JP2003026430A - Mold for molding high-precision prism, method for manufacturing the same and method for manufacturing high-precision prism - Google Patents

Mold for molding high-precision prism, method for manufacturing the same and method for manufacturing high-precision prism

Info

Publication number
JP2003026430A
JP2003026430A JP2001210435A JP2001210435A JP2003026430A JP 2003026430 A JP2003026430 A JP 2003026430A JP 2001210435 A JP2001210435 A JP 2001210435A JP 2001210435 A JP2001210435 A JP 2001210435A JP 2003026430 A JP2003026430 A JP 2003026430A
Authority
JP
Japan
Prior art keywords
prism
molding
mold
manufacturing
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001210435A
Other languages
Japanese (ja)
Inventor
Miyoko Doi
美代子 土肥
Shoji Nakamura
正二 中村
Makoto Umetani
梅谷  誠
Hiroshi Riyounai
領内  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001210435A priority Critical patent/JP2003026430A/en
Publication of JP2003026430A publication Critical patent/JP2003026430A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type
    • C03B2215/73Barrel presses or equivalent, e.g. of the ring mould type with means to allow glass overflow in a direction perpendicular to the press axis

Abstract

PROBLEM TO BE SOLVED: To obtain a low-cost prism by realizing cost reduction and stability of dimensional accuracy of a mold in simultaneously molding three surfaces of a prism with the mold composed of crystallized glass replicated with a master block. SOLUTION: Replica molding is carried out by using the crystallized glass with high heat resistance as a mold material. Thereby both cost reducing effect owing to the molding and cost reduction owing to the stability of the dimensional accuracy are made possible and furthermore, contribute to the cost reduction of the prism.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、押圧成形によって
高精度なプリズムを製造するためのプリズム成形用型お
よびその製造方法、並びにプリズム成形型を用いて高精
度なプリズムの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prism molding die for manufacturing a highly accurate prism by press molding, a manufacturing method thereof, and a highly accurate prism manufacturing method using the prism molding die. .

【0002】[0002]

【従来の技術】従来、プリズム成形用金型およびその製
造方法として、例えば特開平9−187821号公報や
特開平9−25132号公報に記載の発明が開示されて
いる。
2. Description of the Related Art Conventionally, as a prism molding die and a method for manufacturing the same, the inventions disclosed in, for example, Japanese Patent Application Laid-Open Nos. 9-187821 and 9-25132 are disclosed.

【0003】特開平9−187821号公報記載の発明
は、ダハプリズムに於けるダハ稜線形成部を挟む両平面
が所定の角度で形成され、分割されていない1個の部材
から構成された成形用金型で、その製造方法は、軟質金
属あるいはダイヤモンドバイトによる切削加工が可能な
メッキ膜を形成して、精密切削法によって所望のダハ稜
線形成部と、該稜線部を挟む両平面が精密に加工され、
主に樹脂材料を用いて射出成形されるダハプリズム成形
用金型を実現するものである。
The invention described in Japanese Patent Application Laid-Open No. 9-187821 discloses a molding die formed of one member which is not divided and has both planes sandwiching a roof ridge line forming portion of a roof prism at a predetermined angle. With a mold, the manufacturing method is to form a plating film that can be cut with a soft metal or diamond cutting tool, and precisely cut the desired roof ridge line forming part and both planes sandwiching the ridge line part by precision cutting method. ,
It is intended to realize a die for molding a roof prism that is injection-molded mainly using a resin material.

【0004】また、特開平9−25132号公報記載の
発明は、ガラスプリズムの製造方法およびその製造装置
に関し、予め加熱された少なくとも隣り合う受け面を有
する受け型へ、遠心力の作用によって溶融ガラスゴブを
密着させて成形することを特徴としている。受け型の材
料として耐熱性や鏡面加工性および溶融ガラスとの反応
性が低い材質、例えばAlN、BN、Cr23などの焼
結体や、また焼結体表面にコーティング加工が施された
成形型が用いられている。また複数個の入れ子型を備え
た受け型を準備し、成形の合理化によって安価なガラス
プリズムを実現している。
The invention described in Japanese Patent Application Laid-Open No. 9-25132 relates to a method for manufacturing a glass prism and an apparatus for manufacturing the glass prism, and a molten glass gob is heated by a centrifugal force to a receiving mold having at least adjacent receiving surfaces. It is characterized in that they are closely contacted with each other and molded. As a receiving material, a material having low heat resistance, mirror surface workability, and reactivity with molten glass, such as a sintered body of AlN, BN, or Cr 2 O 3, or the surface of the sintered body is coated. A mold is used. In addition, by preparing a receiving mold with multiple nesting molds, we have realized an inexpensive glass prism by rationalizing the molding.

【0005】しかし、前記した従来技術には以下の問題
が存在する。
However, the above-mentioned prior art has the following problems.

