JP2009215156A - Glass forming mold and method for producing the same - Google Patents

Glass forming mold and method for producing the same Download PDF

Info

Publication number
JP2009215156A
JP2009215156A JP2009031767A JP2009031767A JP2009215156A JP 2009215156 A JP2009215156 A JP 2009215156A JP 2009031767 A JP2009031767 A JP 2009031767A JP 2009031767 A JP2009031767 A JP 2009031767A JP 2009215156 A JP2009215156 A JP 2009215156A
Authority
JP
Japan
Prior art keywords
layer
glass
cutting
release layer
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009031767A
Other languages
Japanese (ja)
Other versions
JP5322684B2 (en
Inventor
Hisayoshi Fuwa
久順 不破
Atsushi Masuda
淳 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2009031767A priority Critical patent/JP5322684B2/en
Publication of JP2009215156A publication Critical patent/JP2009215156A/en
Application granted granted Critical
Publication of JP5322684B2 publication Critical patent/JP5322684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/11Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/26Mixtures of materials covered by more than one of the groups C03B2215/16 - C03B2215/24, e.g. C-SiC, Cr-Cr2O3, SIALON
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/31Two or more distinct intermediate layers or zones
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/32Intermediate layers, e.g. graded zone of base/top material of metallic or silicon material

Abstract

<P>PROBLEM TO BE SOLVED: To prevent deterioration of surface roughness of a mold release layer and also fusion of glass. <P>SOLUTION: The glass forming mold 5 comprises a base 1 made of a steel, a crystallized cutting layer 2, an intermediate layer 3 and the mold release layer 4 sequentially formed on the base 1. The cutting layer 2 is a nickel alloy layer containing phosphorus, the intermediate layer 3 is a layer composed of any of chromium, nickel, copper and cobalt or an alloy layer containing at least one of those elements, and the mold release layer 4 is an alloy layer containing iridium, rhenium and carbon. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、特に精密形状の光学素子を成形するためのガラス成形用金型及びその製造方法に関する。   The present invention particularly relates to a glass molding die for molding a precision-shaped optical element and a method for manufacturing the same.

周知の如く、プラスチック成形の分野では、成形金型の精密加工技術が確立されており、回折格子などの微細形状を有する光学素子の量産が実現している。この場合の金型は、基材の表面に無電解Ni−Pめっきを施し、このめっき層をダイヤモンドバイトで精密加工して作製している。この金型をガラス成形に応用する場合、Ni−P層ではガラスとの離型性が維持できないので、離型膜を形成する必要があった。例えば、特許文献1では、離型膜としてW,Pt,Pd,Irからなる金属あるいは合金を採用している。しかし、特許文献1の場合、成形温度が高くなると、離型膜の表面粗さが悪化してしまうことがわかった。また、特許文献1の場合、Ni−Pメッキの構成要素であるNiやPが離型膜へ容易に拡散するため、硝種(成形するガラスの種類)によっては数ショットでガラスが融着するという問題があった。   As is well known, in the field of plastic molding, precision processing technology for molding dies has been established, and mass production of optical elements having a fine shape such as a diffraction grating has been realized. The mold in this case is produced by performing electroless Ni-P plating on the surface of a base material and precision processing the plated layer with a diamond tool. When this metal mold is applied to glass forming, the Ni-P layer cannot maintain the releasability from the glass, so that it is necessary to form a release film. For example, in Patent Document 1, a metal or alloy composed of W, Pt, Pd, and Ir is used as the release film. However, in the case of Patent Document 1, it has been found that when the molding temperature increases, the surface roughness of the release film deteriorates. In addition, in the case of Patent Document 1, since Ni and P, which are constituent elements of Ni-P plating, easily diffuse into the release film, depending on the glass type (type of glass to be formed), the glass is fused in several shots. There was a problem.

特開2002−29772号公報JP 2002-29772 A

本発明はこうした事情を考慮してなされたもので、成形中に離型層の表面粗さが悪化するのを回避し、ガラスの融着も回避し得るガラス成形用金型及びその製造方法を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and a glass molding die capable of avoiding deterioration of the surface roughness of the release layer during molding and avoiding glass fusion and a method for producing the same. The purpose is to provide.

