JPH11157852A - Manufacture of mold for forming glass optical element and forming method of glass optical element, using the same mold manufactured therewith - Google Patents

Manufacture of mold for forming glass optical element and forming method of glass optical element, using the same mold manufactured therewith

Info

Publication number
JPH11157852A
JPH11157852A JP31811497A JP31811497A JPH11157852A JP H11157852 A JPH11157852 A JP H11157852A JP 31811497 A JP31811497 A JP 31811497A JP 31811497 A JP31811497 A JP 31811497A JP H11157852 A JPH11157852 A JP H11157852A
Authority
JP
Japan
Prior art keywords
optical element
forming
mold
glass optical
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31811497A
Other languages
Japanese (ja)
Inventor
Masaaki Yokota
正明 横田
Norihisa Saito
憲久 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31811497A priority Critical patent/JPH11157852A/en
Publication of JPH11157852A publication Critical patent/JPH11157852A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/11Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/16Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/31Two or more distinct intermediate layers or zones
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/34Intermediate layers, e.g. graded zone of base/top material of ceramic or cermet material, e.g. diamond-like carbon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Chemically Coating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the manufacture of a metallic mold used for high temp. press forming of a glass optical element, which enables the working of a mold material into the objective mold having a precise shape without causing any cracks in the mold and also to provide the press forming method of a glass optical element, using the mold thus manufactured. SOLUTION: This manufacture of the metallic mold comprises: a stage for forming an electroless nickel-plated layer consisting of Ni and P as a layer to be subjected to cutting, on a base material selected from cemented carbides, cermets, ceramics and iron base alloys and subjecting this layer to ultraprecision cutting with a diamond cutting tool to perform finish working of an optical surface shape with desired accuracy; and another stage for performing heat treatment of the resulting forming surface of the mold after the finish working. This forming method of a glass optical element comprises: forming an intermediate layer consisting of a nitride or carbide ceramic material on the forming surface of the mold; further forming a release layer consisting of a DLC(diamond-like carbon) film on the upper surface of the intermediate layer; and forming the glass optical element at a 390 to 490 deg.C forming temp.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガラス光学素子のプ
レス成形用金型の製造方法、及び、ガラス光学素子のプ
レス成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a mold for press-molding a glass optical element and a method for press-molding a glass optical element.

【0002】[0002]

【従来の技術】従来、プラスチックレンズの成形におい
ては、成形用金型として、超精密切削が可能なNiとP
からなる無電解ニッケルメッキの層をダイヤモンドバイ
トによる切削によって光学鏡面を加工することが一般的
である。この場合は成形温度が200℃以下であるた
め、切削前に200〜250℃の範囲で熱処理を行って
いた。
2. Description of the Related Art Conventionally, in the molding of plastic lenses, Ni and P capable of ultra-precision cutting have been used as molding dies.
An optical mirror surface is generally processed by cutting a layer of electroless nickel plating made of diamond with a diamond tool. In this case, since the molding temperature is 200 ° C. or less, the heat treatment was performed in the range of 200 to 250 ° C. before cutting.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来例では、プラスチックのように成形温度が200℃以
下である場合においては可能であるが、ガラスのプレス
成形においては、高い温度での熱処理が必要である。し
かし、無電解ニッケルメッキは、300℃以上に熱処理
温度を上げると結晶化が進み切削前に熱処理を行うと、
ダイヤモンドバイトによる超精密切削では刃物の摩耗の
進行が速く良好に切削することができなかった。また、
母材の熱膨張係数が無電解ニッケルメッキと大きく違う
と、昇温後冷却する時点で、熱収縮量の違いからクラッ
クが発生するという問題点があった。
However, in the above conventional example, it is possible when the molding temperature is 200 ° C. or less, such as plastics, but heat treatment at a high temperature is necessary in press molding of glass. It is. However, when the heat treatment temperature is raised to 300 ° C. or higher, the crystallization of the electroless nickel plating proceeds, and if the heat treatment is performed before cutting,
In ultra-precision cutting with a diamond bite, the wear of the cutting tool progressed quickly and it was not possible to cut well. Also,
If the coefficient of thermal expansion of the base material is significantly different from that of electroless nickel plating, there is a problem that cracks occur due to the difference in the amount of heat shrinkage at the time of cooling after heating.