【0006】特開平9−187821号公報記載の発明
は、ダハ稜線形成部のバリを抑制する効果はあるもの
の、 1.切削バイトRが極めて小さいため、バイト摩耗が大
きく安定した加工面が得られ難い。 2.バイトRが小さいため、所望の光学鏡面を得るには
切削速度を抑える必要性から加工時間が長くなる。 3.ガラスを素材とするプリズム成形型には適さない。
Although the invention described in Japanese Patent Application Laid-Open No. 9-187821 has an effect of suppressing burrs at the roof ridge line forming portion, Since the cutting tool R is extremely small, it is difficult to obtain a stable machined surface due to large tool wear. 2. Since the bite R is small, it is necessary to suppress the cutting speed in order to obtain a desired optical mirror surface, and thus the processing time becomes long. 3. Not suitable for prism molds made of glass.

【0007】また、特開平9−25132号公報記載の
発明は、明細書の文言から空気中で行える成形で、プリ
ズムの2面のみは効率よい生産性の効果はあるものの、 1.最終形態のプリズムを得るには残り1面を従来の研
磨加工が必要である。 2.耐熱性や鏡面加工性に優れた型材料を用いても、空
気中での条件下では酸化や溶融ガラスが高温であるが故
に面荒れが発生したり、また成形されるガラス材料によ
っては型との反応が起こる。 3.成形の生産性は高いが、従来研磨加工との組み合わ
せにより、総合的な生産性には疑問が残る。
The invention described in Japanese Patent Application Laid-Open No. 9-25132 is a molding that can be performed in the air according to the wording of the specification, and although only two surfaces of the prism have an effect of efficient productivity, 1. Conventional polishing is required on the remaining one surface to obtain the final prism. 2. Even if a mold material having excellent heat resistance and mirror surface workability is used, under the conditions of air, surface oxidation occurs due to the high temperature of oxidation or molten glass, and depending on the glass material to be molded, it may not be a mold. Reaction occurs. 3. Although the molding productivity is high, the overall productivity remains questionable in combination with conventional polishing.

【0008】[0008]

【発明が解決しようとする課題】従来例に於ける課題に
鑑み、高精度なプリズム面の全てを直接プレスするため
には、金型材料として熱伝導性、耐熱性に優れ、プレス
成形する光学素子材料に対して不活性であり、プレスし
たときに金型のプレス面形状が崩れないような高温強度
を有するものが必要である。その反面、加工性に優れ、
精密加工が容易で、かつ安価に製造できなくてはならな
い等の課題をも併せ持っている。
In view of the problems in the prior art, in order to directly press all of the highly accurate prism surfaces, the mold material is excellent in heat conductivity and heat resistance, and the press molding optics is used. It is necessary to have a material that is inert to the element material and has high-temperature strength so that the pressing surface shape of the die does not collapse when pressed. On the other hand, it has excellent workability,
It also has problems such as precision processing being easy and inexpensive to manufacture.

【0009】以上のような金型に必要な条件をある程度
満足するものとして、WCを主成分とする超硬合金を金
型素材に用い、前記金型素材上に貴金属系保護膜をコー
ティングした金型があり、この金型を用いることによっ
て、プレス成形による量産が可能となる。
As a material satisfying the conditions necessary for the mold as described above to some extent, a cemented carbide containing WC as a main component is used as a mold material, and the mold material is coated with a noble metal protective film. There is a mold, and by using this mold, mass production by press molding becomes possible.

【0010】しかし、金型素材に用いる超硬合金の精密
加工の困難性や特別な加工装置の必要性、また加工後も
場合によっては面粗さ向上のため研磨加工を必要とす
る。
However, it is difficult to perform precision machining of a cemented carbide used as a die material, a special machining device is required, and polishing is sometimes required after the machining to improve the surface roughness.

【0011】また、その加工は、主にダイヤモンド砥石
による研削加工によるため、砥石摩耗のため加工時の切
り込み量を大きくできず、加工時間も長く、加工コスト
が非常に高いという課題が存在する。また、加工の難し
さゆえに金型形状のバラツキが大きく、金型コストが非
常に高くつく要因となっている。
Further, since the processing is mainly performed by grinding with a diamond grindstone, there is a problem that the cutting amount at the time of processing cannot be increased due to the abrasion of the grindstone, the processing time is long, and the processing cost is very high. Further, due to the difficulty of processing, there are large variations in the shape of the mold, which is a factor that makes the mold cost very high.

【0012】[0012]

【課題を解決するための手段】上述した課題を解決する
手段は、タングステン−カーバイト(WC)を主成分と
する超硬合金を母材とし、前記母材にプリズム形状と同
一形状の成形面を、研削加工および研磨加工した後、成
形面に高強度で耐久性がありガラスとの反応性のない保
護膜を形成した母型を作成して、該母型を用いて結晶化
ガラスの結晶化前の素材を加熱軟化させた後、押圧成形
してプリズムの反転形状に成形した後、結晶化処理を施
し、その後、反転形状に成形された表面に高強度で耐熱
性がありガラスとの反応性がない保護膜を形成する製造
工程で得られるプリズム成形用の入れ子型を提供するこ
とで解決の手段とする。
[Means for Solving the Problems] A means for solving the above-mentioned problems is to use, as a base material, a cemented carbide containing tungsten-carbide (WC) as a main component, and to form a molding surface having the same shape as a prism shape on the base material. After grinding and polishing, a master having a protective film having high strength, durability and no reactivity with glass is formed on the molding surface, and the crystal of the crystallized glass is formed using the master. After softening the material before heat treatment, it is pressed and molded into the inverted shape of the prism, then subjected to crystallization treatment, and then the surface formed into the inverted shape has high strength and heat resistance and glass. A solution is to provide a nested mold for prism molding obtained in a manufacturing process for forming a protective film having no reactivity.

