obtained.

【0015】上記成形型およびその製造方法によれば、
上型の外周部の気孔率を高くすることによって、成形す
る光学素子の薄肉部(外周部)ほど、冷却速度が遅くな
るので、成形品の肉厚部(中心部)と、成形品の薄肉部
(外周部)の冷却速度差を小さく抑えることが可能とな
り、ヒケの無い光学素子を得ることができる。
According to the above-mentioned mold and the method of manufacturing the same,
By increasing the porosity of the outer peripheral part of the upper mold, the cooling rate becomes slower in the thinner part (outer peripheral part) of the optical element to be molded. Therefore, the thick part (central part) of the molded article and the thinner part of the molded article The difference in cooling rate between the portions (outer peripheral portion) can be suppressed to be small, and an optical element without sink marks can be obtained.

【0016】[0016]

【実施例2】図4と図5に基づいて、本発明の光学素子
成形型とその製造方法の実施例2を説明する。図4は、
本発明の光学素子成形型とその製造方法に係わる実施例
2の製造工程を示す正面よりの断面図である。図5は、
実施例2によって製造された光学素子成形型の正面より
の断面図である。なお、本実施例の図中において、上記
実施例1と同一部材、同一形状、同一構成および同一方
法については、同一符号を用いてその説明は省略する。
Embodiment 2 Embodiment 2 of the optical element molding die and the method of manufacturing the same according to the present invention will be described with reference to FIGS. FIG.
It is sectional drawing from the front which shows the manufacturing process of Example 2 which concerns on the optical element shaping | molding die of this invention, and its manufacturing method. FIG.
FIG. 7 is a front sectional view of an optical element molding die manufactured according to a second embodiment. In the drawings of this embodiment, the same members, the same shapes, the same configurations, and the same methods as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

【0017】本実施例は、上記実施例1に説明したガラ
ス基材の要素の溶解および冷却して不定形状のガラス塊
を得ること、そのガラス塊を加熱炉にて510℃の温度
にて100時間熱処理してガラス塊に分相を生じさせる
こと、このガラス塊を研削工程にて所望の寸法に研削し
てガラス丸棒を得るまでの諸工程は同一であるので省略
する。
In this embodiment, the glass substrate is melted and cooled to obtain an irregular shaped glass block as described in the first embodiment, and the glass block is heated in a heating furnace at a temperature of 510.degree. The steps of heat-treating for a time to form a phase separation in the glass lump and grinding the glass lump to a desired size in the grinding step to obtain a glass round bar are the same, and will not be described.

【0018】図4に示すようにガラス丸棒20の上端面
の中心位置から例えば深さ15mmまでφ2の孔21を
穿設し、その孔21の中にH2 So4 溶液22を注入す
る。続いて溶液22を満たしたガラス丸棒20を100
℃に保った箱体内に(図示省略)に収納し、240時間
放置する。この放置にてガラス丸棒20内のB2
3相、Na2 O相が溶液22内に溶出する。この溶出に
より、ガラス丸棒20内の中心部(軸心部)近傍の気孔
率が大となり、外周部は気孔率OVo1%のガラス丸棒
2が形成される。上記のガラス丸棒20は、例えば図5
に示すように下端面を近軸R12.1の凸形状の非球面
23に研削研磨加工される。以後の工程は実施例1と同
一に付き省略する。
As shown in FIG. 4, a hole 21 having a diameter of φ2 is formed from the center of the upper end surface of the glass round bar 20 to, for example, a depth of 15 mm, and an H 2 So 4 solution 22 is injected into the hole 21. Subsequently, a glass round bar 20 filled with the solution 22 is put into 100
It is stored in a box (not shown) kept at ° C. and left for 240 hours. The B 2 O in the glass round bar 20
The three phases, the Na 2 O phase, elute in the solution 22. Due to this elution, the porosity near the center (axial portion) in the glass round bar 20 becomes large, and the glass round bar 2 having the porosity OVo1% is formed in the outer peripheral portion. The glass round bar 20 described above is, for example, shown in FIG.
As shown in (1), the lower end surface is ground and polished to a convex aspheric surface 23 having a paraxial R12.1. Subsequent steps are the same as those in the first embodiment, and are omitted.