(1)本発明のガラス成形用金型は、鉄鋼製の基材と、この基材上に順次形成された,結晶化した切削加工層及び離型層を具備するガラス成形用金型であり、前記切削加工層はリンを含有したニッケル合金層であり、前記離型層はイリジウム,レニウム及び炭素を含有する合金層であることを特徴とする。
(2)本発明のガラス成形用金型の製造方法は、鉄鋼製の基材と、この基材上に順次形成された,切削加工層及び離型層を具備するガラス成形用金型を製造する方法であり、基材上に切削加工層を形成した後に加熱することにより結晶化させ、その後に前記離型層を形成することを特徴とする。
(1) The glass molding die of the present invention is a glass molding die comprising a steel base material, and a crystallized cutting layer and a release layer sequentially formed on the base material. The cutting layer is a nickel alloy layer containing phosphorus, and the release layer is an alloy layer containing iridium, rhenium and carbon.
(2) The method for producing a glass molding die of the present invention produces a glass molding die comprising a steel base material, and a cutting layer and a release layer sequentially formed on the base material. In this method, a cutting layer is formed on a substrate and then crystallized by heating, and then the release layer is formed.

(3)また、本発明のガラス成形用金型は、鉄鋼製の基材と、この基材上に順次形成された,結晶化した切削加工層、中間層及び離型層を具備するガラス成形用金型であり、前記切削加工層はリンを含有したニッケル合金層であり、前記中間層はクロム、ニッケル、銅、コバルトのいずれかからなる層もしくはこれらの元素の少なくとも1種以上を含む合金層であり、さらに前記離型層はイリジウム,レニウム及び炭素を含有する合金層であることを特徴とする。
(4)更に、本発明のガラス成形用金型の製造方法は、鉄鋼製の基材と、この基材上に順次形成された,切削加工層、中間層及び離型層を具備するガラス成形用金型を製造する方法であり、基材上に切削加工層を形成した後に加熱することにより結晶化させ、その後に前記中間層及び離型層を順次形成することを特徴とする。
(3) Further, the glass molding die of the present invention is a glass molding comprising a steel base material, and a crystallized cutting layer, an intermediate layer and a release layer sequentially formed on the base material. The cutting layer is a nickel alloy layer containing phosphorus, and the intermediate layer is a layer made of chromium, nickel, copper, cobalt, or an alloy containing at least one of these elements Further, the release layer is an alloy layer containing iridium, rhenium and carbon.
(4) Further, the method for producing a glass molding die of the present invention is a glass molding comprising a steel base material, and a cutting layer, an intermediate layer and a release layer sequentially formed on the base material. This is a method for producing a metal mold, wherein a cutting layer is formed on a substrate and then crystallized by heating, and thereafter the intermediate layer and the release layer are sequentially formed.

本発明のガラス成形用金型によれば、結晶化した切削加工層の存在により成形中に離型層の表面粗さが悪化するのを回避し得るとともに、ガラスの融着も回避することができる。また、本発明のガラス成形用金型の製造方法によれば、基材上に切削加工層を形成した後に加熱することにより結晶化させ、その後に前記離型層あるいは中間層及び離型層を形成することにより、成形中に離型層の表面粗さが悪化するのを回避し得るとともに、ガラスの融着も回避して精密な加工を実現できる。   According to the glass molding die of the present invention, it is possible to avoid deterioration of the surface roughness of the release layer during molding due to the presence of the crystallized cutting layer, and to avoid glass fusion. it can. Further, according to the method for producing a glass molding die of the present invention, after forming a cutting layer on a substrate, it is crystallized by heating, and then the release layer or the intermediate layer and the release layer are formed. By forming, it is possible to avoid the deterioration of the surface roughness of the release layer during molding, and it is possible to achieve precise processing by avoiding glass fusion.

図1は、本発明の実施例1に係るガラス成形用金型の部分断面図を示す。FIG. 1 shows a partial cross-sectional view of a glass molding die according to Example 1 of the present invention. 図2は、本発明の実施例2に係るガラス成形用金型の部分断面図を示す。FIG. 2 shows a partial cross-sectional view of a glass molding die according to Example 2 of the present invention. 図3は、本発明の実施例3〜10に係る試験片の説明図を示す。FIG. 3 is an explanatory diagram of test pieces according to Examples 3 to 10 of the present invention. 図4は、本発明の実施例3〜10に係る別な試験片の説明図を示す。FIG. 4 is an explanatory view of another test piece according to Examples 3 to 10 of the present invention.