【0013】次に、光学材料と上下入れ子型と、該上下
の入れ子型を内包する受け型とで構成され、該受け型の
熱収縮量が前記光学材料と上下入れ子型との合算された
熱収縮量より大きく設定された成形型を提供することで
解決の手段とする。
Next, it is composed of an optical material, upper and lower nesting molds, and a receiving mold that encloses the upper and lower nesting molds, and the heat shrinkage amount of the receiving mold is the total heat of the optical material and the upper and lower nesting molds. The solution is to provide a mold set to be larger than the shrinkage amount.

【0014】次に、入れ子型を含むプリズム成形用型内
に光学材料を投入して成形ブロックとし、該成型ブロッ
クの全体を加熱して、前記光学材料が軟化した時点で入
れ子型の面を転写させる押圧変形を行い、前記成形ブロ
ックを冷却して得られるプリズムの製造方法を提供する
ことで解決の手段とする。
Next, an optical material is put into a prism molding die including a nesting die to form a molding block, and the entire molding block is heated, and when the optical material is softened, the surface of the nesting die is transferred. The present invention provides a means for solving the problem by providing a method for manufacturing a prism that is obtained by subjecting the shaped block to cooling by performing the pressing deformation.

【0015】[0015]

【発明の実施の形態】本発明の実施形態に於ける高精度
なプリズム成形用型およびその製造方法について、図1
(A)、(B)および図2(A)〜(E)を用いて説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a highly precise prism molding die and a manufacturing method thereof according to an embodiment of the present invention.
This will be described with reference to (A), (B) and FIGS. 2 (A) to (E).

【0016】図1(A)は、本発明のプリズム成形用型
1の縦断面図を示し、金属部材からなる受け型4に内包
される上型2と下型3との入れ子型とで構成されてい
る。
FIG. 1 (A) is a vertical cross-sectional view of a prism molding die 1 of the present invention, which comprises a nesting die of an upper die 2 and a lower die 3 contained in a receiving die 4 made of a metal member. Has been done.

【0017】上型2および下型3は結晶化ガラス材料か
らなり、上型2のS0面および下型3のS2面とS3面
には、プリズムとなる成形素材7とは不活性で反応性の
ない保護膜が形成されている。
The upper mold 2 and the lower mold 3 are made of a crystallized glass material, and the S0 surface of the upper mold 2 and the S2 surface and the S3 surface of the lower mold 3 are inactive and reactive with the molding material 7 serving as a prism. There is no protective film.

【0018】図1(B)は、成形型1を用いてプリズム
が成形された状態を示す縦断面図であり、成形型1の全
体を不活性ガス中で加熱し、成形素材7が軟化した温度
で上型2を介して押圧する事によって、前記した上下型
のS0、S2、S3の3面が同時に精密転写されてプリ
ズム8を得ることができる。
FIG. 1 (B) is a vertical cross-sectional view showing a state where a prism is molded by using the molding die 1. The entire molding die 1 is heated in an inert gas to soften the molding material 7. By pressing the upper mold 2 at a temperature, the three surfaces S0, S2, and S3 of the upper and lower molds are simultaneously precisely transferred to obtain the prism 8.

【0019】上下型2、3に用いた結晶化ガラスは珪酸
リチュウム系からなる組成で、結晶化前の熱特性が屈伏
点518℃、ガラス転移点472℃のものを用いた。結
晶化後は屈伏点や転移点は示さず軟化温度は著しく向上
する。また熱膨張係数が98×10-7/℃、室温でのマ
イクロビッカース硬度700を示すものである。
The crystallized glass used for the upper and lower molds 2 and 3 had a composition of lithium silicate and had thermal characteristics before crystallization of a yield point of 518 ° C. and a glass transition point of 472 ° C. After crystallization, no softening point or transition point is shown and the softening temperature is remarkably improved. The thermal expansion coefficient is 98 × 10 −7 / ° C., and the micro Vickers hardness at room temperature is 700.

【0020】S0、S2、S3の各面には成形素材とは
不活性で離型性の良好な貴金属合金膜がスパッタリング
法によって0.5〜2μm範囲での膜厚だけ成膜されて
いる。受け型4の材料には熱膨張係数が165×10-7
/℃のステンレス鋼材のものを用い、U形状の内面およ
び上下両面は精度良く研削加工が施されている。
On each surface of S0, S2, and S3, a noble metal alloy film which is inert to the forming material and has a good releasability is formed by a sputtering method to a film thickness in the range of 0.5 to 2 μm. The material of the receiving mold 4 has a coefficient of thermal expansion of 165 × 10 -7
/ ° C stainless steel material is used, and the U-shaped inner surface and both upper and lower surfaces are precisely ground.

