JP2008169107A - Method for production of glass-forming die - Google Patents

Method for production of glass-forming die Download PDF

Info

Publication number
JP2008169107A
JP2008169107A JP2007322478A JP2007322478A JP2008169107A JP 2008169107 A JP2008169107 A JP 2008169107A JP 2007322478 A JP2007322478 A JP 2007322478A JP 2007322478 A JP2007322478 A JP 2007322478A JP 2008169107 A JP2008169107 A JP 2008169107A
Authority
JP
Japan
Prior art keywords
coating layer
surface coating
base material
glass
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007322478A
Other languages
Japanese (ja)
Other versions
JP5073469B2 (en
Inventor
Atsushi Masuda
淳 増田
Takaharu Tashiro
貴晴 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2007322478A priority Critical patent/JP5073469B2/en
Publication of JP2008169107A publication Critical patent/JP2008169107A/en
Application granted granted Critical
Publication of JP5073469B2 publication Critical patent/JP5073469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1657Electroless forming, i.e. substrate removed or destroyed at the end of the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1862Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
    • C23C18/1865Heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/11Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/16Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Chemically Coating (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a die with high precision in its shape by preventing the occurrence of cracks on a surface coating layer at forming temperatures, while preventing plastic deformation of the die. <P>SOLUTION: A base material is produced by quenching a steel material which contains carbon of ≥0.3 and ≤2.7 wt.%, chromium of ≤13 wt.% and includes an additive satisfying at least one of 0.5-3 wt.% molybdenum, 0.1-5 wt.% vanadium and 1-7 wt.% tungsten, and then quenching the resultant steel material at a temperature of 400-650°C. A surface coating layer comprising an amorphous Ni-P alloy is formed on the surface of the above base material, is subjected to heat treatment and thus is converted into an eutectic structure of Ni and Ni<SB>3</SB>P. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、精密な加工を必要とするガラス成形用金型の製造方法に関し、特に金型の形状を高い精度で維持することができるものに関する。   The present invention relates to a method for manufacturing a glass molding die that requires precise processing, and more particularly to a method capable of maintaining the shape of the die with high accuracy.

プラスチック成形の分野では、成形金型の精密加工技術が確立されており、回折格子など、微細形状を有する光学素子の量産が実現している。この場合、金型の製作は、ステンレス鋼からなる基材の表面に無電解Ni−Pめっきを施し、次いで、このめっき層をダイヤモンドバイトで精密加工することにより行われている。   In the field of plastic molding, precision processing technology for molding dies has been established, and mass production of optical elements having fine shapes such as diffraction gratings has been realized. In this case, the mold is manufactured by performing electroless Ni-P plating on the surface of a base material made of stainless steel, and then precisely processing the plated layer with a diamond bite.

しかし、これと同様の金型をガラス成形に適用すると、無電解Ni−Pめっき層にクラックが発生する問題が生ずる。この現象は、成形温度に起因している。即ち、Ni−Pめっき層は、めっき状態ではアモルファス(非晶質)構造をとっているが、約270℃以上に加熱すると結晶化が始まり、そのとき、めっき層に体積収縮が起こり、引張応力が作用してめっき層にクラックが発生する。   However, when a mold similar to this is applied to glass molding, there arises a problem that cracks occur in the electroless Ni—P plating layer. This phenomenon is due to the molding temperature. In other words, the Ni-P plating layer has an amorphous structure in the plating state, but when heated to about 270 ° C. or higher, crystallization starts, and at that time, the plating layer undergoes volume shrinkage and tensile stress Acts to cause cracks in the plating layer.

この問題の対策として、熱膨張係数が10×10−6〜16×10−6(K−1)の基材を選定し、めっき後、400〜500℃で熱処理を行っている。しかし、基材の熱膨張係数をNi−Pめっき層に合わせても、熱処理の際、結晶化に伴う体積収縮がめっき層だけに生ずるので、めっき層に大きな引張応力が作用して、クラックが発生する場合があった(例えば特許文献1参照)。 As a countermeasure against this problem, a base material having a thermal expansion coefficient of 10 × 10 −6 to 16 × 10 −6 (K −1 ) is selected, and heat treatment is performed at 400 to 500 ° C. after plating. However, even if the thermal expansion coefficient of the base material is matched to that of the Ni-P plating layer, volume contraction due to crystallization occurs only in the plating layer during heat treatment, so that a large tensile stress acts on the plating layer, causing cracks. There was a case where it occurred (see, for example, Patent Document 1).