【0019】[0019]

【実施例3】図6と図7に基づいて、本発明の光学素子
成形型とその製造方法の実施例3を説明する。図6は、
本発明の光学素子成形型とその製造方法に係わる実施例
3の製造工程を示す正面よりの断面図である。図7は、
実施例3により製造された光学素子成形型を示す正面よ
りの断面図である。なお、本実施例の図中において、上
記実施例1および実施例2を同一部材、同一形状、同一
構成については、同一符号を用いてその説明は省略す
る。また、同一方法においても同様に説明を省略する。
Third Embodiment A third embodiment of the optical element molding die of the present invention and a method of manufacturing the same will be described with reference to FIGS. FIG.
It is sectional drawing from the front which shows the manufacturing process of Example 3 which concerns on the optical element shaping | molding die of this invention, and its manufacturing method. FIG.
FIG. 13 is a front sectional view showing the optical element mold manufactured according to the third embodiment. In the drawings of the present embodiment, the same members, the same shape, and the same configuration as those of the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted. The description of the same method is also omitted.

【0020】図6にて符号24で示す円柱形状の部材は
所望の形状のAl焼結体よりなる基材を研削加工
したものである。例えばφ11長さ20mmに研削加工
されたものである。この研削加工された焼結基材24
を、SiO69%、B10%、NaO9%、
O8%、BaO3%と、不可避不純物からなるガラ
ス融液25を満たした容器1内に吊架にて浸せきした状
態を示しているのが図6である。上記焼結基材24を浸
せきしたガラス融液25は、常に1500℃に保たれて
おり、このガラス融液25内に2時間浸せきすることに
より、図6に示す矢印のようにガラス溶融25は、焼結
基材24の内部に浸透していく。浸透したガラス融液2
5と焼結基材24内のAlO3とが融合して完全に一
体化してガラス丸棒27となる。この一体化したガラス
丸棒27を再度φ11長さ20mm形状に研削加工され
る。
The cylindrical member indicated by reference numeral 24 in FIG. 6 is obtained by grinding a substrate made of an Al 2 O 3 sintered body having a desired shape. For example, it is ground to a φ11 length of 20 mm. This ground sintered substrate 24
To 69% of SiO 2 , 10% of B 2 O 3 , 9% of Na 2 O,
FIG. 6 shows a state of being immersed in a container 1 filled with 8% of K 2 O, 3% of BaO, and a glass melt 25 made of unavoidable impurities. The glass melt 25 into which the sintered base material 24 is immersed is always kept at 1500 ° C. By immersing the glass melt 25 in the glass melt 25 for 2 hours, the glass melt 25 as shown by an arrow in FIG. , Penetrate into the inside of the sintered base material 24. Melted glass melt 2
5 and Al 2 O 3 in the sintered substrate 24 are fused and completely integrated to form a glass round bar 27. The integrated glass round bar 27 is again ground into a φ11 length of 20 mm.

【0021】上記本実施例により製造したガラス丸棒2
7の断面形状を見ると、外周部では気孔率が3%、中心
部では24%となっており、外周から中心に向かって徐
々に気孔率が増加していた。また、熱伝導率は中心部が
10w/m.k,最外周部で18w/m.kであった。
上記方法により製造したガラス丸棒27の一端面(符号
27の上端面)をR20.9の凸球面28に研削加工し
た。更にその凸球面28の上面にCrN,BNなどの薄
膜を積層形成して、成形装置にてガラス光学素子を成形
したところヒケ無い形状精度の良好な光学素子を得るこ
とができた。
The glass round bar 2 manufactured according to the above embodiment.
Looking at the cross-sectional shape of No. 7, the porosity was 3% at the outer periphery and 24% at the center, and the porosity gradually increased from the outer periphery toward the center. The thermal conductivity of the central part was 10 w / m. k, 18 w / m. k.
One end face (upper end face of reference numeral 27) of the glass round bar 27 manufactured by the above method was ground into a convex spherical surface 28 of R20.9. Furthermore, a thin film of CrN, BN, or the like was formed on the upper surface of the convex spherical surface 28 by lamination, and a glass optical element was molded by a molding apparatus. As a result, an optical element having good shape accuracy without sink marks was obtained.