【0021】その理由は成形時における上下型と受け型
との精密な平行度を保つ狙いである。
The reason for this is to maintain precise parallelism between the upper and lower molds and the receiving mold during molding.

【0022】尚、従来例の特開平9−187821号公
報に於いても下型3のように所定の角度を挟む両面が形
成された成形型が開示されているが、従来成形型が軟質
金属で構成されているのに対し、本発明は耐熱性の高い
結晶化ガラスと、その表面に不活性な膜とで構成されて
いるため、光学材料として樹脂やガラスのどちらの材料
にも適応可能で高精度なプリズムの成形を可能にする金
型構成である。
Incidentally, Japanese Unexamined Patent Publication No. 9-187821 also discloses a forming die having both surfaces sandwiching a predetermined angle like the lower die 3, but the conventional forming die is a soft metal. In contrast, the present invention is composed of crystallized glass having high heat resistance and an inactive film on the surface thereof, so that it can be applied to either resin or glass as an optical material. It is a mold structure that enables highly accurate prism molding.

【0023】図2(A)〜(E)は、高精度なプリズム
成形用型を得るための入れ子型の製造方法を説明するも
のである。
2 (A) to 2 (E) illustrate a method of manufacturing a nested mold for obtaining a highly accurate prism molding mold.

【0024】図2(A)はWCが80wt%以上含まれ
た超硬合金からなる母型11の斜視図を示している。
FIG. 2A shows a perspective view of a matrix 11 made of cemented carbide containing WC in an amount of 80 wt% or more.

【0025】矩形状を成しており、図中、頂角2θとそ
れを挟むS2面およびS3の両平面部は、最終的に得よ
うとするプリズム形状と同一形状を成している。S2、
S3の両面はS1面を基準面として左右対称に配置され
ており、S4、S5面はS1面とは直角でかつ平行に加
工されている。母型11には長手方向の両端に段部12
が形成され保護膜を形成する際の保持部として機能す
る。
It has a rectangular shape, and in the drawing, the apex angle 2θ and both plane portions of S2 surface and S3 that sandwich it are the same as the prism shape to be finally obtained. S2,
Both surfaces of S3 are symmetrically arranged with the S1 surface as a reference surface, and the S4 and S5 surfaces are machined at right angles to and parallel to the S1 surface. The master block 11 has stepped portions 12 at both ends in the longitudinal direction.
And functions as a holding portion when the protective film is formed.

【0026】図2(B)は上述した母型11を得るため
に行われる重要な加工方法について説明する縦断面図を
示している。
FIG. 2B is a vertical sectional view for explaining an important processing method performed for obtaining the master block 11 described above.

【0027】平面研削盤の傾斜テーブル14は、その傾
斜角θに調整を行う。予め下加工された母型素材11は
貼り付け定盤13にワックスを用い、S1を基準として
精密に貼り付けた。母型素材11は砥石軸17と直交す
る方向の真直性を確保するための当て板15を用い、傾
斜テーブルの電磁チャックに取り付けた。
The tilt table 14 of the surface grinder adjusts the tilt angle θ. The mother die material 11 preliminarily preliminarily processed was adhered precisely using S1 as a reference and using wax as the surface plate 13. As the mother die material 11, a backing plate 15 for ensuring straightness in a direction orthogonal to the grindstone shaft 17 was used, and it was attached to the electromagnetic chuck of the tilt table.

【0028】レジノイドボンドされたダイヤモンド砥石
16によって砥石軸17を下方に所定位置まで切り込み
を行いながら精密研削加工を行う。研削加工は、砥石軸
と直交する方向と、図示した矢印方向とにテーブルをト
ラバース運動させて行うものである。図はS2面を加工
する状態であるが、母型を反転させて同じ所定位置まで
切り込むことで、S2、S3の両面は左右均等に振り分
けられて加工される。
Precision grinding is performed while cutting the grindstone shaft 17 downward to a predetermined position by the resinoid-bonded diamond grindstone 16. Grinding is performed by traversing the table in a direction orthogonal to the grindstone axis and in the direction of the arrow shown in the figure. The drawing shows a state in which the S2 surface is processed, but both sides of S2 and S3 are evenly distributed and processed by reversing the mother die and cutting to the same predetermined position.

【0029】その後、研削加工したS2およびS3を個
別に研磨加工を施して平面加工を行った。研磨加工は平
面度が管理された軟質金属製の回転定盤に、平均粒径が
1μmのダイヤモンド混濁液をスラリーとして供給しな
がら図示しない研磨治具を用いて研磨加工を行った。研
磨された母型の頂角は2θの角度で加工されており、S
2、S3の両面は表面粗さがRmax0.01μmでそ
の平面度がニュートン1本以内(凸形状)であった。
Thereafter, the grinded S2 and S3 were individually subjected to polishing processing to perform plane processing. The polishing was carried out by using a polishing jig (not shown) while supplying a diamond turbid liquid having an average particle diameter of 1 μm as a slurry to a rotating platen made of a soft metal whose flatness was controlled. The apex angle of the polished mother die is processed at an angle of 2θ.
Both surfaces of S2 and S3 had a surface roughness Rmax of 0.01 μm and a flatness of less than 1 Newton (convex shape).