また、金型使用中に高温になると、金型に塑性変形が生じ、金型の形状を高い精度で維持することができないという問題もあった。
特開平11−157852号公報
Further, when the temperature becomes high during use of the mold, there is a problem that plastic deformation occurs in the mold and the shape of the mold cannot be maintained with high accuracy.
JP-A-11-157852

本発明は、成形温度において表面被覆層にクラックが発生することを防止するとともに、金型の塑性変形を防止することで、金型の形状を高い精度で維持するとともに、その寿命を増大させることができるガラス成形用金型の製造方法を提供することを目的としている。   The present invention prevents the occurrence of cracks in the surface coating layer at the molding temperature, and prevents the plastic deformation of the mold, thereby maintaining the shape of the mold with high accuracy and increasing its life. It aims at providing the manufacturing method of the metal mold | die for glass molding which can be performed.

前記課題を解決し目的を達成するために、本発明のガラス成形用金型の製造方法は次のように構成されている。   In order to solve the above-described problems and achieve the object, the method for producing a glass molding die of the present invention is configured as follows.

炭素が0.3wt%以上2.7wt%以下、クロムが13wt%以下であって、モリブデンが0.5wt%以上3wt%以下、バナジウムが0.1wt%以上5wt%以下、タングステンが1wt%以上7wt%以下のうち少なくとも1つを満たす添加物が加えられた鋼製の素材を焼入れするとともに、400℃以上650℃以下で焼戻しすることで基材を形成し、上記基材の表面に、非晶質のNi−P合金からなる表面被覆層を形成し、これに加熱処理を施すことによって、前記表面被覆層をNiとNiPの共晶組織に変えることを特徴とする。 Carbon is 0.3 wt% to 2.7 wt%, chromium is 13 wt% or less, molybdenum is 0.5 wt% to 3 wt%, vanadium is 0.1 wt% to 5 wt%, tungsten is 1 wt% to 7 wt% %. The steel material to which an additive satisfying at least one of the following is added is quenched, and a base material is formed by tempering at 400 ° C. or higher and 650 ° C. or lower, and the surface of the base material is amorphous. A surface coating layer made of a high quality Ni—P alloy is formed, and the surface coating layer is changed to a eutectic structure of Ni and Ni 3 P by subjecting it to a heat treatment.

炭素が0.3wt%以上2.7wt%以下、クロムが13wt%以下であって、モリブデンが0.5wt%以上3wt%以下、バナジウムが0.1wt%以上5wt%以下、タングステンが1wt%以上7wt%以下のうち少なくとも1つを満たす添加物が加えられた鋼製の素材を焼入れするとともに、サブゼロ処理することで基材を形成し、上記基材の表面に、非晶質のNi−P合金からなる表面被覆層を形成し、これに加熱処理を施すことによって、前記表面被覆層をNiとNiPの共晶組織に変えることを特徴とする。 Carbon is 0.3 wt% to 2.7 wt%, chromium is 13 wt% or less, molybdenum is 0.5 wt% to 3 wt%, vanadium is 0.1 wt% to 5 wt%, tungsten is 1 wt% to 7 wt% %. A steel material to which an additive satisfying at least one of the following is added is quenched, and a substrate is formed by subzero treatment, and an amorphous Ni-P alloy is formed on the surface of the substrate. The surface coating layer is formed, and the surface coating layer is changed to a eutectic structure of Ni and Ni 3 P by heat-treating the surface coating layer.

本発明によれば、成形温度において表面被覆層にクラックが発生することを防止するとともに、金型の塑性変形を防止することで、金型の形状を高い精度で維持するとともに、その寿命を増大させることが可能となる。   According to the present invention, it is possible to maintain the shape of the mold with high accuracy and increase its life by preventing the surface coating layer from cracking at the molding temperature and preventing the plastic deformation of the mold. It becomes possible to make it.

図1は、本発明の一実施の形態に係るガラス成形用金型の製造工程の概要を示すブロック図である。ガラス成形用金型の製造は次のような工程で行う。   FIG. 1 is a block diagram showing an outline of a manufacturing process of a glass molding die according to an embodiment of the present invention. Manufacture of a glass mold is performed by the following process.