以下、本発明について更に詳しく説明する。
本発明において、前記切削加工層はダイヤモンドバイトによって精密な加工するために必要であり、切削加工層のリン(P)濃度は1重量%以上15重量%以下であることが望ましい。ここで、P濃度が1重量%未満の場合、切削加工性が悪くなる。また、P濃度が15重量%を越えると、切削加工層が脆くなるという問題があった。切削加工層は、ニッケル(Ni)、P以外に、ボロン(B)、タングステン(W)、モリブデン(Mo)、レニウム(Re)等を含んでも良い。
Hereinafter, the present invention will be described in more detail.
In the present invention, the cutting layer is necessary for precise processing with a diamond bite, and the phosphorus (P) concentration of the cutting layer is preferably 1 wt% or more and 15 wt% or less. Here, when the P concentration is less than 1% by weight, cutting workability deteriorates. Further, when the P concentration exceeds 15% by weight, there is a problem that the cutting layer becomes brittle. In addition to nickel (Ni) and P, the cutting layer may contain boron (B), tungsten (W), molybdenum (Mo), rhenium (Re), and the like.

本発明において、前記離型層はガラスとの離型性を維持する役割を果たしている。Ni−P合金層上に離型層を形成させた場合、Ir−Pt合金からなる離型層は加熱すると、切削加工層のNi,Pの影響を受けて表面粗さが悪化するとともに、離型性も低下してガラスが融着してしまう。また、Ir−Re合金からなる離型層では、表面粗さは悪化しないが、離型性が不充分なためガラスが融着してしまう。しかし、本発明者等の研究の結果、Ir−Re−C合金からなる離型層では、表面粗さの悪化も起こらず、離型性にも優れているため、ガラスの融着が起こらないことを究明した。   In the present invention, the release layer plays a role of maintaining releasability with glass. When a release layer is formed on the Ni-P alloy layer, when the release layer made of an Ir-Pt alloy is heated, the surface roughness is deteriorated due to the influence of Ni and P of the cutting layer, and the release layer is released. The moldability also deteriorates and the glass is fused. Further, in the release layer made of an Ir—Re alloy, the surface roughness is not deteriorated, but the glass is fused due to insufficient release properties. However, as a result of research by the present inventors, a release layer made of an Ir—Re—C alloy does not cause deterioration in surface roughness and is excellent in release properties, and thus does not cause glass fusion. I found out.

即ち、本発明では、離型層にCを含有させることによって離型性が著しく向上する。C含有量は、1at%以上50at%以下であることが望ましい。C含有量が1at%未満の場合、離型性向上の効果が小さい。また、C含有量が50at%を越えると、離型層の耐酸化性が悪くなる。   That is, in the present invention, the release property is remarkably improved by containing C in the release layer. The C content is desirably 1 at% or more and 50 at% or less. When the C content is less than 1 at%, the effect of improving the releasability is small. On the other hand, when the C content exceeds 50 at%, the oxidation resistance of the release layer is deteriorated.

本発明において、前記中間層は切削加工層と離型層の密着強度を高める役割、離型膜へCを供給する役割を果たしている。中間層として適している材料は、クロム(Cr),ニッケル(Ni),銅(Cu),コバルト(Co)である。特に、中間層としては、Cを含有したCr,Ni,Cu,Coが適している。C含有量は、1at%以上80at%以下であることが望ましい。ここで、C含有量が1at%未満では供給源としてC量が少なく、離型性が悪くなり、ガラス融着してしまう。また、C含有量が80at%を越えると、密着性が低下し、膜が剥離してしまう。   In the present invention, the intermediate layer plays a role of increasing the adhesion strength between the cutting layer and the release layer and supplying C to the release film. Suitable materials for the intermediate layer are chromium (Cr), nickel (Ni), copper (Cu), and cobalt (Co). In particular, Cr, Ni, Cu, Co containing C is suitable for the intermediate layer. The C content is desirably 1 at% or more and 80 at% or less. Here, if the C content is less than 1 at%, the amount of C as a supply source is small, the releasability is deteriorated, and the glass is fused. Moreover, when C content exceeds 80 at%, adhesiveness will fall and a film | membrane will peel.