【0004】従って、本発明の目的は、高温で成形され
るガラス光学素子に用いる金型を精密な形状にかつクラ
ックを生じさせないで加工することができるプレス成形
用金型の製造方法、及び、該型を用い連続成形において
も面形状精度及び表面粗さに優れたガラス光学素子が得
られるプレス成形方法を提供することにある。
Accordingly, an object of the present invention is to provide a method of manufacturing a press molding die capable of processing a mold used for a glass optical element molded at a high temperature into a precise shape without causing cracks, and An object of the present invention is to provide a press molding method capable of obtaining a glass optical element having excellent surface shape accuracy and surface roughness even in continuous molding using the mold.

【0005】[0005]

【課題を解決するための手段】本発明は、 1.NiとPからなる無電解ニッケルメッキ層をダイヤ
モンドバイトを用いた超精密切削により光学面形状を所
望の精度に仕上げ加工する工程と、加工後熱処理を行う
工程を有する 2.上記母材の熱膨張係数が10×10-6〜16×10
-6である 3.上記熱処理温度が成形温度より10度以上高い温度
である 4.上記熱処理温度が400〜500℃の範囲である ことを特徴とするガラス光学素子成形用金型の製造方法
である。また、 1.NiとPからなる無電解ニッケルメッキ層をダイヤ
モンドバイトを用いた超精密切削により光学面形状を所
望の精度に仕上げ加工する工程と、加工後熱処理を行う
工程により製作された成形用金型の成形面に、窒化物ま
たは炭化物セラミックス等からなる中間層と、その上面
にDLC膜(ダイヤモンド状炭素膜、ダイヤモンドライ
クカーボン膜)からなる離型層を設け、成形温度が39
0℃〜490℃の範囲のガラスを成形する 2.上記母材の熱膨張係数が10×10-6〜16×10
-6である 3.上記熱処理温度が成形温度より10度以上高い温度
である 4.上記熱処理温度が400〜500℃の範囲である ことを特徴とするガラス光学素子の成形方法である。
The present invention provides: 1. A step of finishing the optical surface shape to a desired accuracy by ultra-precision cutting using a diamond bite on the electroless nickel plating layer made of Ni and P, and a step of performing a heat treatment after the processing. The thermal expansion coefficient of the base material is 10 × 10 -6 to 16 × 10
-6 . 3. The heat treatment temperature is at least 10 degrees higher than the molding temperature. A method for producing a glass optical element molding die, wherein the heat treatment temperature is in the range of 400 to 500 ° C. Also, 1. Forming a molding die manufactured by a process of finishing the optical surface shape to the desired accuracy by ultra-precision cutting using a diamond bite on an electroless nickel plating layer composed of Ni and P, and a process of performing a heat treatment after the process. An intermediate layer made of nitride or carbide ceramics and the like, and a release layer made of a DLC film (diamond-like carbon film, diamond-like carbon film) are provided on the upper surface.
1. Form glass in the range of 0 ° C. to 490 ° C. The thermal expansion coefficient of the base material is 10 × 10 -6 to 16 × 10
-6 . 3. The heat treatment temperature is at least 10 degrees higher than the molding temperature. A method for forming a glass optical element, wherein the heat treatment temperature is in the range of 400 to 500 ° C.

【0006】[0006]

【発明の実施の形態】[金型製作]図4に示すように、
光学素子成形面の設計形状精度(曲率半径20mmの凹
面形状)から±10μm以内に加工された成形面41を
持つ、鉄を主成分とした熱膨張係数が13×10-6であ
る熱処理された鉄系合金型母材42の前記成形面に、加
工層としてNiとPからなる無電解ニッケルメッキ層4
3をメッキ厚50μmに付けた金型を総計20型準備し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [Mold Production] As shown in FIG.
Heat-treated with a thermal expansion coefficient of 13 × 10 −6 mainly composed of iron, having a molding surface 41 processed within ± 10 μm from the design shape accuracy of the optical element molding surface (concave shape with a radius of curvature of 20 mm). An electroless nickel plating layer 4 made of Ni and P is formed on the molding surface of the iron-based alloy type base material 42 as a processing layer.
A total of 20 molds each having No. 3 having a plating thickness of 50 μm were prepared.