なお、基材として、炭素が0.3wt%以上2.7wt%以下、クロムが13wt%以下であって、モリブデンが0.5wt%以上3wt%以下、バナジウムが0.1wt%以上5wt%以下、タングステンが1wt%以上7wt%以下のうち少なくとも1つを満たす添加物が加えられた鋼製の素材を用いる。   In addition, as a base material, carbon is 0.3 wt% or more and 2.7 wt% or less, chromium is 13 wt% or less, molybdenum is 0.5 wt% or more and 3 wt% or less, vanadium is 0.1 wt% or more and 5 wt% or less, A steel material to which an additive satisfying at least one of tungsten in an amount of 1 wt% to 7 wt% is used.

このような基材に粗加工を行った後(ST1)、焼入れ・高温焼戻しを行う(ST2)。次いで、めっき前加工を行った後(ST3)、無電解めっきによりNi−P合金からなる表面被覆層(めっき層)を形成する(ST4)。次いで、基材及び表面被覆層に加熱処理を行い(ST5)、表面被覆層を結晶化するとともに、基材を焼き戻し組織に変える。次いで、基材に仕上げ加工(ST6)及び表面被覆層の仕上げ加工(ST7)を行った後、表面被覆層に、離型膜をコーティングする(ST8)。   After roughing such a substrate (ST1), quenching and high-temperature tempering are performed (ST2). Next, after pre-plating processing (ST3), a surface coating layer (plating layer) made of a Ni-P alloy is formed by electroless plating (ST4). Next, heat treatment is performed on the base material and the surface coating layer (ST5) to crystallize the surface coating layer and change the base material into a tempered structure. Next, after finishing the substrate (ST6) and finishing the surface coating layer (ST7), the surface coating layer is coated with a release film (ST8).

本実施の形態における製造方法では、基材としてMo,V,Wを添加して高温硬さを向上させた鋼材を用いることで、高温焼戻しを行っても表面被覆層が割れないようにしている。これは焼入れ直後には残留オーステナイトが多く存在するが、高温焼戻しを行うと低炭素マルテンサイト及びマルテンサイトの組織に変化するためである。   In the manufacturing method according to the present embodiment, the surface coating layer is prevented from cracking even when high-temperature tempering is performed by using a steel material in which Mo, V, and W are added to improve the high-temperature hardness. . This is because a large amount of retained austenite exists immediately after quenching, but when high temperature tempering is performed, the structure changes to a low carbon martensite and martensite structure.

なお、高温焼戻しにおける温度は400〜650℃以下とする必要がある。400℃よりも低い温度では残留オーステナイトの低減にあまり効果がなく、650℃を超えると基材の軟化が著しいからである。なお、高温焼戻しではなく、サブゼロ処理を行うようにしてもよい。サブゼロ処理も残留オーステナイトをマルテンサイトに変態させる効果があるためである。   In addition, the temperature in high temperature tempering needs to be 400-650 degreeC or less. This is because at a temperature lower than 400 ° C., there is not much effect in reducing the retained austenite, and when it exceeds 650 ° C., the substrate is remarkably softened. Note that sub-zero treatment may be performed instead of high-temperature tempering. This is because the sub-zero treatment also has an effect of transforming retained austenite to martensite.

表面被覆層の形成は、Ni−P合金、例えば、Ni−P、Ni−P−B又はNi−P−Wを用いる。これらの組織は、めっき状態では非晶質もしくは部分的に非晶質であり、約270℃以上の加熱で、完全に結晶化したNiとNiPの混合組織に変態する。 The surface coating layer is formed using a Ni-P alloy, for example, Ni-P, Ni-P-B, or Ni-P-W. These structures are amorphous or partially amorphous in a plated state, and are transformed into a completely crystallized mixed structure of Ni and Ni 3 P by heating at about 270 ° C. or higher.

加熱処理の温度は、金型の使用温度(すなわち、ガラスの成形温度)以上にする必要がある。金型の使用温度よりも低い温度にすると、使用中に寸法変化が起こり、成形品の寸法精度が低下するからである。加熱処理温度を上げすぎるとメッキ面に影響を与えるため、加熱処理温度の上限は700℃程度とする。   The temperature of the heat treatment needs to be higher than the use temperature of the mold (that is, the glass forming temperature). This is because if the temperature is lower than the use temperature of the mold, a dimensional change occurs during use, and the dimensional accuracy of the molded product decreases. If the heat treatment temperature is raised too much, the plated surface is affected, so the upper limit of the heat treatment temperature is about 700 ° C.

次に、基材を上述した成分の鋼製の素材を用いる理由について説明する。すなわち、C含有量は、0.3wt%以上2.7wt%以下とした。C含有量が0.3wt%より低くなると、焼戻しにおける基材の体積収縮量が小さくなり過ぎてしまう。一方、C含有量が2.7wt%を超えると、基材の体積収縮量は十分ではあるが、靭性低下などの弊害が出てくる。   Next, the reason for using the steel material having the components described above as the base material will be described. That is, the C content was set to 0.3 wt% or more and 2.7 wt% or less. If the C content is lower than 0.3 wt%, the volume shrinkage of the base material during tempering becomes too small. On the other hand, when the C content exceeds 2.7 wt%, the volume shrinkage of the base material is sufficient, but adverse effects such as a decrease in toughness occur.

また、Cr含有量は、13wt%以下とした。Cr含有量が13wt%を超えると残留オーステナイトが分解しにくくなるためである。なお、Cr含有量の下限値については、特に制約はない。   Moreover, Cr content was 13 wt% or less. This is because if the Cr content exceeds 13 wt%, the retained austenite is difficult to decompose. In addition, there is no restriction | limiting in particular about the lower limit of Cr content.

添加物であるMo,V,Wについては、Moが0.5wt%以上3wt%以下、Vが0.1wt%以上5wt%以下、Wが1wt%以上7wt%以下とした。これらの添加物の量が少なすぎると基材の高温硬さが十分ではなくプレス圧力によって塑性変形する虞があるためである。なお、必要以上に多くするとコストが高くなるため上限を定めている。   Regarding the additives Mo, V, and W, Mo was 0.5 wt% to 3 wt%, V was 0.1 wt% to 5 wt%, and W was 1 wt% to 7 wt%. This is because if the amount of these additives is too small, the high-temperature hardness of the substrate is not sufficient and plastic deformation may occur due to the pressing pressure. Note that the upper limit is set because the cost increases if the number is increased more than necessary.

種々の成分の基材に、無電解Ni−Pめっきを100μm被覆した金型を製作して、加熱熱処理中及び成形中に発生したクラックの数及びガラスを成形したときの基材の塑性変形の有無を調べた。表1に、基材の成分、焼戻し温度、クラック発生率、塑性変形の有無との関係を示す。供試体7は、比較例として従来の熱処理を行ったプラスチック成形用金型を用いている。また、成形温度は全て550℃とした。   Fabrication of 100 μm electroless Ni-P plating on the base material of various components, the number of cracks generated during heat treatment and molding, and the plastic deformation of the base material when glass was molded The presence or absence was examined. Table 1 shows the relationship among the components of the base material, the tempering temperature, the crack generation rate, and the presence or absence of plastic deformation. The specimen 7 uses a plastic molding die subjected to conventional heat treatment as a comparative example. Moreover, all the molding temperatures were 550 degreeC.

Figure 2008169107
Figure 2008169107

表1から分かるように、本発明の製造方法に基づいて製作された金型(供試体5,6)では、クラックの発生及び塑性変形が認められなかった。   As can be seen from Table 1, cracks and plastic deformation were not observed in the molds (samples 5 and 6) manufactured based on the manufacturing method of the present invention.

上述したように本実施の形態に係るガラス成形用金型の製造方法及びガラス成形用金型では、成形温度において表面被覆層にクラックが発生することを防止するとともに、金型の塑性変形を防止し、金型の形状を高い精度で維持するとともに、その寿命を増大させることが可能となる。   As described above, in the glass molding die manufacturing method and glass molding die according to the present embodiment, the surface coating layer is prevented from cracking at the molding temperature, and the plastic deformation of the die is prevented. In addition, it is possible to maintain the shape of the mold with high accuracy and to increase its life.

なお、本発明は前記実施の形態に限定されるものではない。例えば、基材及び表面被覆層の加熱処理を、基材の仕上げ加工及び表面被覆層の仕上げ加工の後に行うようにしてもよい。この他、本発明の要旨を逸脱しない範囲で種々変形実施可能であるのは勿論である。   The present invention is not limited to the above embodiment. For example, you may make it perform the heat processing of a base material and a surface coating layer after the finishing process of a base material, and the finishing process of a surface coating layer. Of course, various modifications can be made without departing from the scope of the present invention.

本発明の一実施の形態に係るガラス成形用金型の製造方法の概要を示すブロック図。The block diagram which shows the outline | summary of the manufacturing method of the metal mold | die for glass forming which concerns on one embodiment of this invention.