本発明の製造方法において、切削加工層は形成時に非晶質状態なので、加熱によって結晶質にして離型層、あるいは中間層と離型層を形成する。上記(4)の発明において、中間層と離型層を形成した後に切削加工層の結晶構造が変化すると、中間層と離型層の界面に大きな応力が発生し、離型層や中間層が剥離する可能性がある。   In the manufacturing method of the present invention, since the cutting layer is in an amorphous state when formed, it is made crystalline by heating to form a release layer, or an intermediate layer and a release layer. In the above invention (4), if the crystal structure of the cutting layer changes after the intermediate layer and the release layer are formed, a large stress is generated at the interface between the intermediate layer and the release layer, and the release layer and the intermediate layer There is a possibility of peeling.

次に、本発明の具体的な実施例を比較例とともにて説明する。
(実施例1)
図1は、本実施例1に係るガラス成形用金型の部分断面図を示す。図中の符番1は、鉄鋼材料の基材を示す。この基材1上には、結晶化した切削加工層2、中間層3及び離型層4が順次形成されている。ここで、切削加工層2はP(リン)を10重量%含有したニッケル(Ni−10wt%P)合金層である。中間層3は、ニッケル(Ni)からなる層である。離型層4は、イリジウム(Ir),レニウム(Re)及び3at%炭素(C)を含有する合金層である。
Next, specific examples of the present invention will be described together with comparative examples.
Example 1
FIG. 1 is a partial cross-sectional view of a glass molding die according to the first embodiment. Reference numeral 1 in the figure indicates a base material of a steel material. On the base material 1, a crystallized cutting layer 2, an intermediate layer 3, and a release layer 4 are sequentially formed. Here, the cutting layer 2 is a nickel (Ni-10 wt% P) alloy layer containing 10 wt% P (phosphorus). The intermediate layer 3 is a layer made of nickel (Ni). The release layer 4 is an alloy layer containing iridium (Ir), rhenium (Re), and 3 at% carbon (C).

図1のガラス成形用金型5は、次のようにして製造する。即ち、まず、鉄鋼材料の基材1上に無電解Ni−Pめっきを100μmつけて、530℃,2時間加熱処理を施し、結晶化して切削加工層2を形成した。次に、切削加工層2をダイヤモンドバイトで加工した後に、スパッタリングによりNiからなる中間層3を50nm、Ir,Re,Cからなる離型層4を300nm形成し、ガラス成形用金型5を製造した。   The glass mold 5 shown in FIG. 1 is manufactured as follows. That is, first, electroless Ni—P plating was applied to 100 μm on a base material 1 made of a steel material, subjected to heat treatment at 530 ° C. for 2 hours, and crystallized to form a cutting layer 2. Next, after processing the cutting layer 2 with a diamond bite, the intermediate layer 3 made of Ni is formed by sputtering to form a release layer 4 made of Ni, 50 nm, and Ir, Re, C, thereby producing the glass mold 5 did.

実施例1に係るガラス成形用金型5は、図1に示すように、基材1上にPを10重量%含有したニッケル合金層(切削加工層)2、Niからなる中間層3、及びIr,Re,Cを含有した離型層4が順次形成された構成になっている。しかるに、金型5では、切削加工層2を形成した後に加熱することにより切削加工層2を結晶化させ、その後に中間層3及び離型層4を順次形成しているので、成形中に離型層4の表面粗さが悪化するのを回避できるとともに、ガラスの融着を回避できる。   As shown in FIG. 1, a glass molding die 5 according to Example 1 includes a nickel alloy layer (cutting layer) 2 containing 10% by weight of P on a base material 1, an intermediate layer 3 made of Ni, and The release layer 4 containing Ir, Re, and C is sequentially formed. However, in the mold 5, the cutting layer 2 is crystallized by heating after forming the cutting layer 2, and then the intermediate layer 3 and the release layer 4 are sequentially formed. While deterioration of the surface roughness of the mold layer 4 can be avoided, glass fusion can be avoided.