【0007】そのうち、10型はそのまま単結晶精密ダ
イヤモンドバイトで設計形状精度から±0.1μm以内
の精密切削加工をし、他の10型は450℃/1時間、
非酸化性雰囲気中で熱処理した後に前記同様の精密切削
加工をした。その時の、ダイヤモンドバイトの摩耗状態
及び加工されたメッキ層の表面状態を観察した。加工結
果を表1に示す。
[0007] Of these, type 10 is a single-crystal precision diamond bit as it is, and is subjected to precision cutting within ± 0.1 µm from the design shape accuracy, and the other type 10 is 450 ° C / 1 hour.
After heat treatment in a non-oxidizing atmosphere, precision cutting similar to that described above was performed. At that time, the state of wear of the diamond bite and the surface state of the processed plating layer were observed. Table 1 shows the processing results.

【0008】 [0008]

【0009】表1から分るように、熱処理無しの前記無
電解ニッケルメッキ層の加工では1型目も10型目も加
工されたメッキ層の表面粗さは良好でダイヤモンドバイ
トの摩耗も発生しなかった。しかし、450℃/1時間
の熱処理をした前記電解ニッケルメッキ層の加工では1
型目はバイト摩耗は発生しなかったが、表面粗さは熱処
理していない型に比べてわずかに粗くなった。更に、1
0型目ではバイト摩耗が発生して表面粗さも極端に劣化
した。原因は、450℃/1時間熱処理により無電解ニ
ッケルメッキ層のNiが結晶化したためと考えられる。
図3に熱処理の有無による前記無電解ニッケルメッキ層
の結晶化の様子をX線回折分析結果で示す。図3より熱
処理無しではNiの結晶化は見られないが、450℃/
1時間熱処理でNi(200)の鋭いピークすなわち結
晶化が認められた。
As can be seen from Table 1, in the processing of the electroless nickel plating layer without heat treatment, the surface roughness of the plated layer processed in both the first type and the tenth type is good, and abrasion of the diamond tool occurs. Did not. However, in the processing of the electrolytic nickel plating layer subjected to the heat treatment at 450 ° C. for one hour,
No die wear occurred on the mold, but the surface roughness was slightly coarser than that of the unheated mold. Furthermore, 1
In the 0-th type, bite wear occurred and the surface roughness was extremely deteriorated. It is considered that the cause was that Ni of the electroless nickel plating layer was crystallized by the heat treatment at 450 ° C. for one hour.
FIG. 3 shows the result of X-ray diffraction analysis of the state of crystallization of the electroless nickel plating layer with or without heat treatment. FIG. 3 shows that no crystallization of Ni was observed without heat treatment, but at 450 ° C. /
A sharp peak of Ni (200), that is, crystallization was observed after the heat treatment for 1 hour.

【0010】次に、前記の熱処理しないで切削加工した
金型と熱処理後切削加工した金型を450℃/1時間、
非酸化性雰囲気中で熱処理して、面形状と表面粗さの変
化及び膜剥離の有無を確認した。その結果、どちらの型
とも面形状変化(表4)、表面粗さの変化のいずれも認
められなかった。また、膜剥離も認められなかった。
Next, the die cut without heat treatment and the die cut after heat treatment were placed at 450 ° C. for 1 hour.
Heat treatment was performed in a non-oxidizing atmosphere, and changes in surface shape and surface roughness and the presence or absence of film peeling were confirmed. As a result, neither the surface shape change (Table 4) nor the surface roughness change was observed in both types. Also, no film peeling was observed.

【0011】前記2通りの方法で製作した金型でガラス
成形をする準備として、前記金型のガラス成形面すなわ
ち前記無電解ニッケルメッキの精密切削加工面に真空蒸
着法によりTiNを1μm形成し、その上にDLC膜を
0.5μm形成した。ここで、前記2種類の薄膜形成に
よる面形状の狂いは、認められなかった。前記方法で製
作した本発明のガラス成形用金型の構成図を図1に、製
作手順を図2に示す。図1において、11はDLC膜、
12はTiN膜、13は精密切削された無電解ニッケル
メッキ層、14は型母材である。
In preparation for forming a glass with the mold manufactured by the above two methods, 1 μm of TiN is formed on a glass forming surface of the mold, that is, a precision cut surface of the electroless nickel plating by a vacuum evaporation method. A 0.5 μm DLC film was formed thereon. Here, no deviation in the surface shape due to the formation of the two types of thin films was observed. FIG. 1 is a structural view of the glass molding die of the present invention manufactured by the above method, and FIG. 2 shows a manufacturing procedure. In FIG. 1, 11 is a DLC film,
12 is a TiN film, 13 is a precision-cut electroless nickel plating layer, and 14 is a mold base material.