Claims (4)

炭素が0.3wt%以上2.7wt%以下、クロムが13wt%以下であって、モリブデンが0.5wt%以上3wt%以下、バナジウムが0.1wt%以上5wt%以下、タングステンが1wt%以上7wt%以下のうち少なくとも1つを満たす添加物が加えられた鋼製の素材を焼入れするとともに、400℃以上650℃以下で焼戻しすることで基材を形成し、
上記基材の表面に、非晶質のNi−P合金からなる表面被覆層を形成し、
これに加熱処理を施すことによって、前記表面被覆層をNiとNiPの共晶組織に変えることを特徴とするガラス成形用金型の製造方法。
Carbon is 0.3 wt% to 2.7 wt%, chromium is 13 wt% or less, molybdenum is 0.5 wt% to 3 wt%, vanadium is 0.1 wt% to 5 wt%, tungsten is 1 wt% to 7 wt% %. The steel material to which an additive satisfying at least one of the following is added is quenched, and the base material is formed by tempering at 400 ° C. or more and 650 ° C. or less,
Forming a surface coating layer made of an amorphous Ni-P alloy on the surface of the base material,
A method for producing a glass molding die, wherein the surface coating layer is changed to a eutectic structure of Ni and Ni 3 P by subjecting to heat treatment.
上記表面被覆層は、NiとP、NiとPとB又はNiとPとWを含む無電解めっきにより形成され、
上記加熱処理は、ガラスの成形温度以上であることを特徴とする請求項1に記載のガラス成形用金型の製造方法。
The surface coating layer is formed by electroless plating including Ni and P, Ni and P and B or Ni, P and W,
The method for producing a glass molding die according to claim 1, wherein the heat treatment is at or above a glass molding temperature.
炭素が0.3wt%以上2.7wt%以下、クロムが13wt%以下であって、モリブデンが0.5wt%以上3wt%以下、バナジウムが0.1wt%以上5wt%以下、タングステンが1wt%以上7wt%以下のうち少なくとも1つを満たす添加物が加えられた鋼製の素材を焼入れするとともに、サブゼロ処理することで基材を形成し、
上記基材の表面に、非晶質のNi−P合金からなる表面被覆層を形成し、
これに加熱処理を施すことによって、前記表面被覆層をNiとNiPの共晶組織に変えることを特徴とするガラス成形用金型の製造方法。
Carbon is 0.3 wt% to 2.7 wt%, chromium is 13 wt% or less, molybdenum is 0.5 wt% to 3 wt%, vanadium is 0.1 wt% to 5 wt%, tungsten is 1 wt% to 7 wt% %. A steel material to which an additive satisfying at least one of the following is added is quenched, and a substrate is formed by sub-zero treatment.
Forming a surface coating layer made of an amorphous Ni-P alloy on the surface of the base material,
A method for producing a glass molding die, wherein the surface coating layer is changed to a eutectic structure of Ni and Ni 3 P by subjecting to heat treatment.
上記表面被覆層は、NiとP、NiとPとB又はNiとPとWを含む無電解めっきにより形成され、
上記加熱処理は、ガラスの成形温度以上であることを特徴とする請求項3に記載のガラス成形用金型の製造方法。
The surface coating layer is formed by electroless plating including Ni and P, Ni and P and B or Ni, P and W,
The said heat processing is more than the glass forming temperature, The manufacturing method of the metal mold for glass forming of Claim 3 characterized by the above-mentioned.
JP2007322478A 2006-12-14 2007-12-13 Manufacturing method of glass mold Active JP5073469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007322478A JP5073469B2 (en) 2006-12-14 2007-12-13 Manufacturing method of glass mold

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006337367 2006-12-14
JP2006337367 2006-12-14
JP2007322478A JP5073469B2 (en) 2006-12-14 2007-12-13 Manufacturing method of glass mold

Publications (2)

Publication Number Publication Date
JP2008169107A true JP2008169107A (en) 2008-07-24
JP5073469B2 JP5073469B2 (en) 2012-11-14

Family

ID=39511681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007322478A Active JP5073469B2 (en) 2006-12-14 2007-12-13 Manufacturing method of glass mold

Country Status (6)