【0022】[0022]

【発明の効果】上記構成と方法による本発明によれば、
成形する光学素子の形状と対応形成した成形型を簡単な
方法で安価に製造することができるので、その成形型に
て成形した光学素子は、ヒケが無い高品質で原価性が良
く、かつ生産性よく成形ができるなどの諸効果を奏す
る。
According to the present invention having the above configuration and method,
Since the molding tool corresponding to the shape of the optical element to be molded can be manufactured at a low cost by a simple method, the optical element molded with the molding tool is of high quality without sink marks, has good cost performance, and is produced. Various effects such as good molding can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光学素子成形型の製造方法に係わる実
施例1の成形型の製造工程を示す正面よりの断面図であ
る。
FIG. 1 is a front cross-sectional view showing a manufacturing process of a molding die of Example 1 according to a method of manufacturing an optical element molding die of the present invention.

【図2】図1に続く製造工程を示す正面よりの断面図で
ある。
FIG. 2 is a cross-sectional view from the front showing a manufacturing process following FIG. 1;

【図3】実施例1により製造された成形型を成形装置に
装着した状態の要部を示す正面よりの断面図である。
FIG. 3 is a cross-sectional view from the front showing a main part in a state where the mold manufactured according to Example 1 is mounted on a molding apparatus.

【図4】本発明の光学素子成形型とその製造方法に係わ
る実施例2の製造工程を示す正面よりの断面図である。
FIG. 4 is a cross-sectional view from the front showing a manufacturing process of an optical element forming die and a manufacturing method thereof according to a second embodiment of the present invention.

【図5】実施例2により製造された光学素子成形型を示
す正面よりの断面図である。
FIG. 5 is a sectional view from the front showing the optical element mold manufactured according to the second embodiment.

【図6】本発明の光学素子成形型とその製造方法に係わ
る実施例3の製造工程を示す正面より断面図である。
FIG. 6 is a front sectional view showing a manufacturing process of an optical element molding die and a method of manufacturing the same according to a third embodiment of the present invention.

【図7】実施例3により製造された光学素子成形型を示
す正面よりの断面図である。
FIG. 7 is a front sectional view showing the optical element mold manufactured according to the third embodiment.

【図8】従来の光学素子の成形型による成形状態の要部
を示す正面よりの断面図である。
FIG. 8 is a front cross-sectional view showing a main part of a conventional optical element in a molding state using a molding die.

【符号の説明】[Explanation of symbols]

1 容器 2 H2 So4 溶液 3,20,27 ガラス棒 4,26 矢印 5 下端部 6,23,28 非球面 7 上端部 8 下端部 11 上型マウント 13 上型ヒータ 14 下型 15 上端面 16 下端面 17 下型マウント 18 下型ヒータ 21 孔 22 H2 So4 溶液 24 Al2 3 焼結基材 25 ガラス溶液1 container 2 H 2 So 4 solution 3,20,27 glass rod 4,26 arrow 5 the lower end 6,23,28 aspherical 7 upper end 8 lower portion 11 upper die mount 13 upper heater 14 lower mold 15 upper surface 16 Lower end face 17 Lower mount 18 Lower heater 21 Hole 22 H 2 So 4 solution 24 Al 2 O 3 sintered substrate 25 Glass solution

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−139761(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03B 11/00 - 11/16 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-139761 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C03B 11/00-11/16