【0012】以上述べてきた、2種類の金型製作方法を
表2に示す。
Table 2 shows the two types of mold manufacturing methods described above.

【0013】 [0013]

【0014】[成形テスト]前記2通りの方法で製作し
たそれぞれの型を用い、成形温度が400℃のガラスで
連続100回の成形テストをして、型変形、表面状態、
膜剥離、成形品表面状態をチェックした。
[Molding Test] Using each of the molds manufactured by the above two methods, a molding test was performed 100 times continuously with glass having a molding temperature of 400 ° C.
Film peeling and surface condition of the molded product were checked.

【0015】ここで、連続成形の成形状態の概略図を図
5に示す。51,52は曲率半径20mmの上型及び下
型。53は所望の体積に調整してある球形状のガラス素
材。54は上型が取り付けてあるプレス軸であり、20
0Kgfの荷重でプレスできるようになっている。更
に、図示しないヒーター、ガラス素材及び成形品ストッ
カー及びハンドリング機構を備えており、下型成形面上
にガラス素材をハンドで供給、加熱して、400℃で5
分間プレス後、300℃で離型して成形品をハンドで排
出する。この工程を100回繰り返した。
Here, FIG. 5 is a schematic diagram showing a molding state of the continuous molding. 51 and 52 are an upper die and a lower die having a radius of curvature of 20 mm. 53 is a spherical glass material adjusted to a desired volume. Reference numeral 54 denotes a press shaft to which the upper die is attached,
It can be pressed with a load of 0 kgf. Furthermore, a heater, a glass material, a molded product stocker, and a handling mechanism (not shown) are provided, and the glass material is manually supplied to the lower mold forming surface, heated, and heated at 400 ° C. for 5 minutes.
After pressing for 300 minutes, the mold is released at 300 ° C. and the molded product is discharged by hand. This step was repeated 100 times.

【0016】表3は、前記連続100ショットの成形テ
スト結果である。
Table 3 shows the results of the molding test for 100 consecutive shots.

【0017】 [0017]

【0018】表3から分るように、本発明の型、比較用
型共に連続成形による劣化、すなわち型成形面の形状変
化、表面粗さの増加、メッキ膜の剥離、亀裂などの発生
は認められなかった。しかしながら、前述したように比
較用型の表面粗さは50nmであり、この粗さがそのま
ま成形品に転写して成形品の粗さも50nmのうすぐも
り状態であり、光学素子の実用に耐えるレベルの20n
mよりも粗く、実用に耐えられない成形品となった。
As can be seen from Table 3, deterioration of the mold of the present invention and the comparative mold due to continuous molding, that is, a change in the shape of the molding surface, an increase in surface roughness, peeling of the plating film, cracks, etc. are recognized. I couldn't. However, as described above, the surface roughness of the comparative mold is 50 nm, and this roughness is directly transferred to a molded product, and the molded product has a 50 nm swirling state. 20n
The molded product was coarser than m and could not withstand practical use.

【0019】一方、本発明の型による成形品は100シ
ョット目でも表面粗さが10nmであり十分実用に耐え
ることができた。
On the other hand, the molded product of the mold of the present invention had a surface roughness of 10 nm even at the 100th shot, and was sufficiently practical.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】以上述べてきたように、本発明によれ
ば、高温で成形されるガラス光学素子に用いる金型を精
密な形状にかつクラックを生じさせないで加工すること
ができ、該型を用いたガラス光学素子のプレス成形方法
により連続成形においても面形状精度及び表面粗さに優
れたガラス光学素子を成形できた。
As described above, according to the present invention, a mold used for a glass optical element molded at a high temperature can be processed into a precise shape without causing cracks. The glass optical element excellent in surface shape accuracy and surface roughness was able to be formed even in continuous molding by the press molding method of the glass optical element used.