Country Link
US (1) US20090236016A1 (en)
JP (1) JP5073469B2 (en)
KR (1) KR101053701B1 (en)
DE (1) DE112007003026B4 (en)
TW (1) TW200844056A (en)
WO (1) WO2008072664A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7966845B2 (en) 2007-04-10 2011-06-28 Toshiba Kikai Kabushiki Kaisha Glass-shaping mold and method for manufacturing the same
US8206518B2 (en) 2005-06-24 2012-06-26 Toshiba Kakai Kabushiki Kaisha Die for press forming of glass and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007003026B4 (en) * 2006-12-14 2011-03-24 Toshiba Kikai K.K. Method for producing a glass mold
JP5019102B2 (en) * 2006-12-14 2012-09-05 東芝機械株式会社 Manufacturing method of glass mold
US9145323B2 (en) 2013-01-21 2015-09-29 Corning Incorporated Molds for shaping glass and methods for making the same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565956A (en) * 1979-06-29 1981-01-22 Daido Steel Co Ltd High hardness tough die steel
JPS6456826A (en) * 1987-08-27 1989-03-03 Kawasaki Steel Co Production of operating roll for high-load cold rolling mill having great case depth
JPH01129929A (en) * 1987-11-13 1989-05-23 Hitachi Ltd Production of work roll for hot rolling
JPH05156350A (en) * 1991-12-03 1993-06-22 Daido Steel Co Ltd Manufacture of molding die for heat resistant glass
JPH0920982A (en) * 1991-05-10 1997-01-21 Sankyo Seiki Mfg Co Ltd Electroless composite plating treatment of metallic material
JPH11157852A (en) * 1997-11-19 1999-06-15 Canon Inc Manufacture of mold for forming glass optical element and forming method of glass optical element, using the same mold manufactured therewith
JPH11268921A (en) * 1998-03-25 1999-10-05 Ngk Insulators Ltd Press mold for forming glass
JPH11335783A (en) * 1998-05-26 1999-12-07 Sumitomo Metal Ind Ltd Steel for glass-making mold and roll
JP2003277078A (en) * 2002-03-26 2003-10-02 Nikon Corp Die for glass molding and method for manufacturing the sane, method for manufacturing glass optical element, glass optical element and diffraction optical element
JP2004211132A (en) * 2002-12-27 2004-07-29 Komatsu Ltd Abrasion-resistant sintered sliding material, abrasion-resistant sintered sliding composite member, and manufacturing method therefor
JP2005336553A (en) * 2004-05-27 2005-12-08 Daido Steel Co Ltd Hot tool steel
WO2006137225A1 (en) * 2005-06-24 2006-12-28 Toshiba Kikai Kabushiki Kaisha Metal mold for glass shaping and process for producing the same
WO2008072665A1 (en) * 2006-12-14 2008-06-19 Toshiba Kikai Kabushiki Kaisha Method for producing mold for glass molding
WO2008072664A1 (en) * 2006-12-14 2008-06-19 Toshiba Kikai Kabushiki Kaisha Method for producing mold for glass molding

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225806B2 (en) * 1972-09-20 1977-07-09
JPS60114516A (en) * 1983-11-26 1985-06-21 Hoya Corp Die material for molding glass lens
JP3291827B2 (en) * 1993-03-18 2002-06-17 株式会社日立製作所 Impeller, diffuser, and method of manufacturing the same
JPH08188441A (en) * 1995-01-13 1996-07-23 Asahi Glass Co Ltd Metal mold for glass molding and molding of glass product for cathode-ray tube
US5628807A (en) * 1994-08-15 1997-05-13 Asahi Glass Company Ltd. Method for forming a glass product for a cathode ray tube
JPH09295818A (en) * 1996-04-30 1997-11-18 Asahi Glass Co Ltd Mold for molding glass and molding of glass product for cathode-ray tube
JP4110506B2 (en) * 2001-11-21 2008-07-02 コニカミノルタホールディングス株式会社 Mold for optical element molding
BRPI0506625A (en) * 2004-02-11 2007-05-02 Diamond Innovations Inc article and method for producing a shaped object
TWI247728B (en) * 2004-04-09 2006-01-21 Asia Optical Co Inc Molding die for molding glass
US7513960B2 (en) * 2005-03-10 2009-04-07 Hitachi Metals, Ltd. Stainless steel having a high hardness and excellent mirror-finished surface property, and method of producing the same
US20060222423A1 (en) * 2005-03-31 2006-10-05 Xerox Corporation Heat-pipe fuser roll with internal coating
KR101073717B1 (en) * 2007-04-10 2011-10-13 도시바 기카이 가부시키가이샤 Glass forming mold and method for producing the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565956A (en) * 1979-06-29 1981-01-22 Daido Steel Co Ltd High hardness tough die steel
JPS6456826A (en) * 1987-08-27 1989-03-03 Kawasaki Steel Co Production of operating roll for high-load cold rolling mill having great case depth
JPH01129929A (en) * 1987-11-13 1989-05-23 Hitachi Ltd Production of work roll for hot rolling
JPH0920982A (en) * 1991-05-10 1997-01-21 Sankyo Seiki Mfg Co Ltd Electroless composite plating treatment of metallic material
JPH05156350A (en) * 1991-12-03 1993-06-22 Daido Steel Co Ltd Manufacture of molding die for heat resistant glass
JPH11157852A (en) * 1997-11-19 1999-06-15 Canon Inc Manufacture of mold for forming glass optical element and forming method of glass optical element, using the same mold manufactured therewith
JPH11268921A (en) * 1998-03-25 1999-10-05 Ngk Insulators Ltd Press mold for forming glass
JPH11335783A (en) * 1998-05-26 1999-12-07 Sumitomo Metal Ind Ltd Steel for glass-making mold and roll
JP2003277078A (en) * 2002-03-26 2003-10-02 Nikon Corp Die for glass molding and method for manufacturing the sane, method for manufacturing glass optical element, glass optical element and diffraction optical element
JP2004211132A (en) * 2002-12-27 2004-07-29 Komatsu Ltd Abrasion-resistant sintered sliding material, abrasion-resistant sintered sliding composite member, and manufacturing method therefor
JP2005336553A (en) * 2004-05-27 2005-12-08 Daido Steel Co Ltd Hot tool steel
WO2006137225A1 (en) * 2005-06-24 2006-12-28 Toshiba Kikai Kabushiki Kaisha Metal mold for glass shaping and process for producing the same
WO2008072665A1 (en) * 2006-12-14 2008-06-19 Toshiba Kikai Kabushiki Kaisha Method for producing mold for glass molding
WO2008072664A1 (en) * 2006-12-14 2008-06-19 Toshiba Kikai Kabushiki Kaisha Method for producing mold for glass molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8206518B2 (en) 2005-06-24 2012-06-26 Toshiba Kakai Kabushiki Kaisha Die for press forming of glass and manufacturing method thereof
US7966845B2 (en) 2007-04-10 2011-06-28 Toshiba Kikai Kabushiki Kaisha Glass-shaping mold and method for manufacturing the same

Also Published As

Publication number Publication date
TWI351387B (en) 2011-11-01
DE112007003026B4 (en) 2011-03-24
DE112007003026T5 (en) 2009-10-08
JP5073469B2 (en) 2012-11-14
KR20090082478A (en) 2009-07-30
TW200844056A (en) 2008-11-16
KR101053701B1 (en) 2011-08-02
US20090236016A1 (en) 2009-09-24
WO2008072664A1 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP4778735B2 (en) Manufacturing method of glass mold
JP5019102B2 (en) Manufacturing method of glass mold
JP5073469B2 (en) Manufacturing method of glass mold
KR101073717B1 (en) Glass forming mold and method for producing the same
TWI633193B (en) Steel for mold
CN102732793A (en) Cold work tool steel
KR20170063950A (en) Hot work tool steel
TW201522662A (en) Process for the production of articles made of iron-cobalt-molybdenum / tungsten-nitrogen-alloys
JP5732004B2 (en) Metal material
CN1211494C (en) Heat treatment process for LD steel powder metallurgy die in complicated shape
JP6795112B1 (en) Manufacturing method of tool steel for molds
JPH11268921A (en) Press mold for forming glass
JP5322456B2 (en) Manufacturing method of glass mold
CN108048751A (en) A kind of high-temperature resistance die and preparation method thereof
KR20200023118A (en) Liquid metal manufacturing method having excellent abrasion resistance, corrosion resistance and processability
JPH04308059A (en) Tool steel for hot working
JP2021091954A (en) Steel for mold and mold
JP2009215156A (en) Glass forming mold and method for producing the same
JPH05287473A (en) Manufacture of silver thin sheet
JPH08119639A (en) Production of optical element
JP2003277825A (en) Method of producing special steel for die

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120822

R150 Certificate of patent or registration of utility model

Ref document number: 5073469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350