JP2002348129A - Method for manufacturing molding die for optical glass element and method for molding optical glass element - Google Patents

Method for manufacturing molding die for optical glass element and method for molding optical glass element

Info

Publication number
JP2002348129A
JP2002348129A JP2001156348A JP2001156348A JP2002348129A JP 2002348129 A JP2002348129 A JP 2002348129A JP 2001156348 A JP2001156348 A JP 2001156348A JP 2001156348 A JP2001156348 A JP 2001156348A JP 2002348129 A JP2002348129 A JP 2002348129A
Authority
JP
Japan
Prior art keywords
molding
layer
optical glass
glass element
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001156348A
Other languages
Japanese (ja)
Inventor
Masaaki Yokota
正明 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001156348A priority Critical patent/JP2002348129A/en
Publication of JP2002348129A publication Critical patent/JP2002348129A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/24Carbon, e.g. diamond, graphite, amorphous carbon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/31Two or more distinct intermediate layers or zones
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/32Intermediate layers, e.g. graded zone of base/top material of metallic or silicon material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/34Intermediate layers, e.g. graded zone of base/top material of ceramic or cermet material, e.g. diamond-like carbon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a molding die, for molding an optical glass element at a high temperature, which can be worked into a precise shape and has no cracks. SOLUTION: A cutting layer consisting of a Ni-P vacuum deposition layer is laid on a parent material composed of sintered hard alloys, cermets, ceramics, iron-based alloys and the like. The shape of the optical surface of the cutting layer is finished with a required degree of precision by high-precision cutting using a diamond cutting tool, and thereafter, is heat-treated at a temperature higher than the molding temperature by 10 deg.C or more. Furthermore, an optical glass element having a molding temperature range of 390-490 deg.C is molded by the use of a molding die for optical glass elements, which has a middle layer consisting of nitride or carbide ceramics and the like on the optical surface, which is the molding face, and a mold releasing layer of DLC film (a diamond- type carbon film) on the middle layer. Thereby, an optical glass element, fit for practical use, can be molded by continuous molding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス光学素子の
プレス成型用金型の製造方法、及び、ガラス光学素子の
プレス成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a mold for press-molding a glass optical element, and a method for press-molding a glass optical element.

【0002】[0002]

【従来の技術】従来、自由曲面形状や微細格子形状等の
プラスチックレンズの成形においては、成形用金型とし
て、超精密切削が可能なNiとPからなる無電解ニッケ
ルメッキ層をダイヤモンドバイトにより切削加工で光学
鏡面を得ている。また更に高精度な光学面が必要なもの
は研磨加工により光学鏡面を得ている。この場合はプラ
スチックの成形温度が200℃以下であるため、切削お
よび研磨加工前に200℃〜250℃の範囲で熱処理を
行っていた。
2. Description of the Related Art Conventionally, in forming a plastic lens having a free-form surface shape or a fine lattice shape, an electroless nickel plating layer made of Ni and P capable of ultra-precision cutting is cut with a diamond tool as a forming die. An optical mirror surface is obtained by processing. For those requiring a more precise optical surface, an optical mirror surface is obtained by polishing. In this case, since the molding temperature of the plastic is 200 ° C. or less, heat treatment was performed at a temperature in the range of 200 ° C. to 250 ° C. before cutting and polishing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来例では、プラスチックのように成形温度が200℃以
下である場合においては可能であるが、ガラスのプレス
成形においては、高温耐久性を得るために加工層として
Ni−Pから構成される真空蒸着膜を高い温度で熱処理
する必要がある。しかし、Ni−Pから構成される膜
は、300℃以上に熱処理温度を上げると結晶化が進
み、切削前に熱処理を行うとダイヤモンドバイトによる
超精密切削では刃物の磨耗の進行が早く良好に切削する
ことができなかった。又、母材の熱膨張係数がNi−P
から構成される膜と大きく違うと昇温後冷却する時点
で、熱収縮量の違いからクラックが発生するという問題
点があった。
However, in the above-mentioned conventional example, it is possible when the molding temperature is 200 ° C. or less like plastic, but in the press molding of glass, it is necessary to obtain high-temperature durability. It is necessary to heat-treat a vacuum deposited film made of Ni-P as a processing layer at a high temperature. However, when the heat treatment temperature is raised to 300 ° C. or higher, the crystallization of the film composed of Ni—P proceeds. I couldn't. Further, the thermal expansion coefficient of the base material is Ni-P
If the film is significantly different from the film composed of, there is a problem that cracks occur due to a difference in the amount of heat shrinkage when cooling after heating.

【0004】従って、本発明の目的は、高温で成形され
るガラス光学素子の金型を精密な形状に加工することが
でき、かつ、クラックの無い金型を提供することにある
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a mold for a glass optical element which can be formed at a high temperature into a precise shape and has no cracks.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に、本発明では、熱膨張係数が10×10−6〜16×
10−6である型母材上にNi−Pから構成される加工
層をダイヤモンドバイトを用いた超精密切削により光学
面形状を所望の精度に仕上げ加工をした後に、成形温度
より10度以上高い温度で400℃〜500℃の温度範
囲で熱処理を行う工程を有することを特徴とするガラス
光学素子成形金型の製造方法である。
According to the present invention, a thermal expansion coefficient of the present invention is 10 × 10 −6 to 16 ×.
After finishing a working layer made of Ni-P on a mold base material of 10-6 by ultra-precision cutting using a diamond bite to a desired precision of the optical surface shape, it is higher than the forming temperature by 10 degrees or more. A method for producing a glass optical element molding die, comprising a step of performing a heat treatment at a temperature in the range of 400 ° C. to 500 ° C.

【0006】又、上記方法で形成された成形面に窒化物
もしくは炭化物セラミックス等からなる中間層と、その
上面にDLC膜(ダイヤモンドライクカーボン膜)の離
型層をもうけ、成形温度が390℃〜490℃の範囲の
ガラスを成形することを特徴とするガラス光学素子の成
形方法である。
Further, an intermediate layer made of nitride or carbide ceramics and the like and a release layer of a DLC film (diamond-like carbon film) are provided on the molding surface formed by the above method, and the molding temperature is 390 ° C. A method for forming a glass optical element, comprising forming a glass at a temperature of 490 ° C.

【0007】[0007]

【発明の実施の形態】(金型製作)図5に示すように、
光学素子成形面の形状要求精度(曲率半径20mmの凹
面形状)から±10μm以内に加工された成形面41を
もつ、鉄を主成分とした熱膨張係数が13×10−6
ある熱処理された鉄系合金型母材42の前記成形面に、
加工層としてNi−Pから構成されるスパッタリング膜
を膜厚50μm付けた金型を20型準備した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Mold Production) As shown in FIG.
Heat-treated with a thermal expansion coefficient of 13 × 10 −6 , mainly composed of iron, having a molding surface 41 processed within ± 10 μm from the required shape accuracy of the optical element molding surface (a concave shape having a radius of curvature of 20 mm). On the molding surface of the iron-based alloy mold base material 42,
Twenty molds each having a 50 μm-thick sputtering film made of Ni—P as a processing layer were prepared.

【0008】そのうち、10型はそのまま単結晶精密ダ
イヤモンドバイトで形状要求精度から±0.1μm以内
の精密切削加工をして、他の10型は450℃/1時
間、非酸化性雰囲気中で熱処理後に前記同様の精密切削
加工をした。その時の、ダイヤモンドバイトの摩耗状態
及び加工された加工層の表面状態を観察した。加工結果
を表1に示す。
[0008] Of these, type 10 is a single-crystal precision diamond tool as it is, and is subjected to precision cutting within ± 0.1 µm from the required shape accuracy, and the other type 10 is heat-treated at 450 ° C for 1 hour in a non-oxidizing atmosphere. Later, the same precision cutting as described above was performed. At that time, the abrasion state of the diamond bite and the surface state of the processed layer were observed. Table 1 shows the processing results.

【0009】[0009]

【表1】無電解ニッケルメッキの切削加工結果 [Table 1] Cutting results of electroless nickel plating

【0010】表1からわかるように、熱処理無しのNi
−Pから構成されるスパッタリング加工層の加工では1
型目も10型目も加工されたスパッタリング加工層の表
面粗さは良好でダイヤモンドバイトの摩耗も発生しなか
った。しかし、450℃/1時間の熱処理をした前記ス
パッタリング加工層の加工では1型目はバイト摩耗は発
生しなかったが、表面粗さは熱処理していない型に比べ
てわずかに粗くなった。さらに10型目ではバイト摩耗
が発生して表面粗さも極端に劣化した。原因は、450
℃/1時間熱処理によりNi−Pから構成されるスパッ
タリング加工層のNiが桔晶化したためと考えられる。
図3に熱処理の有無によるNi−Pから構成されるスパ
ッタリング加工層の結晶化の様子をX線回折分析結果で
示す。図3より熱処理無しではNiの結晶化は見られな
いが、450℃/1時間熱処理でNi(200)の鋭い
ピーク、すなわち結晶化が認められた。
As can be seen from Table 1, Ni without heat treatment was used.
1 in the processing of the sputtering layer composed of -P
The surface roughness of the sputtered layer on which both the pattern and the pattern 10 were processed was good, and abrasion of the diamond bite did not occur. However, in the processing of the sputtered layer subjected to the heat treatment at 450 ° C. for 1 hour, the first mold did not suffer from bite wear, but the surface roughness was slightly coarser than that of the unheated mold. Further, in the tenth type, tool wear occurred and the surface roughness was extremely deteriorated. Cause is 450
This is probably because Ni of the sputtering layer composed of Ni-P was crystallized by the heat treatment at ℃ / 1 hour.
FIG. 3 shows the result of X-ray diffraction analysis of the state of crystallization of the sputtering layer composed of Ni—P with or without heat treatment. 3, no crystallization of Ni was observed without heat treatment, but a sharp peak of Ni (200), that is, crystallization was observed after heat treatment at 450 ° C. for 1 hour.

【0011】次ぎに、前記の熱処理しないで切削加工し
た金型と熱処理後切削加工した金型を450℃/1時
間、非酸化性雰囲気中で熱処理して、面形状と表面粗さ
の変化および膜剥離の有無を確認した。その結果、どち
らの型とも面形状変化(図4参照)、表面粗さの変化と
もに認められなかった。また、膜剥離も認められなかっ
た。
Next, the mold cut without heat treatment and the mold cut after heat treatment are heat-treated at 450 ° C. for 1 hour in a non-oxidizing atmosphere to change the surface shape and the surface roughness. The presence or absence of film peeling was confirmed. As a result, neither a change in the surface shape (see FIG. 4) nor a change in the surface roughness was observed for either type. Also, no film peeling was observed.

【0012】前記2通りの方法で製作した金型でガラス
成形をする準備として、前記金型のガラス成形面、すな
わち前記スパッタリング加工層の精密切削加工面に真空
蒸着法によリTiNを1μm形成し、その上にDLC膜
を0.5μm形成した。ここで、前記2種類の薄膜形成
による面形状の狂いは、認められなかった。前記方法で
製作した本発明のガラス成形用金型の構成図を図1に、
製作手順を図2に示す。図1において、11はDLC
膜、12はTiN膜、13は精密切削されたスパッタリ
ング加工層、14は型母材である。以上述べてきた、2
種類の金型処理方法を表2に示す。
In preparation for forming a glass with the mold manufactured by the above two methods, 1 μm of TiN is formed on the glass forming surface of the mold, that is, the precision cut surface of the sputtering layer by a vacuum evaporation method. Then, a DLC film was formed thereon by 0.5 μm. Here, no deviation in the surface shape due to the formation of the two types of thin films was observed. FIG. 1 is a configuration diagram of the glass molding die of the present invention manufactured by the above method.
The manufacturing procedure is shown in FIG. In FIG. 1, 11 is a DLC
Reference numeral 12 denotes a TiN film, 13 denotes a precision-cut sputtering layer, and 14 denotes a mold base material. As mentioned above,
Table 2 shows the types of mold processing methods.

【0013】[0013]

【表2】ガラス成形用金型製作方法 [Table 2] Manufacturing method of glass molding die

【0014】(成形テスト)前記2通りの方法で製作し
たそれぞれの型で成形温度が400℃のガラスで連続1
00回の成形テストをして、型変形、表面状態、膜剥
離、成形品表面状態をチェックした。
(Molding test) Each mold manufactured by the two methods described above was continuously used with glass having a molding temperature of 400 ° C.
A molding test was performed 00 times to check the mold deformation, surface condition, film peeling, and molded product surface condition.

【0015】ここで連続成形の成形状態の概略図を図6
に示す。51、52は曲率半径20mmの上型および下
型である。53は、所望の体積に調整してある球形状の
ガラス素材である。54は、上型が取り付けてあるプレ
ス軸であり、200Kgfの荷重でプレスできるように
なっている。さらに、図示しないヒーター、ガラス素材
及び成形品ストッカー及びハンドリング機構を備えてお
り、下型成形面上にガラス素材をハンドで供給、加熱し
て、400℃で5分間プレスした後、300℃で離型し
て成形品をハンドで排出する。この工程を100回繰り
返した。表3は、前記連続100回の成形テスト結果で
ある。
FIG. 6 is a schematic view of a molding state of the continuous molding.
Shown in Reference numerals 51 and 52 denote an upper die and a lower die having a radius of curvature of 20 mm. 53 is a spherical glass material adjusted to a desired volume. Reference numeral 54 denotes a press shaft to which the upper die is attached, which can be pressed with a load of 200 kgf. Furthermore, a heater, a glass material, a molded product stocker, and a handling mechanism (not shown) are provided. The glass material is manually supplied to the lower mold forming surface, heated, pressed at 400 ° C. for 5 minutes, and then released at 300 ° C. Mold and discharge the molded product by hand. This step was repeated 100 times. Table 3 shows the results of the molding test 100 times in succession.

【0016】[0016]

【表3】ガラス連続成形結 [Table 3] Continuous glass forming

【0017】表3からわかるように、本発明の型、比較
用型ともに連続成形による劣化、すなわち型成形面形状
変化、表面粗さの増加、スパッタリング膜の剥離亀裂な
どの発生は認められなかった。しかしながら、前述した
ように比較用型の表面粗さは50nmであり、この粗さ
がそのまま成形品に転写して成形品の粗さも50nmの
うすぐもり状態であり、光学素子の実用に耐えるレベル
の20nmよりも粗く、実用に耐えられない成形品とな
った。
As can be seen from Table 3, neither the mold of the present invention nor the comparative mold was deteriorated by continuous molding, that is, no change in the shape of the molded surface, an increase in surface roughness, the occurrence of peeling cracks in the sputtered film, and the like were not observed. . However, as described above, the surface roughness of the comparative mold is 50 nm, and this roughness is directly transferred to a molded product, and the molded product has a 50 nm swirling state. The molded product was coarser than 20 nm and could not withstand practical use.

【0018】一方、本発明の型による成形品は100シ
ョット目でも表面粗さが10nmであり十分実用に耐え
ることができた。
On the other hand, the molded product of the mold of the present invention had a surface roughness of 10 nm even at the 100th shot, and was sufficiently practical.

【0019】[0019]

【発明の効果】以上述べてきたように、熱膨張係数が1
0×10−6〜16×10−6の超硬合金、サーメッ
ト、セラミツクス、鉄系合金等の母材上に切削加工層と
してNiとPから構成されるスパッタリングもしくはイ
オンプレーティングによる蒸着層をもうけ、前記切削加
工層をダイヤモンドバイトを用いた超精密切削により光
学面形状を所望の精度に仕上げ加工後、成形温度より1
0度以上高い温度で熱処理をして、さらに前記光学面、
すなわち成形面に窒化物もしくは炭化物セラミックス等
からなる中間層と、その上面にDLC膜(ダイヤモンド
状炭素膜)の離型層をもうけたガラス光学素子成形用金
型を用いて、成形温度が390℃〜490℃の範囲のガ
ラス光学素子を成形したところ、連続成形においても十
分実用に耐えうる光学素子が成形できた。
As described above, the thermal expansion coefficient is 1
On a base material of 0 × 10 −6 to 16 × 10 −6 , such as cemented carbide, cermet, ceramics, iron-based alloy, etc., a deposition layer formed by Ni or P is formed by sputtering or ion plating as a cutting layer. After finishing the optical surface shape to a desired accuracy by ultra-precision cutting using a diamond bite, the cutting layer is heated at a molding temperature of 1%.
Heat-treated at a temperature higher than 0 degrees, furthermore the optical surface,
That is, a molding temperature of 390 ° C. is used by using a glass optical element molding die having an intermediate layer made of nitride or carbide ceramics on the molding surface and a release layer of a DLC film (diamond-like carbon film) on the upper surface. When a glass optical element in the range of -490 ° C was molded, an optical element that could withstand practical use in continuous molding could be molded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるガラス成形用金型の構成図であ
る。
FIG. 1 is a configuration diagram of a glass molding die according to the present invention.

【図2】本発明によるガラス成形用金型の製作手順を示
す図である。
FIG. 2 is a view showing a manufacturing procedure of a glass molding die according to the present invention.

【図3】NiとPから構成されるスパッタリング膜のX
線回折分析結果である。
FIG. 3 shows a X of a sputtering film composed of Ni and P
It is a line diffraction analysis result.

【図4】熱処理前後の面形状の変化を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing a change in surface shape before and after heat treatment.

【図5】母材上に精密切削されたスパッタリング加工層
を持つ金型を示す図である。
FIG. 5 is a view showing a metal mold having a precision-cut sputtering layer on a base material.

【図6】連続成形状態の概略図である。FIG. 6 is a schematic view of a continuous molding state.

【符号の説明】[Explanation of symbols]

11 DLC膜 12 TiN膜 13 精密切削されたスパッタリング加工層 14 型母材 42 鉄系合金母材 43 精密切削されたスパッタリング加工層 51 曲率半径20mmの上型 52 曲率半径20mmの下型 53 球形状のガラス素材 54 上型が取り付けてあるプレス軸 DESCRIPTION OF SYMBOLS 11 DLC film 12 TiN film 13 Precisely cut sputtering layer 14 Mold base material 42 Iron-based alloy base material 43 Precisely cut sputtering processed layer 51 Upper die having a radius of curvature of 20 mm 52 Lower die having a radius of curvature of 20 mm 53 Spherical shape Glass material 54 Press shaft with upper die attached

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 NiとPから構成される加工層を真空蒸
着法により形成するガラス光学素子成形用金型の製造方
法において、前記加工層を切削加工により所望の形状精
度の光学面に加工した後に、成形温度より10℃以上高
く、400℃・500℃の範囲で熱処理を行なうことを
特徴とするガラス光学素子成形用金型の製造方法。
In a method for manufacturing a glass optical element molding die in which a processing layer composed of Ni and P is formed by a vacuum deposition method, the processing layer is processed into an optical surface having a desired shape accuracy by cutting. A method for producing a mold for molding glass optical elements, wherein heat treatment is performed at a temperature higher than the molding temperature by 10 ° C. or more and 400 ° C./500° C.
【請求項2】 上記加工層の母材として超硬合金、サー
メット、セラミックス、鉄系合金等の材料で熱膨張係数
が10×10−6〜16×10−6であることを特徴と
するガラス光学素子成形用金型の製造方法。
2. A glass characterized by having a thermal expansion coefficient of 10 × 10 −6 to 16 × 10 −6, which is a material such as cemented carbide, cermet, ceramics, iron-based alloy or the like as a base material of the processed layer. A method for manufacturing a mold for molding an optical element.
【請求項3】 上記方法で加工された光学面に窒化物も
しくは炭化物セラミックス等からなる中間層と、その上
面にDLC膜(ダイヤモンド状炭素膜)の離型層をもう
け、成形温度が390℃〜490℃の範囲のガラスを成
形するガラス光学素子の成型方法。
3. An optical layer processed by the above method is provided with an intermediate layer made of nitride or carbide ceramics, and a release layer of a DLC film (diamond-like carbon film) on the upper surface thereof. A method for molding a glass optical element for molding glass in the range of 490 ° C.
JP2001156348A 2001-05-25 2001-05-25 Method for manufacturing molding die for optical glass element and method for molding optical glass element Withdrawn JP2002348129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001156348A JP2002348129A (en) 2001-05-25 2001-05-25 Method for manufacturing molding die for optical glass element and method for molding optical glass element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001156348A JP2002348129A (en) 2001-05-25 2001-05-25 Method for manufacturing molding die for optical glass element and method for molding optical glass element

Publications (1)

Publication Number Publication Date
JP2002348129A true JP2002348129A (en) 2002-12-04

Family

ID=19000370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001156348A Withdrawn JP2002348129A (en) 2001-05-25 2001-05-25 Method for manufacturing molding die for optical glass element and method for molding optical glass element

Country Status (1)

Country Link
JP (1) JP2002348129A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7290751B2 (en) * 2005-06-24 2007-11-06 Hon Hai Precision Industry Co., Ltd. Composite mold and method for manufacturing the same
WO2008126645A1 (en) * 2007-04-10 2008-10-23 Toshiba Kikai Kabushiki Kaisha Glass forming mold and method for producing the same
JP2008280236A (en) * 2007-04-10 2008-11-20 Toshiba Mach Co Ltd A glass forming mold and its manufacturing method
JP2009215156A (en) * 2008-02-15 2009-09-24 Toshiba Mach Co Ltd Glass forming mold and method for producing the same
US8206518B2 (en) 2005-06-24 2012-06-26 Toshiba Kakai Kabushiki Kaisha Die for press forming of glass and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7290751B2 (en) * 2005-06-24 2007-11-06 Hon Hai Precision Industry Co., Ltd. Composite mold and method for manufacturing the same
CN100581773C (en) * 2005-06-24 2010-01-20 鸿富锦精密工业(深圳)有限公司 Die cavity and its preparing method
US8206518B2 (en) 2005-06-24 2012-06-26 Toshiba Kakai Kabushiki Kaisha Die for press forming of glass and manufacturing method thereof
WO2008126645A1 (en) * 2007-04-10 2008-10-23 Toshiba Kikai Kabushiki Kaisha Glass forming mold and method for producing the same
JP2008280236A (en) * 2007-04-10 2008-11-20 Toshiba Mach Co Ltd A glass forming mold and its manufacturing method
US7966845B2 (en) 2007-04-10 2011-06-28 Toshiba Kikai Kabushiki Kaisha Glass-shaping mold and method for manufacturing the same
KR101073717B1 (en) 2007-04-10 2011-10-13 도시바 기카이 가부시키가이샤 Glass forming mold and method for producing the same
DE112008000947B4 (en) * 2007-04-10 2012-01-19 Toshiba Kikai K.K. Glass forming mold
JP2009215156A (en) * 2008-02-15 2009-09-24 Toshiba Mach Co Ltd Glass forming mold and method for producing the same

Similar Documents

Publication Publication Date Title
KR900000622B1 (en) Method for forming of optical glass element
CN111825311A (en) Micro-nano hot-press molding process for optical glass array lens
JP2002348129A (en) Method for manufacturing molding die for optical glass element and method for molding optical glass element
JPH11157852A (en) Manufacture of mold for forming glass optical element and forming method of glass optical element, using the same mold manufactured therewith
JP3273921B2 (en) Mold for glass optical element, method for manufacturing glass optical element, and method for reproducing mold
CN112062450B (en) Preparation method of amorphous glass hot-pressing mold and hot-pressing mold
JPH11268920A (en) Forming mold for forming optical element and its production
JP2003277078A (en) Die for glass molding and method for manufacturing the sane, method for manufacturing glass optical element, glass optical element and diffraction optical element
JP2002274865A (en) Glass optical element forming die, method of manufacturing for the same and method of forming glass optical element
JPH11268921A (en) Press mold for forming glass
JPH11246229A (en) Mold for molding optical element
JPH0451495B2 (en)
JP3199825B2 (en) Optical element molding method
JP2004210550A (en) Molding mold
TWI329620B (en) Mold for molding glass optical articles
JP2003146690A (en) Mold for forming glass substrate, method of manufacturing the same and method of forming glass substrate
JP2800385B2 (en) Optical element mold
JPH01145342A (en) Production of optical element
JPH0747493B2 (en) Optical glass element molding die, method for producing the same, and method for producing optical glass element
JP2003048723A (en) Press forming method and press formed equipment
JP2003026430A (en) Mold for molding high-precision prism, method for manufacturing the same and method for manufacturing high-precision prism
JP2004026607A (en) Glass mold and method for manufacturing the same
JPS60180926A (en) Mold for press-molding highly accurate glass molded article
JP2007137724A (en) Glass-made mold
JPH03271125A (en) Mold for molding glass

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805