【0022】好ましくは、熱膨張係数が10×10-6
16×10-6の超硬合金、サーメット、セラミックス及
び鉄系合金から選ばれた母材上に切削加工層としてNi
とPからなる無電解ニッケルメッキ層を設け、前記切削
加工層をダイヤモンドバイトを用いた超精密切削により
光学面形状を所望の精度に仕上げ加工後、成形温度より
10度以上高い温度で熱処理をして、更に前記光学面す
なわち成形面に窒化物または炭化物セラミックス等から
なる中間層と、その上面にDLC膜からなる離型層を設
けたガラス光学素子成形用金型を用いて、成形温度が3
90〜490℃の範囲のガラス光学素子を成形したとこ
ろ、連続成形においても十分実用に耐え得る光学素子が
成形できた。
Preferably, the coefficient of thermal expansion is from 10 × 10 -6 to
Ni as a cutting layer on a base material selected from 16 × 10 -6 cemented carbide, cermet, ceramics and iron-based alloy
And an electroless nickel plating layer made of P, and finishing the optical surface shape to a desired accuracy by ultra-precision cutting using a diamond tool on the cutting layer, and then performing a heat treatment at a temperature higher than the molding temperature by 10 degrees or more. Further, using a mold for molding a glass optical element in which an intermediate layer made of nitride or carbide ceramics or the like is provided on the optical surface, that is, a molding surface, and a release layer made of a DLC film is provided on the upper surface thereof, the molding temperature is 3
When a glass optical element in the range of 90 to 490 ° C. was molded, an optical element that could withstand practical use even in continuous molding could be molded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるガラス成形用金型の構成図。FIG. 1 is a configuration diagram of a glass molding die according to the present invention.

【図2】本発明によるガラス成形用金型の製作手順。FIG. 2 shows a procedure for manufacturing a glass molding die according to the present invention.

【図3】無電解ニッケルメッキのX線回折分析結果。FIG. 3 shows an X-ray diffraction analysis result of electroless nickel plating.

【図4】無電解ニッケルメッキを付けたガラス成形用金
型の構成図。
FIG. 4 is a configuration diagram of a glass forming mold provided with electroless nickel plating.

【図5】連続成形状態の概略図。FIG. 5 is a schematic view of a continuous molding state.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 超硬合金、サーメット、セラミックス及
び鉄系合金からなる群より選ばれた母材上に、切削加工
層としてNiとPからなる無電解ニッケルメッキ層を設
け、前記切削加工層をダイヤモンドバイトを用いた超精
密切削により光学面形状を所望の精度に仕上げ加工する
工程と、加工後熱処理を行う工程を有することを特徴と
するガラス光学素子成形用金型の製造方法。
1. An electroless nickel plating layer made of Ni and P is provided as a cutting layer on a base material selected from the group consisting of cemented carbide, cermet, ceramics, and iron-based alloy. A method for manufacturing a glass optical element molding die, comprising: a step of finishing an optical surface shape to a desired accuracy by ultraprecision cutting using a diamond tool; and a step of performing a heat treatment after the processing.
【請求項2】 上記母材の熱膨張係数が10×10-6
16×10-6であることを特徴とする請求項1記載のガ
ラス光学素子成形用金型の製造方法。
2. The base material has a coefficient of thermal expansion of 10 × 10 −6 or less .
The method for producing a glass optical element molding die according to claim 1, wherein the mold is 16 × 10 −6 .
【請求項3】 上記熱処理温度が成形温度より10度以
上高い温度であることを特徴とする請求項1記載のガラ
ス光学素子成形用金型の製造方法。
3. The method according to claim 1, wherein the heat treatment temperature is at least 10 degrees higher than the molding temperature.
【請求項4】 上記熱処理温度が400〜500℃の範
囲であることを特徴とする請求項1記載のガラス光学素
子成形用金型の製造方法。
4. The method for manufacturing a glass optical element molding die according to claim 1, wherein the heat treatment temperature is in a range of 400 to 500 ° C.
【請求項5】 超硬合金、サーメット、セラミックス及
び鉄系合金からなる群より選ばれた母材上に、切削加工
層としてNiとPからなる無電解ニッケルメッキ層を設
け、前記切削加工層をダイヤモンドバイトを用いた超精
密切削により光学面形状を所望の精度に仕上げ加工する
工程と、加工後熱処理を行う工程により製作された成形
用金型の成形面に、窒化物または炭化物セラミックスか
らなる中間層と、その上面にDLC膜からなる離型層を
設け、成形温度が390〜490℃の範囲のガラスを成
形することを特徴とするガラス光学素子の成形方法。
5. An electroless nickel plating layer made of Ni and P is provided as a cutting layer on a base material selected from the group consisting of a cemented carbide, a cermet, a ceramic and an iron-based alloy. An intermediate surface made of nitride or carbide ceramics is formed on the molding surface of the molding die manufactured by the process of finishing the optical surface shape to the desired accuracy by ultra-precision cutting using a diamond tool and the process of performing heat treatment after processing. A method for forming a glass optical element, comprising: forming a layer and a release layer made of a DLC film on an upper surface thereof;
【請求項6】 上記母材の熱膨張係数が10×10-6
16×10-6であることを特徴とする請求項5記載のガ
ラス光学素子の成形方法。
6. The base material having a coefficient of thermal expansion of 10 × 10 −6 or less .
6. The method for forming a glass optical element according to claim 5, wherein the ratio is 16 × 10 −6 .
【請求項7】 上記熱処理温度が成形温度より10度以
上高い温度であることを特徴とする請求項5記載のガラ
ス光学素子の成形方法。
7. The method for molding a glass optical element according to claim 5, wherein the heat treatment temperature is higher than the molding temperature by 10 degrees or more.
【請求項8】 上記熱処理温度が400〜500℃の範
囲であることを特徴とする請求項5記載のガラス光学素
子の成形方法。
8. The method for forming a glass optical element according to claim 5, wherein the heat treatment temperature is in a range of 400 to 500 ° C.
JP31811497A 1997-11-19 1997-11-19 Manufacture of mold for forming glass optical element and forming method of glass optical element, using the same mold manufactured therewith Pending JPH11157852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31811497A JPH11157852A (en) 1997-11-19 1997-11-19 Manufacture of mold for forming glass optical element and forming method of glass optical element, using the same mold manufactured therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31811497A JPH11157852A (en) 1997-11-19 1997-11-19 Manufacture of mold for forming glass optical element and forming method of glass optical element, using the same mold manufactured therewith

Publications (1)

Publication Number Publication Date
JPH11157852A true JPH11157852A (en) 1999-06-15

Family

ID=18095656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31811497A Pending JPH11157852A (en) 1997-11-19 1997-11-19 Manufacture of mold for forming glass optical element and forming method of glass optical element, using the same mold manufactured therewith

Country Status (1)

Country Link
JP (1) JPH11157852A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089533A (en) * 2001-09-14 2003-03-28 Sumitomo Electric Ind Ltd Molding die for glass lens
WO2006137225A1 (en) 2005-06-24 2006-12-28 Toshiba Kikai Kabushiki Kaisha Metal mold for glass shaping and process for producing the same
WO2008072665A1 (en) * 2006-12-14 2008-06-19 Toshiba Kikai Kabushiki Kaisha Method for producing mold for glass molding
WO2008072664A1 (en) * 2006-12-14 2008-06-19 Toshiba Kikai Kabushiki Kaisha Method for producing mold for glass molding
US7867633B2 (en) 2004-06-07 2011-01-11 Colorado School Of Mines Coatings for glass molding dies and forming tools
US7966845B2 (en) 2007-04-10 2011-06-28 Toshiba Kikai Kabushiki Kaisha Glass-shaping mold and method for manufacturing the same
KR20230033860A (en) * 2021-09-02 2023-03-09 김천기 Method for manufacturing core pin for injection molding of optical lens and core pin manufactured thereby

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089533A (en) * 2001-09-14 2003-03-28 Sumitomo Electric Ind Ltd Molding die for glass lens
JP4622197B2 (en) * 2001-09-14 2011-02-02 住友電気工業株式会社 Glass lens mold
US7867633B2 (en) 2004-06-07 2011-01-11 Colorado School Of Mines Coatings for glass molding dies and forming tools
KR100849270B1 (en) * 2005-06-24 2008-07-29 도시바 기카이 가부시키가이샤 Metal mold for glass shaping and process for producing the same
EP1894895A4 (en) * 2005-06-24 2009-03-04 Toshiba Machine Co Ltd Metal mold for glass shaping and process for producing the same
US8206518B2 (en) 2005-06-24 2012-06-26 Toshiba Kakai Kabushiki Kaisha Die for press forming of glass and manufacturing method thereof
WO2006137225A1 (en) 2005-06-24 2006-12-28 Toshiba Kikai Kabushiki Kaisha Metal mold for glass shaping and process for producing the same
JP2007001822A (en) * 2005-06-24 2007-01-11 Toshiba Mach Co Ltd Mold for molding glass and method of manufacturing the same
EP1894895A1 (en) * 2005-06-24 2008-03-05 Toshiba Kikai Kabushiki Kaisha Metal mold for glass shaping and process for producing the same
DE112007003026T5 (en) 2006-12-14 2009-10-08 Toshiba Kikai K.K. Method for producing a glass mold
WO2008072665A1 (en) * 2006-12-14 2008-06-19 Toshiba Kikai Kabushiki Kaisha Method for producing mold for glass molding
JP2008169107A (en) * 2006-12-14 2008-07-24 Toshiba Mach Co Ltd Method for production of glass-forming die
JP2008150226A (en) * 2006-12-14 2008-07-03 Toshiba Mach Co Ltd Method for producing mold for glass molding
DE112007003026B4 (en) * 2006-12-14 2011-03-24 Toshiba Kikai K.K. Method for producing a glass mold
KR101053749B1 (en) 2006-12-14 2011-08-02 도시바 기카이 가부시키가이샤 Manufacturing method of mold for glass molding
KR101053701B1 (en) 2006-12-14 2011-08-02 도시바 기카이 가부시키가이샤 Manufacturing method of mold for glass molding
WO2008072664A1 (en) * 2006-12-14 2008-06-19 Toshiba Kikai Kabushiki Kaisha Method for producing mold for glass molding
US7966845B2 (en) 2007-04-10 2011-06-28 Toshiba Kikai Kabushiki Kaisha Glass-shaping mold and method for manufacturing the same
KR20230033860A (en) * 2021-09-02 2023-03-09 김천기 Method for manufacturing core pin for injection molding of optical lens and core pin manufactured thereby

Similar Documents

Publication Publication Date Title
CN111825311A (en) Micro-nano hot-press molding process for optical glass array lens
JPH11157852A (en) Manufacture of mold for forming glass optical element and forming method of glass optical element, using the same mold manufactured therewith
JP2002348129A (en) Method for manufacturing molding die for optical glass element and method for molding optical glass element
JP3273921B2 (en) Mold for glass optical element, method for manufacturing glass optical element, and method for reproducing mold
JPH11268920A (en) Forming mold for forming optical element and its production
JP2002274865A (en) Glass optical element forming die, method of manufacturing for the same and method of forming glass optical element
JP3199825B2 (en) Optical element molding method
JPH0379299B2 (en)
JP2003277078A (en) Die for glass molding and method for manufacturing the sane, method for manufacturing glass optical element, glass optical element and diffraction optical element
JPH0692658A (en) Mold for molding optical element and method for molding optical element
JPH11246229A (en) Mold for molding optical element
TWI329620B (en) Mold for molding glass optical articles
JPH11268921A (en) Press mold for forming glass
JP3892498B2 (en) Mold for glass optical element
JP3667198B2 (en) Manufacturing method of mold for optical element molding
JP2004210550A (en) Molding mold
JPH0350127A (en) Fabrication of optical glass element forming mold and production of the element
JP2005126270A (en) Micromachined component made of polycrystalline material and its manufacturing method
JPS60180926A (en) Mold for press-molding highly accurate glass molded article
JPH01145342A (en) Production of optical element
JPH0226844A (en) Method for forming optical element
JPH0572336B2 (en)
JP2002114527A (en) Molding die for optical element and method for manufacturing the same
JP2002080227A (en) Method of manufacturing optical element
JPH04265234A (en) Forming die for optical glass element