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光学素子を押圧成形する成形型におい
て、成形する光学素子の薄肉部と肉厚部に対応して、上
記成形型内に設けた気孔の比率を異ならせたことを特徴
とする光学素子成形型。
1. A molding die for press-molding an optical element, wherein a ratio of pores provided in the molding die is made different according to a thin part and a thick part of the optical element to be molded. Optical element mold.
【請求項2】 光学素子を押圧成形する成形型におい
て、成形する光学素子の薄肉部と肉厚部に対応して、上
記成形型の型基材内に設けた気孔の比率を異ならせかつ
上記型基材の成形面側に上記光学素子の成形時の融着防
止用の薄膜を形成したことを特徴とする光学素子成形
型。
2. A molding die for press-molding an optical element, wherein a ratio of pores provided in a mold base of the molding die is made different according to a thin part and a thick part of the optical element to be molded. An optical element molding die, wherein a thin film for preventing fusion during molding of the optical element is formed on a molding surface side of a mold base.
【請求項3】 光学素子を押圧成形する成形型におい
て、成形する光学素子の薄肉部と肉厚部に対応して、上
記成形型の型基材内の熱伝導率を異ならせかつ上記型基
材の成形面側に上記光学素子の成形時の融着防止用の薄
膜を形成したことを特徴とする光学素子成形型。
3. A molding die for press-molding an optical element, wherein thermal conductivity in a mold base of the molding die is varied according to a thin portion and a thick portion of the optical element to be molded. An optical element molding die, wherein a thin film for preventing fusion during molding of the optical element is formed on a molding surface side of the material.
【請求項4】 光学素子を押圧成形する成形型の製造方
法において、型基材内に含有する特定成分を、成形する
光学素子の形状に対応して、エッチングにてその気孔率
を変化させて形成したことを特徴とする光学素子成形型
の製造方法。
4. A method for manufacturing a molding die for press-molding an optical element, wherein a specific component contained in a mold base material is changed in porosity by etching in accordance with the shape of the optical element to be molded. A method for manufacturing an optical element molding die, characterized in that it is formed.
【請求項5】 光学素子を押圧成形する成形型の製造方
法において、成形する光学素子の形状に対応して、焼結
体からなる基材内に含浸剤を含浸させ、該基材内の焼結
部と融合させて気孔率を変化させて成形したことを特徴
とする光学素子成形型の製造方法。
5. A method for manufacturing a molding die for press-molding an optical element, wherein a substrate comprising a sintered body is impregnated with an impregnating agent in accordance with the shape of the optical element to be molded. A method for producing an optical element molding die, wherein the molding is performed by changing the porosity by fusing with a joint.
JP11799292A 1992-04-10 1992-04-10 Optical element mold and method of manufacturing the same Expired - Fee Related JP3219460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11799292A JP3219460B2 (en) 1992-04-10 1992-04-10 Optical element mold and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11799292A JP3219460B2 (en) 1992-04-10 1992-04-10 Optical element mold and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05294650A JPH05294650A (en) 1993-11-09
JP3219460B2 true JP3219460B2 (en) 2001-10-15

Family

ID=14725353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11799292A Expired - Fee Related JP3219460B2 (en) 1992-04-10 1992-04-10 Optical element mold and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3219460B2 (en)

Also Published As

Publication number Publication date
JPH05294650A (en) 1993-11-09

Similar Documents

Publication Publication Date Title
US4738703A (en) Method of molding optical lenses
KR900000622B1 (en) Method for forming of optical glass element
JPS6132263B2 (en)
JPH01106003A (en) Lens element and manufacture thereof
US5346523A (en) Method of molding chalcogenide glass lenses
US4391622A (en) Method for the precision/manufacture of glass articles
JP3219460B2 (en) Optical element mold and method of manufacturing the same
JPS62207726A (en) Production of pressed lens
JP3229942B2 (en) Method for manufacturing glass optical element
JP2001335334A (en) Optical element-forming mold
JPH0421608B2 (en)
JPH0146453B2 (en)
JP2501588B2 (en) Mold for press molding optical glass element and molding method thereof
KR870001737B1 (en) The mould for making lenses by press
JP2002080227A (en) Method of manufacturing optical element
JP3199825B2 (en) Optical element molding method
KR100212916B1 (en) Apparatus for optical glass
JPH0455134B2 (en)
JP2004210550A (en) Molding mold
JPH06102554B2 (en) Optical element molding method and molding die thereof
JPH06219754A (en) Mold for forming optical element
JP2003026430A (en) Mold for molding high-precision prism, method for manufacturing the same and method for manufacturing high-precision prism
JP3164923B2 (en) Glass material for molding optical element and method for producing the same
JPH0572336B2 (en)
JPH046112A (en) Glass for press forming and forming method using same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees