JPH05287473A - Manufacture of silver thin sheet - Google Patents

Manufacture of silver thin sheet

Info

Publication number
JPH05287473A
JPH05287473A JP12274992A JP12274992A JPH05287473A JP H05287473 A JPH05287473 A JP H05287473A JP 12274992 A JP12274992 A JP 12274992A JP 12274992 A JP12274992 A JP 12274992A JP H05287473 A JPH05287473 A JP H05287473A
Authority
JP
Japan
Prior art keywords
silver
silver thin
thin sheet
ingot
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12274992A
Other languages
Japanese (ja)
Inventor
Tatsuo Eguchi
達夫 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Foil Manufacturing Co Ltd
Original Assignee
Nippon Foil Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Foil Manufacturing Co Ltd filed Critical Nippon Foil Manufacturing Co Ltd
Priority to JP12274992A priority Critical patent/JPH05287473A/en
Publication of JPH05287473A publication Critical patent/JPH05287473A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide the method for manufacturing a silver thin sheet used as an electrical contact material or the like. CONSTITUTION:A silver ingot constituted of 20 to 100ppm Cu, and the balance Ag with inevitable impurities is prepd. This silver ingot is subjected to cold rolling to manufacture a silver thin sheet. At this time, the silver ingot or silver sheet in the process of the cold rolling is heated to 550 to 900 deg.C. The heated silver ingot or silver sheet is cooled by water. In particular, the draft in the cold rolling is preferably regulated to 50 to 95%. Even if the silver thin sheet immediately after the manufacture or after being allowed to stand for a long term is exposed to a high temp. of about >=2800 deg.C, the coarsening of the crystalline grains in the silver thin sheet is hard to generate. Thus, by using this silver thin sheet, the effects that cracks on the silver thin sheet are difficult to generate and roughening on its surface is hard to generate even if being exposed to a high temp. are given. Furthermore, the effects that the softening of the silver thin sheet is difficult to generate and the deterioration in its quality is small even if being allowed to stand for a long term after the manufacture are obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気接点材料或いはそ
の他の電気材料に用いる銀薄板の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin silver plate used as an electrical contact material or other electrical material.

【0002】[0002]

【従来の技術】従来より、電気接点等に使用する銀薄板
は、以下の如き製造方法で製造されている。即ち、Ag10
0重量%、又はCu0.002〜0.01重量%(Cu20〜100ppm)及
び残部Agよりなる鋳塊を準備し、この鋳塊を面削した
後、温度300℃前後で温間圧延加工を施して、厚さ約4mm
程度の銀板を得る。そして、この銀板に冷間圧延加工を
施し、必要に応じて冷間圧延加工時に温度150〜200℃程
度で中間焼鈍を施し、厚さ0.3〜0.7mm程度の銀薄板を得
るというものである。また、更に必要な場合には、200
〜300℃で最終焼鈍を行なって、銀薄板の強度や結晶粒
の大きさを調整することが行なわれている。
2. Description of the Related Art Conventionally, a silver thin plate used for an electrical contact or the like has been manufactured by the following manufacturing method. That is, Ag10
0% by weight, or Cu 0.002-0.01% by weight (Cu20-100ppm) and prepare the ingot consisting of the balance Ag, after chamfering this ingot, subjected to a warm rolling process at a temperature of about 300 ℃, Thickness about 4 mm
Get about a silver plate. Then, this silver plate is subjected to cold rolling, and if necessary, subjected to intermediate annealing at a temperature of about 150 to 200 ° C. during cold rolling to obtain a silver thin plate with a thickness of about 0.3 to 0.7 mm. .. If more is needed, 200
The final annealing is performed at ~ 300 ° C to adjust the strength and crystal grain size of the thin silver plate.

【0003】この銀薄板は、一定の形状に成形され、そ
の後電気材料として用いられる際、又は他の材料と接合
させる際、800℃以上の高温下に曝されることがあっ
た。そして、この高温下において、銀薄板に割れが生じ
るということがあった。また、銀薄板の表面に肌荒れが
生じるということがあった。特に、冷間圧延時における
圧延率が50%以上の銀薄板を採用し、この銀薄板を常温
で一週間以上放置しておいた後に、800℃以上の高温下
に曝すと、前記の銀薄板の割れ等が顕著であった。
This thin silver plate was formed into a certain shape, and was sometimes exposed to a high temperature of 800 ° C. or higher when it was subsequently used as an electric material or when it was joined to another material. Then, at this high temperature, cracks may occur in the silver thin plate. In addition, the surface of the thin silver plate may be roughened. In particular, when a silver thin plate with a rolling rate of 50% or more during cold rolling is adopted, and this silver thin plate is left at room temperature for one week or more and then exposed to a high temperature of 800 ° C or more, the above-mentioned silver thin plate is The cracks were marked.

【0004】[0004]

【発明が解決しようとする課題】本発明者が、銀薄板に
割れが生じたり或いは表面の肌荒れが生じたりする理由
について検討した結果、高温下に曝された箇所において
銀薄板中の結晶粒が粗大化していることが判明した。即
ち、銀薄板中の結晶粒が粗大化することによって、銀薄
板の強度が低下し又は銀薄板の表面に肌荒れが生じてい
ることが判明したのである。また、圧延率が50%以上で
ある銀薄板を常温で一週間以上放置しておくと、経時的
に銀薄板が軟化し、このような銀薄板を使用して高温下
に曝すと、特に結晶粒が粗大化し易く、銀薄板の強度が
更に低下し又は銀薄板の表面の肌荒れが顕著となるので
ある。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention As a result of investigations by the present inventors on the reasons why a thin silver plate is cracked or the surface thereof is roughened, the crystal grains in the thin silver plate are found to be exposed at a high temperature. It turned out to be coarse. That is, it has been found that the coarsening of the crystal grains in the silver thin plate reduces the strength of the silver thin plate or roughens the surface of the silver thin plate. Also, if a silver thin plate with a rolling ratio of 50% or more is left at room temperature for one week or more, the silver thin plate will soften with time, and if such a silver thin plate is used and exposed to high temperatures, the crystal The grains are likely to be coarsened, the strength of the silver thin plate is further reduced, or the surface of the silver thin plate is significantly roughened.

【0005】そこで、本発明者は、銀薄板中の結晶粒の
粗大化を抑制するために、銀薄板の組成や製造方法等に
ついて種々検討した。その結果、本発明者は、銀薄板の
製造工程である冷間圧延中において、比較的高温で中間
焼鈍を施すと、後に高温下に曝されても銀薄板中の結晶
粒が粗大化しにくいことを見出し、特願平3-292092号に
係る発明を提案した。
Therefore, the present inventor has conducted various studies on the composition and manufacturing method of the silver thin plate in order to suppress the coarsening of the crystal grains in the silver thin plate. As a result, the present inventor, during cold rolling which is a manufacturing process of a silver thin plate, when performing intermediate annealing at a relatively high temperature, it is difficult for the crystal grains in the silver thin plate to coarsen even after being exposed to a high temperature later. And proposed an invention according to Japanese Patent Application No. 3-292092.

【0006】その後、本発明者が研究を進めた結果、比
較的高温で中間焼鈍を施しただけではなく、高温加熱さ
れた銀板を急速に冷却することによって、Cuが比較的多
量にAg中に固溶して、微細で且つ均一な結晶組織を形成
すると共に再結晶温度が上昇し、得られた銀薄板を使用
する際に高温下に曝しても、銀薄板中の結晶粒が粗大化
しにくいと共に常温で一週間以上銀薄板を放置しておい
ても経時的な軟化が少ないことを見出し、本発明に到達
した。
[0006] After that, as a result of the research conducted by the present inventor, not only the intermediate annealing was performed at a relatively high temperature but also the silver plate heated at a high temperature was rapidly cooled, so that a relatively large amount of Cu was contained in Ag. To form a fine and uniform crystal structure, and the recrystallization temperature rises. Even when the obtained silver sheet is exposed to high temperature, the crystal grains in the silver sheet become coarse. The inventors have found that it is difficult and that the silver sheet is not softened with time even if it is left at room temperature for one week or more, and the present invention has been accomplished.

【0007】[0007]

【課題を解決するための手段】即ち、本発明は、Cu20〜
100ppm,残部Ag及び不可避不純物からなる銀鋳塊に、冷
間圧延を施して銀薄板を製造する方法において、前記銀
鋳塊又は冷間圧延途中の銀板を550〜900℃に加熱し、そ
の後加熱された前記銀鋳塊又は銀板を水で冷却すること
を特徴とする銀薄板の製造方法に関するものである。
[Means for Solving the Problems] That is, the present invention provides Cu20-
A silver ingot consisting of 100 ppm, the balance Ag and unavoidable impurities, is subjected to cold rolling to produce a silver thin plate, wherein the silver ingot or the silver plate in the middle of cold rolling is heated to 550 to 900 ° C., and thereafter. The present invention relates to a method for producing a silver thin plate, which comprises cooling the heated ingot or the silver plate with water.

【0008】本発明においては、まず所定の元素組成を
持つ銀鋳塊を準備する。即ち、Cuが20〜100ppm含有され
ている銀鋳塊を準備する。Cuが20ppm未満であったり或
いは100ppmを超えると、鋳塊中の結晶粒が粗大化しやす
く、得られた銀薄板の結晶粒も粗大化するので、好まし
くない。また、Cuが100ppmを超えると、銀鋳塊が硬化し
て冷間圧延性が低下するので、好ましくない。このよう
な銀鋳塊は、所定量のCuとAgとを溶解して、脱ガス後、
水冷鋳型による連続鋳造若しくは金型による鋳造を行な
えば、容易に得ることができる。
In the present invention, first, a silver ingot having a predetermined elemental composition is prepared. That is, a silver ingot containing 20 to 100 ppm of Cu is prepared. If the Cu content is less than 20 ppm or exceeds 100 ppm, the crystal grains in the ingot are likely to be coarsened, and the crystal grains of the obtained silver thin plate are also coarsened, which is not preferable. Further, if Cu exceeds 100 ppm, the silver ingot is hardened and the cold rolling property is deteriorated, which is not preferable. Such a silver ingot, by dissolving a predetermined amount of Cu and Ag, after degassing,
It can be easily obtained by continuous casting with a water-cooled mold or casting with a die.

【0009】このようにして準備された銀鋳塊に、冷間
圧延を繰り返し施すことによって、所定厚さ(一般的に
は0.3〜0.7mm)の銀薄板を得る。本発明において重要な
ことは、この際550〜900℃の温度に加熱することであ
る。即ち、銀鋳塊を550〜900℃に加熱することである。
また、冷間圧延途中の銀板を550〜900℃に加熱すること
である。そして、550〜900℃に加熱された銀鋳塊又は銀
板を、水で冷却することである。水で冷却することによ
って、銀鋳塊又は銀板は急速に冷却、即ち速い冷却速度
で冷却するのである。この高温加熱と急速冷却とによっ
て、CuはAg中に比較的多く固溶するのである。これが例
えば、加熱された銀鋳塊又は銀板を、空気中に放置して
冷却すると、冷却速度が遅く、CuはAg中に多量に固溶し
ないのである。この結果得られた銀薄板は、再結晶温度
が比較的低く、また一週間以上放置しておくと、経時的
に軟化し易い。そして、このような銀薄板を高温下に曝
すと、結晶粒が粗大化して、割れや表面の肌荒れを起こ
すのである。これに対し、本発明においては、CuがAg中
に比較的多量に固溶しているため、再結晶温度が比較的
高くなり、得られた銀薄板を一週間以上放置しておいて
も、経時的に軟化しにく、い。また、Cuの固溶量が多い
ので、結晶粒も成長しにくく、微細で均一なものとな
る。従って、本発明に係る方法で得られた銀薄板は、高
温下に曝しても、結晶粒が粗大化しにくく、割れや表面
の肌荒れが生じにくいのである。
The silver ingot thus prepared is repeatedly subjected to cold rolling to obtain a silver thin plate having a predetermined thickness (generally 0.3 to 0.7 mm). What is important in the present invention is heating at a temperature of 550 to 900 ° C. That is, the silver ingot is heated to 550 to 900 ° C.
Moreover, it is to heat the silver plate during cold rolling to 550 to 900 ° C. Then, the silver ingot or the silver plate heated to 550 to 900 ° C. is cooled with water. By cooling with water, the silver ingot or silver plate is cooled rapidly, that is, at a high cooling rate. Due to the high temperature heating and the rapid cooling, Cu is relatively solid-dissolved in Ag. This is because, for example, when a heated silver ingot or a silver plate is left to stand in the air and cooled, the cooling rate is slow and Cu does not form a solid solution in Ag in a large amount. The silver thin plate obtained as a result has a relatively low recrystallization temperature, and tends to soften with time if left for one week or more. When such a thin silver plate is exposed to a high temperature, the crystal grains are coarsened, causing cracks and surface roughening. On the other hand, in the present invention, since Cu is a solid solution in a relatively large amount in Ag, the recrystallization temperature becomes relatively high, and even if the obtained silver thin plate is left for one week or more, It does not tend to soften over time. Further, since the solid solution amount of Cu is large, it is difficult for crystal grains to grow, and it becomes fine and uniform. Therefore, the silver thin plate obtained by the method according to the present invention, even when exposed to a high temperature, the crystal grains are not easily coarsened, and cracking and surface roughening hardly occur.

【0010】本発明に係る製造方法は、特に、圧延率を
50〜95%として冷間圧延して銀薄板を得る際に適用する
のが好ましい。この理由は、圧延率を50〜95%にした場
合、得られた銀薄板は経時的に軟化しやすいからであ
る。圧延率を50〜95%にして、本発明に係る方法を適用
した場合、得られた銀薄板は経時的に軟化しにくく、一
週間以上放置した後、高温下に曝しても結晶粒が粗大化
しにくく、割れや表面荒れが生じにくいのである。な
お、ここで圧延率とは、100×[(冷間圧延前の銀鋳塊
又は銀板の厚さ)−(銀薄板の厚さ)]/[冷間圧延前
の銀鋳塊又は銀板の厚さ]なる式で算出されるものであ
る。
The manufacturing method according to the present invention, in particular,
It is preferably 50 to 95% and applied when cold-rolled to obtain a silver thin plate. The reason for this is that when the rolling ratio is set to 50 to 95%, the obtained silver thin plate is likely to soften with time. When the rolling ratio is set to 50 to 95% and the method according to the present invention is applied, the obtained silver thin plate is difficult to soften with time, and after leaving it for one week or more, the crystal grains are coarse even when exposed to high temperature. It is difficult to form, and cracks and surface roughness are less likely to occur. Here, the rolling ratio is 100 × [(thickness of silver ingot or silver plate before cold rolling)-(thickness of thin silver plate)] / [silver ingot or silver plate before cold rolling] Thickness].

【0011】以上のようにして得られた銀薄板は、電気
接点等の電気材料に用いられるものである。この際、銀
薄板は所定の形状に成形され、その後高温下に曝され
て、各種の処理が施されるのである。
The thin silver plate obtained as described above is used for electric materials such as electric contacts. At this time, the thin silver plate is formed into a predetermined shape, then exposed to high temperature and subjected to various treatments.

【0012】[0012]

【実施例】【Example】

実施例1〜4及び比較例1〜4 99.99重量%純度の銀地金と、Ag−Cuの母合金とを使用
して、表1に示すCu含有量となるように、黒鉛るつぼに
て配合し溶解した。脱ガス後、水冷鋳型による連続鋳造
及び予熱温度を変えた金型で鋳造し、面削して銀鋳塊を
得た。この銀鋳塊の寸法は、厚さ30mm,幅150mm,長さ2
50mmであった。この銀鋳塊を冷間圧延して銀薄板を得
た。この際、冷間圧延途中において、銀板が表1に示す
厚さとなったときに、加熱炉中で表1に示す温度で3時
間加熱した。加熱後、表1に示す方法で冷却した。な
お、表1中の水冷は加熱した銀板を水浴中に浸漬して冷
却したことを示し、空冷は大気中に放置して冷却したこ
とを示し、炉冷は加熱炉の熱源をオフにして炉中で冷却
したことを示している。そして、冷却後、冷間圧延を施
して所望の厚さに圧延した。
Examples 1 to 4 and Comparative Examples 1 to 4 Using a silver ingot having a purity of 99.99% by weight and a master alloy of Ag-Cu, a Cu content shown in Table 1 was compounded in a graphite crucible. And dissolved. After degassing, continuous casting with a water-cooled mold and casting with a die having a different preheating temperature were carried out, followed by chamfering to obtain a silver ingot. The dimensions of this ingot are 30 mm thick, 150 mm wide, and 2 mm long.
It was 50 mm. This silver ingot was cold-rolled to obtain a silver thin plate. At this time, during the cold rolling, when the silver plate had the thickness shown in Table 1, it was heated in the heating furnace at the temperature shown in Table 1 for 3 hours. After heating, it was cooled by the method shown in Table 1. The water cooling in Table 1 indicates that the heated silver plate was immersed in a water bath for cooling, the air cooling indicates that it was left in the atmosphere for cooling, and the furnace cooling means that the heat source of the heating furnace was turned off. It shows that it was cooled in the furnace. Then, after cooling, cold rolling was performed to obtain a desired thickness.

【0013】[0013]

【表1】 [Table 1]

【0014】以上のようにして得られた銀薄板を、20℃
下で一日放置した場合及び五十日放置した場合における
性能を評価するため、以下のような試験を行なった。即
ち、予め900℃に加熱した大気炉内に銀薄板を導入し、1
時間保持した後、取り出す。そして、結晶粒の大きさを
測定した。結晶粒の大きさは以下の方法で測定した。即
ち、銀薄板を光学顕微鏡で観察し、結晶粒の面積を測定
する。この面積と同一の面積を持つ円を考えて、この円
の直径を結晶粒の大きさとした。一般的に、銀薄板中の
結晶粒の大きさが100μmを超えると、高温下に曝した
場合、割れや表面の肌荒れが起こると言われている。従
って、結晶粒が100μm以下の場合、割れ等の評価を○
とし、結晶粒が100μmを超える場合、割れ等の評価を
×とした。また、銀薄板の軟化の経時的変化を評価する
ため、一日放置後の銀薄板と五十日放置後の銀薄板のビ
ッカース硬度を測定し、比較した。硬度差が10未満のも
のを○と評価し、硬度差が10以上のものを×と評価し
た。そして、総合評価として、以上の評価が全て○のも
のを○と総合評価し、以上の評価に×が含まれているも
のを×と総合評価した。その結果を表2に示した。
The silver thin plate obtained as described above is heated to 20 ° C.
The following tests were carried out in order to evaluate the performance when left for one day or under 50 days. That is, a thin silver plate was introduced into an atmospheric furnace preheated to 900 ° C,
Hold for a time and then remove. Then, the size of the crystal grain was measured. The crystal grain size was measured by the following method. That is, the silver thin plate is observed with an optical microscope to measure the area of crystal grains. Considering a circle having the same area as this area, the diameter of this circle was defined as the size of the crystal grain. It is generally said that when the size of the crystal grains in the thin silver plate exceeds 100 μm, cracking and surface roughening occur when exposed to high temperatures. Therefore, when the crystal grains are 100 μm or less, the evaluation of cracks etc.
When the crystal grains exceeded 100 μm, the evaluation of cracks was rated as x. Further, in order to evaluate the change with time of softening of the silver thin plate, the Vickers hardness of the silver thin plate after standing for one day and the Vickers hardness after standing for 50 days were measured and compared. Those with a hardness difference of less than 10 were evaluated as ◯, and those with a hardness difference of 10 or more were evaluated as x. Then, as a comprehensive evaluation, those having all the above evaluations of ◯ were comprehensively evaluated as ◯, and those having × included in the above evaluations were comprehensively evaluated as x. The results are shown in Table 2.

【0015】[0015]

【表2】 [Table 2]

【0016】表2の結果から明らかなように、実施例1
〜4に係る方法で得られた銀薄板を900℃の高温下に1時
間曝しても、結晶粒の大きさはいずれの場合も100μm
以下であり、比較例1〜4に係る方法で得られた銀薄板
を同様に処理した場合の結晶粒の大きさは、銀薄板を得
た直後から100μmを超えているか、又は五十日経過後
においては100μmを超えていた。従って、実施例1〜
4に係る方法で得られた銀薄板を使用すれば、高温下に
曝しても、銀薄板に割れや表面の肌荒れが生じにくいこ
とが分かる。また、実施例1〜4に係る方法で得られた
銀薄板は、比較例1〜4に係る方法で得られた銀薄板に
比べて、経時的に生じる軟化の程度が小さい。従って、
実施例1〜4に係る方法で得られた銀薄板は、長期に亙
って放置しておいても、その品質が低下しにくいことが
分かる。
As is clear from the results shown in Table 2, Example 1
Even if the silver thin plate obtained by the method according to 4 is exposed to a high temperature of 900 ° C. for 1 hour, the crystal grain size is 100 μm in any case.
The size of the crystal grains when the silver thin plates obtained by the methods according to Comparative Examples 1 to 4 are treated in the same manner is more than 100 μm immediately after obtaining the silver thin plates or after 50 days have passed. Was over 100 μm. Therefore, Examples 1 to 1
It can be seen that when the silver thin plate obtained by the method according to No. 4 is used, the silver thin plate is unlikely to be cracked or surface roughened even when exposed to a high temperature. Further, the silver thin plates obtained by the methods according to Examples 1 to 4 have a smaller degree of softening occurring over time than the silver thin plates obtained by the methods according to Comparative Examples 1 to 4. Therefore,
It can be seen that the silver thin plates obtained by the methods according to Examples 1 to 4 are less likely to deteriorate in quality even if left for a long period of time.

【0017】[0017]

【発明の効果】以上説明したように、本発明に係る方法
で得られた銀薄板は、800℃程度の高温に加熱しても結
晶粒の粗大化が起こりにくい。また、この銀薄板は長期
間放置しておいても軟化しにくく、結晶粒の粗大化やそ
の品質の低下が起こりにくい。従って、この銀薄板を使
用して、或いは長期間放置しておいた銀薄板を使用し
て、他の材料と接合するために、若しくは電気材料とし
て使用するために、800℃程度以上の高温下に曝して
も、銀薄板中に粗大化した結晶粒が生じにくい。依っ
て、銀薄板は高強度を維持し、物理的な衝撃等が加わっ
ても、割れが生じにくく、且つ表面の肌荒れも生じにく
いという効果を奏する。また、上記したように本発明に
係る方法で得られた銀薄板を、その品質が低下しにくい
という効果も奏する。
As described above, the silver thin plate obtained by the method according to the present invention is less likely to undergo coarsening of crystal grains even when heated to a high temperature of about 800 ° C. Also, this silver thin plate is not easily softened even if left for a long period of time, and coarsening of crystal grains and deterioration of its quality hardly occur. Therefore, using this thin silver plate, or using a thin silver plate that has been left for a long period of time, in order to bond it to other materials or to use it as an electrical material, a high temperature of about 800 ° C or higher is used. Even if exposed to, it is hard to generate coarse crystal grains in the thin silver plate. Therefore, the silver thin plate maintains high strength, and even if a physical impact is applied, it is difficult for the thin silver plate to be cracked and the surface thereof is not roughened. Further, as described above, the silver thin plate obtained by the method according to the present invention also has an effect that its quality is less likely to deteriorate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Cu20〜100ppm,残部Ag及び不可避不純物
からなる銀鋳塊に、冷間圧延を施して銀薄板を製造する
方法において、前記銀鋳塊又は冷間圧延途中の銀板を55
0〜900℃に加熱し、その後加熱された前記銀鋳塊又は銀
板を水で冷却することを特徴とする銀薄板の製造方法。
1. A method for producing a silver thin plate by cold rolling an ingot of silver consisting of 20 to 100 ppm of Cu, the balance Ag and inevitable impurities, wherein the silver ingot or the silver plate in the middle of cold rolling is 55
A method for producing a silver thin plate, which comprises heating to 0 to 900 ° C., and then cooling the heated silver ingot or silver plate with water.
【請求項2】 冷間圧延における圧延率が50〜95%であ
る請求項1記載の銀薄板の製造方法。
2. The method for producing a silver sheet according to claim 1, wherein the rolling ratio in cold rolling is 50 to 95%.
JP12274992A 1992-04-15 1992-04-15 Manufacture of silver thin sheet Pending JPH05287473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12274992A JPH05287473A (en) 1992-04-15 1992-04-15 Manufacture of silver thin sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12274992A JPH05287473A (en) 1992-04-15 1992-04-15 Manufacture of silver thin sheet

Publications (1)

Publication Number Publication Date
JPH05287473A true JPH05287473A (en) 1993-11-02

Family

ID=14843652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12274992A Pending JPH05287473A (en) 1992-04-15 1992-04-15 Manufacture of silver thin sheet

Country Status (1)

Country Link
JP (1) JPH05287473A (en)

Similar Documents

Publication Publication Date Title
TWI704240B (en) Copper alloy material for resistance material, manufacturing method thereof, and resistor
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
RU2413021C1 (en) COPPER ALLOY Cu-Si-Co FOR MATERIALS OF ELECTRONIC TECHOLOGY AND PROCEDURE FOR ITS PRODUCTION
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
JP6226098B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays
JP4780601B2 (en) Magnesium alloy plate excellent in press formability and manufacturing method thereof
WO2017043577A1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
TW201309817A (en) Cu-ni-si alloy and method for manufacturing same
JP6187630B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
JP2001517735A (en) Aluminum alloy and heat treatment method thereof
JP4012845B2 (en) 70/30 brass with refined crystal grains and method for producing the same
JP2009007625A (en) Method for producing high strength copper alloy for electric/electronic component
US20230243018A1 (en) Copper alloy, copper alloy plastic working material, component for electronic/electrical devices, terminal, bus bar, lead frame and heat dissipation substrate
JP2006144043A (en) Method for producing magnesium alloy sheet having excellent press moldability
JP2011174142A (en) Copper alloy plate, and method for producing copper alloy plate
JP2006144044A (en) Magnesium alloy sheet having superior deep-drawability, and manufacturing method therefor
CN109136634B (en) High-performance copper alloy material and preparation method thereof
JP4251672B2 (en) Copper alloy for electrical and electronic parts
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
JPH05287473A (en) Manufacture of silver thin sheet
TW202212583A (en) Copper alloy, plastically worked copper alloy material, component for electronic/electrical equipment, terminal, and heat dissipation substrate
JPH05287472A (en) Manufacture of silver thin sheet
JP2017071811A (en) Cu-Co-Ni-Si ALLOY FOR ELECTRONIC COMPONENT
JP6246174B2 (en) Cu-Co-Ni-Si alloy for electronic parts
WO2023127854A1 (en) Copper alloy, plastic worked copper alloy material, component for electronic/electrical devices, terminal, bus bar, lead frame, and heat dissipation substrate