【0030】その後、母型素材11を精密洗浄してスパ
ッタ装置の治具に段部12を係合させて装填した。装置
はマグネトロン高周波スパッタ法により行うもので、白
金(Pt)−イリジュウム(Ir)の合金膜をターゲッ
トとし、真空度5×10-4Torr、電力600Wの条
件でS2、S3の両面を同時に1μmの膜厚に成膜し、
(A)に示す母型11を得ることができた。
After that, the mother die material 11 was precisely cleaned, and the jig 12 of the sputtering apparatus was engaged with the step portion 12 and loaded. The apparatus is a magnetron high-frequency sputtering method, a platinum (Pt) -iridium (Ir) alloy film is used as a target, and both S2 and S3 are 1 μm at the same time under the conditions of a vacuum degree of 5 × 10 −4 Torr and an electric power of 600 W. Formed into a film thickness,
The matrix 11 shown in (A) could be obtained.

【0031】成膜後の面粗さおよび平面度は若干の変化
は生じたが、所望する精度の範囲内であった。
Although the surface roughness and the flatness after the film formation changed slightly, they were within the desired accuracy range.

【0032】尚、上述した母型11は、図1(A)、
(B)で示した下型3の入れ子型を作成するための工程
を示したが、上型2を作成する母型も上記と同様の工程
と加工法で得られるが、単純な平面形状なので詳細な説
明は省略する。
The above-mentioned mother die 11 has a structure shown in FIG.
Although the process for making the nested mold of the lower mold 3 shown in (B) is shown, the mother mold for making the upper mold 2 can also be obtained by the same process and processing method as above, but it is a simple planar shape. Detailed description is omitted.

【0033】図2(C)、(D)および(E)は、図1
(A)で説明した入れ子型である下型3を押圧成形する
工程を説明する要部正断面図を示している。
2 (C), (D) and (E) are shown in FIG.
FIG. 6 is a front cross-sectional view of an essential part for explaining a step of press-molding the lower mold 3 that is the nesting mold described in (A).

【0034】上下にヒータ24が埋設された上加熱板2
5と下加熱板26との間に、受け型22を配して、受け
型22の内部に成形素材23を投入した。上述した母型
11にはS2、S3の成形面で構成された所定の角度2
θが形成されており、同材料のWCで加工された保持型
21に嵌合されて上加熱板25に当接している。
Upper heating plate 2 in which heaters 24 are embedded at the top and bottom
The receiving die 22 was arranged between the No. 5 and the lower heating plate 26, and the molding material 23 was put into the receiving die 22. The mother mold 11 described above has a predetermined angle 2 formed by the molding surfaces of S2 and S3.
θ is formed, and it is fitted into the holding die 21 machined by WC of the same material and is in contact with the upper heating plate 25.

【0035】受け型22は母型11および保持型21と
同材料のWCを用いている。成形素材23は珪酸リシュ
ウム系からなる結晶化前のガラス(屈伏点:518℃、
ガラス転移点:472℃)を、予め矩形状に加工されて
おり、S2、S3の成形面と接する面は鏡面に研磨して
いる。
The receiving die 22 is made of WC made of the same material as the mother die 11 and the holding die 21. The forming material 23 is a glass before crystallization (depression point: 518 ° C.
The glass transition point: 472 ° C.) is previously processed into a rectangular shape, and the surface in contact with the molding surfaces of S2 and S3 is mirror-polished.

【0036】これら全体を不活性ガス中で加熱ができる
図示しないチャンバーに配置されており、また上加熱板
25を介して加圧力Fが、図示しない加圧機構(例えば
エアーシリンダー等)によって加えられるものである。
All of them are arranged in a chamber (not shown) capable of being heated in an inert gas, and a pressing force F is applied via an upper heating plate 25 by a pressurizing mechanism (not shown) (for example, an air cylinder). It is a thing.

【0037】まず、図2(C)の状態で上下の加熱板2
5、26のヒータ24に通電し、580℃に加熱して5
分間保持した後、加圧力8000Nで押圧した。
First, the upper and lower heating plates 2 in the state of FIG.
Turn on the heaters 24 of Nos. 5 and 26 and heat to 580 ° C.
After holding for a minute, a pressing force of 8000 N was applied.

【0038】図2(D)は母型11によって成形素材2
3は変形された状態を示している。この状態でさらに5
分間保持した後、押圧を継続したまま上下加熱板25、
26の温度を750℃まで上昇させて、成形素材23の
結晶化を行うために2時間保持した。
FIG. 2D shows a molding material 2 formed by the mother die 11.
Reference numeral 3 indicates a deformed state. 5 more in this state
After holding for a minute, the upper and lower heating plates 25 while continuing to press,
The temperature of 26 was raised to 750 ° C. and kept for 2 hours to crystallize the molding material 23.

【0039】その後、押圧を継続したままの状態で、上
下加熱板の電源を切断し、400℃まで冷却した時点で
加圧力を解除し、さらに室温まで冷却した。成形素材2
3の最初は透明であったが、取り出した時には完全に不
透明な状態を示し、充分な結晶化が行われていた。
Thereafter, while the pressing was continued, the power supply to the upper and lower heating plates was cut off, and when the temperature was cooled down to 400 ° C., the pressure was released and further cooled down to room temperature. Molding material 2
No. 3 was transparent at the beginning, but when taken out, it showed a completely opaque state and sufficient crystallization was performed.

【0040】図2(E)は、受け型22から取り出した
成形素材の成形面は、プリズムの形状および母型とは反
対形状をした、S2およびS3の両面が2θの角度を成
して成形された入れ子型を得ることができた。成形面S
2、S3は母型の精度より若干悪くニュートン=1.5
本(凹形状)が転写されていた。
In FIG. 2 (E), the molding surface of the molding material taken out from the receiving mold 22 has a shape opposite to that of the prism and the mother mold. Both surfaces of S2 and S3 form an angle of 2θ. It was possible to obtain a nested type. Forming surface S
2 and S3 are slightly worse than the accuracy of the matrix, Newton = 1.5
The book (concave shape) was transferred.

【0041】その後、成形面S2、S3には貴金属合金
であるPt−Irを1μmの膜厚にスパッタリング法で
成膜して下型3を得ることができた。本実施の形態の条
件、即ち、一つの母型で10個の下型3を作成したが、
ほぼ同様の精度が確認された。尚、詳細な説明は省略し
たが、入れ子型である上型2も同様の工程と方法によっ
て、必要なプリズム面の精度が得られている。
After that, Pt-Ir, which is a noble metal alloy, was formed into a film having a thickness of 1 μm on the molding surfaces S2 and S3 by a sputtering method to obtain the lower mold 3. The condition of the present embodiment, that is, 10 lower molds 3 were created with one matrix,
Almost the same accuracy was confirmed. Although a detailed description is omitted, the required upper surface accuracy of the prism is obtained by the same process and method for the upper mold 2 which is a nested mold.

【0042】図3(A)〜(C)は、上述して得られた
プリズム成形用型を用いてガラスプリズムの製造方法を
説明する。
3A to 3C illustrate a method of manufacturing a glass prism using the prism molding die obtained as described above.

【0043】図3(A)は、成形ブロック31を示し、
ステンレス鋼材(熱膨張係数165×10-7/℃)で作
成されたU字形状の受け型4に、結晶化ガラスからなる
下型3と上型2とが内包され、上下型2、3の間には光
学ガラス材料の成形素材7が投入されている。
FIG. 3A shows the molding block 31.
A lower mold 3 and an upper mold 2 made of crystallized glass are contained in a U-shaped receiving mold 4 made of stainless steel material (coefficient of thermal expansion 165 × 10 −7 / ° C.). A molding material 7, which is an optical glass material, is placed in between.

【0044】成形素材7はクラウン系の硼珪酸ガラス
(Tg点:501℃、At点:549℃)を外径5mm
の棒形状で、その外径はセンタレス研磨加工した。
The molding material 7 is crown borosilicate glass (Tg point: 501 ° C., At point: 549 ° C.) with an outer diameter of 5 mm.
The rod was shaped like a bar and its outer diameter was centerless polished.

【0045】成形ブロック31の全体を、ヒータ24が
埋設された上下加熱板25、26に通電し、590℃ま
で昇温し、昇温と同時に7000Nの加圧力Fを図示し
ない加圧機構を用いて押圧し、成形素材7を変形した。
The entire molding block 31 is energized by the upper and lower heating plates 25 and 26 in which the heater 24 is embedded, and the temperature is raised to 590 ° C. At the same time as the temperature rise, a pressing force F of 7,000 N is used by a pressurizing mechanism (not shown). And pressed to deform the molding material 7.

【0046】図3(B)は、変形が完了した状態を示
し、成形素材7はすでにプリズム形状に成形されており
成形面S0、S2、S3の3面が同時に形成されてい
る。
FIG. 3B shows a state in which the deformation has been completed. The molding material 7 has already been molded into a prism shape, and three molding surfaces S0, S2 and S3 are simultaneously formed.

【0047】このとき、受け型4の上端面は上加熱板と
当接状態であり、この状態で加圧力を継続したまま上下
加熱板25、26のヒータ電源をOFFにして480℃
まで冷却して加圧力を解放した。受け型4は、上下型
2、3と成形素材7が冷却するに従って収縮する量より
も大きな収縮量が得られるような寸法に設定されてお
り、受け型4の収縮に追随して成形素材が十分に固化す
るまで押圧が継続され精度の高い転写性を得ることがで
きる。
At this time, the upper end surface of the receiving mold 4 is in contact with the upper heating plate, and in this state, the heater power of the upper and lower heating plates 25 and 26 is turned off while maintaining the pressing force, and 480 ° C.
And the pressure was released. The receiving die 4 is set to have a size such that a contraction amount larger than the contraction amount of the upper and lower molds 2 and 3 and the molding material 7 as it cools is obtained, and the molding material follows the contraction of the receiving mold 4. Pressing is continued until it is sufficiently solidified, and highly accurate transferability can be obtained.

【0048】加圧力を解放した後、さらに室温まで冷却
して、図3(C)に示すガラスプリズム8を得ることが
できた。
After releasing the pressure, the glass prism 8 shown in FIG. 3C could be obtained by further cooling to room temperature.

【0049】得られたガラスプリズム8は、長さ30m
mのものであり、オプチカルフラットで評価したとこ
ろ、ニュートン4〜5本の転写性が得られた。また、ガ
ラスプリズム8に所定の光学膜を蒸着した後、長手方向
を所望寸法に切断して、光ピックアップの光学系に搭載
したところ実用出来る範囲の精度を確認した。
The obtained glass prism 8 has a length of 30 m.
The transferability was 4 to 5 Newton's when evaluated by optical flat. Further, after depositing a predetermined optical film on the glass prism 8, the longitudinal direction was cut into a desired dimension and mounted in an optical system of an optical pickup, and the accuracy in a practical range was confirmed.

【0050】[0050]

【発明の効果】以上のように本発明は母型を作成し、母
型を用いて結晶化ガラスをレプリカする事で高精度でか
つ耐熱性の高い成形型が安定して、さらに安価に製作す
ることができ、ひいてはプリズムのコスト低減に大きく
寄与する。従って、本発明のプリズム成形用型と、その
製造方法および同成形型を用いたプリズムの製造方法は
産業上利用価値の高いものが提供できるものである。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, a master die is prepared, and by using the master die, a crystallized glass is replicated, so that a molding die having high accuracy and high heat resistance is stable and can be manufactured at a lower cost. Therefore, the cost of the prism can be greatly reduced. Therefore, the prism molding die of the present invention, the manufacturing method thereof, and the prism manufacturing method using the molding die can be provided with high industrial utility value.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)、(B)は本発明の実施の形態で説明す
るプリズム成形用型の縦断面図
1A and 1B are vertical cross-sectional views of a prism molding die described in an embodiment of the present invention.

【図2】(A)〜(E)は本発明の実施の形態で説明す
るプリズム成形用型の製造方法を説明する工程図
2A to 2E are process diagrams illustrating a method for manufacturing a prism molding die described in an embodiment of the present invention.

【図3】(A)〜(C)は本発明の実施の形態で説明す
るプリズムの製造方法を説明する要部断面図
3A to 3C are cross-sectional views of a main part for explaining a method of manufacturing a prism described in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 成形型 2 上型 3 下型 4、22 受け型 7、23 成形素材 8 プリズム 11 母型 21 保持型 25 上加熱板 26 下加熱板 31 成形ブロック S0、S2、S3 プリズム成形面 1 Mold 2 Upper mold 3 Lower mold 4,22 Receiving type 7,23 Molding material 8 prism 11 mother pattern 21 holding type 25 Upper heating plate 26 Lower heating plate 31 Molded block S0, S2, S3 Prism molding surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅谷 誠 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 領内 博 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2H042 CA15 CA17    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Makoto Umeya             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Hiroshi Ryouchi             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 2H042 CA15 CA17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光学材料を用いたプリズムを押圧成形す
るための成形用型の製造方法であって、タングステン−
カーバイト(以下WCと称する)を主成分とする超硬合
金を母材とし、該母材が所定角度を形成する二つの成形
面で構成され、前記プリズムと同形状に加工した後、前
記成形面に高強度で耐久性と反応性のない保護膜を形成
した母型を作成し、該母型を用いて結晶化ガラスの結晶
化前の素材を加熱軟化させた後、押圧成形して前記プリ
ズムの反転形状に成形した後に結晶化処理を施し、前記
反転形状に成形された表面に高強度で耐熱性があり前記
光学ガラスとの反応性がない保護膜を形成することを特
徴とするプリズム成形用の入れ子型の製造方法。
1. A method of manufacturing a molding die for press-molding a prism using an optical material, the method comprising:
Carbide (hereinafter referred to as WC) as a main component is used as a base material, and the base material is composed of two forming surfaces that form a predetermined angle, and is formed into the same shape as the prism, and then the forming is performed. A mother die having a protective film having high strength, durability and reactivity which is formed on the surface is formed, and the material before crystallization of the crystallized glass is softened by heating using the mother die, followed by press molding. A prism characterized by being subjected to crystallization treatment after being formed into an inverted shape of the prism, and forming a protective film having high strength, heat resistance, and no reactivity with the optical glass on the surface formed into the inverted shape. A method for manufacturing a nested mold for molding.
【請求項2】 光学材料を用いてプリズムを押圧成形す
るための成形用型であって、前記請求項1記載の入れ子
型を上下に配して前記プリズムの全面を構成し、前記上
下の入れ子型を内包する受け型とで構成され、該受け型
の熱収縮量が、前記上下の入れ子型と前記光学ガラスと
の合算された熱収縮量よりも大きく構成されたことを特
徴とするプリズム成形用型。
2. A molding die for press-molding a prism using an optical material, wherein the nesting mold according to claim 1 is arranged vertically to form the entire surface of the prism, and the upper and lower nests. A prism molding, characterized in that it is constituted by a receiving mold enclosing a mold, and the heat shrinkage of the receiving mold is larger than the total heat shrinkage of the upper and lower nesting molds and the optical glass. Type.
【請求項3】 光学材料と、前記請求項2記載の成形用
型を用いたプリズムの製造方法であって、上下入れ子型
と該入れ子型に挟持された光学材料とを内包して収容し
た受け型とで成形ブロックを構成する工程と、該成形ブ
ロック全体を加熱して前記光学材料が軟化した時点で押
圧変形する工程と、前記成形ブロック全体を押圧したま
ま冷却する工程とが具備されたことを特徴とするプリズ
ムの製造方法。
3. A method for manufacturing a prism using the molding die according to claim 2, wherein the upper and lower nesting molds and the optical material sandwiched between the nesting molds are contained and accommodated. A step of forming a molding block with a mold; a step of heating the entire molding block to deform when the optical material is softened; and a step of cooling the entire molding block while pressing the entire molding block. And a method for manufacturing a prism.
JP2001210435A 2001-07-11 2001-07-11 Mold for molding high-precision prism, method for manufacturing the same and method for manufacturing high-precision prism Pending JP2003026430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001210435A JP2003026430A (en) 2001-07-11 2001-07-11 Mold for molding high-precision prism, method for manufacturing the same and method for manufacturing high-precision prism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001210435A JP2003026430A (en) 2001-07-11 2001-07-11 Mold for molding high-precision prism, method for manufacturing the same and method for manufacturing high-precision prism

Publications (1)

Publication Number Publication Date
JP2003026430A true JP2003026430A (en) 2003-01-29

Family

ID=19045909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001210435A Pending JP2003026430A (en) 2001-07-11 2001-07-11 Mold for molding high-precision prism, method for manufacturing the same and method for manufacturing high-precision prism

Country Status (1)

Country Link
JP (1) JP2003026430A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006194A1 (en) * 2019-07-05 2021-01-14 Hoya株式会社 Mold for forming glass lens
WO2023226139A1 (en) * 2022-05-23 2023-11-30 歌尔光学科技有限公司 Projector optical engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006194A1 (en) * 2019-07-05 2021-01-14 Hoya株式会社 Mold for forming glass lens
CN113891862A (en) * 2019-07-05 2022-01-04 Hoya株式会社 Glass lens forming die
CN113891862B (en) * 2019-07-05 2024-02-13 Hoya株式会社 Glass lens forming die
WO2023226139A1 (en) * 2022-05-23 2023-11-30 歌尔光学科技有限公司 Projector optical engine

Similar Documents

Publication Publication Date Title
JP3565784B2 (en) Glass substrate molding die and glass substrate manufacturing method
US20030115907A1 (en) Multiple lens molding system and method
KR900000622B1 (en) Method for forming of optical glass element
WO2000040516A1 (en) Die for forming optical device, method for manufacturing the same, and optical device
US4391622A (en) Method for the precision/manufacture of glass articles
JP3991682B2 (en) Precision drilling method of glass, manufacturing method of ferrule for optical fiber connector, and manufacturing method of magnetic disk glass substrate
JP4200422B2 (en) Glass blank, information recording medium substrate, and information recording medium manufacturing method
JP2003026430A (en) Mold for molding high-precision prism, method for manufacturing the same and method for manufacturing high-precision prism
JPH0247411B2 (en) KOGAKUGARASUSOSHINOPURESUSEIKEIYOKATA
CN112062450B (en) Preparation method of amorphous glass hot-pressing mold and hot-pressing mold
JPH1179760A (en) Mold for forming glass optical element, manufacture of glass optical element, and method for reforming the mold
JPH0421608B2 (en)
JP2501588B2 (en) Mold for press molding optical glass element and molding method thereof
JPH0451495B2 (en)
JP2004210550A (en) Molding mold
JP2002348129A (en) Method for manufacturing molding die for optical glass element and method for molding optical glass element
JPH11268920A (en) Forming mold for forming optical element and its production
JP4227382B2 (en) Glass blank, information recording medium substrate, and information recording medium manufacturing method
JP3199825B2 (en) Optical element molding method
JP3850062B2 (en) Optical element manufacturing method and optical element mold
JPH02102136A (en) Mold for molding optical element and production thereof
JP2002080227A (en) Method of manufacturing optical element
JP3109219B2 (en) Glass optical element molding die and method of manufacturing the same
JP3219460B2 (en) Optical element mold and method of manufacturing the same
JPH0572336B2 (en)