事実、上記実施例1に係る金型、及び比較例1,2に係る金型を用いて470℃で加熱後のガラス融着の状態及び表面粗さを測定した結果、下記表1に示す結果が得られた。ここで、実施例1は、離型層/中間層/切削加工層/基材の鋼組成がIr−Re−C/Ni/Ni−P/Steelの場合を示す。比較例1は、同鋼組成がIr−Pt/Ni/Ni−P/Steelの場合(比較例1)を示す。比較例2は、同鋼組成がIr−Re/Ni/Ni−P/Steelの場合を示す。これにより、本発明が比較例に対して優れていることが明らかである。

Figure 2009215156
In fact, as a result of measuring the state of glass fusion and surface roughness after heating at 470 ° C. using the mold according to Example 1 and the molds according to Comparative Examples 1 and 2, the results shown in Table 1 below are shown. was gotten. Here, Example 1 shows a case where the steel composition of the release layer / intermediate layer / cutting layer / base material is Ir—Re—C / Ni / Ni—P / Steel. Comparative Example 1 shows the case where the steel composition is Ir—Pt / Ni / Ni—P / Steel (Comparative Example 1). The comparative example 2 shows the case where the steel composition is Ir-Re / Ni / Ni-P / Steel. This clearly shows that the present invention is superior to the comparative example.
Figure 2009215156

表1より、比較例1,2の場合は1ショットで融着したのに対し、実施例1では500ショットでも融着しないことが明らかになった。また、金型表面粗さについては、比較例1ではRa8nmであるのに対し、実施例1ではRa2nmであることが明らかになった。従って、表1より、本発明は比較例に比べてガラスの融着、金型の表面粗さの点で優れていることが分かった。   From Table 1, it was revealed that Comparative Example 1 and 2 were fused in one shot, whereas Example 1 was not fused even in 500 shots. In addition, the mold surface roughness was found to be Ra 8 nm in Comparative Example 1, while it was Ra 2 nm in Example 1. Therefore, it can be seen from Table 1 that the present invention is superior to the comparative example in terms of glass fusion and surface roughness of the mold.

(実施例2)
図2は、本実施例2に係るガラス成形用金型の部分断面図を示す。但し、図1と同部材は同符番を付して説明を省略する。ガラス成形用金型6は、鉄鋼材料の基材1上には、結晶化した切削加工層2、離型層4が順次形成された構成となっている。
(Example 2)
FIG. 2 shows a partial cross-sectional view of a glass molding die according to the second embodiment. However, the same members as those in FIG. The glass molding die 6 has a structure in which a crystallized cutting layer 2 and a release layer 4 are sequentially formed on a base material 1 made of a steel material.

図2のガラス成形用金型6は、次のようにして製造する。即ち、まず、鉄鋼材料の基材1上に無電解Ni−Pめっきを100μmつけて、530℃,2時間加熱処理を施し、結晶化して切削加工層2を形成した。次に、切削加工層2をダイヤモンドバイトで加工した後に、スパッタリングによりIr,Re,Cからなる離型層4を300nm形成し、ガラス成形用金型6を製造した。
実施例2によれば、実施例1と比べ、切削加工層2と離型層4の密着強度は若干劣るが、ガラス融着、金型の表面粗さの点で実施例1と同等の効果が得られることが分かった。
The glass molding die 6 in FIG. 2 is manufactured as follows. That is, first, electroless Ni—P plating was applied to 100 μm on the base material 1 of steel material, and heat treatment was performed at 530 ° C. for 2 hours, followed by crystallization to form the cutting layer 2. Next, after the cutting layer 2 was processed with a diamond bite, a release layer 4 made of Ir, Re, and C was formed by sputtering to a thickness of 300 nm, whereby a glass molding die 6 was manufactured.
According to Example 2, the adhesion strength between the cutting layer 2 and the release layer 4 is slightly inferior to that of Example 1, but the same effect as Example 1 in terms of glass fusion and surface roughness of the mold. Was found to be obtained.

(実施例3)
まず、本実施例で用いる図3(A),(B)、及び図4(A),(B)の試験片7,8について説明する。ここで、図3(A)は試験片(球面金型)7の正面図、図3(B)は図3(A)の側面図を示す。また、図4(A)は試験片(平面金型)8の正面図、図4(B)は図4(A)の側面図を示す。図3の試験片は成形機にて成形試験を行う際に使用し、図4の試験片はスクラッチ試験(密着力測定)、組成分析の際に使用した。なお、図3,図4において、符番9はネジ穴、符番10はR17の湾曲部を示す。
(Example 3)
First, the test pieces 7 and 8 of FIGS. 3A and 3B and FIGS. 4A and 4B used in this embodiment will be described. 3A is a front view of the test piece (spherical mold) 7, and FIG. 3B is a side view of FIG. 3A. 4A is a front view of the test piece (planar mold) 8, and FIG. 4B is a side view of FIG. 4A. The test piece of FIG. 3 was used when a molding test was performed with a molding machine, and the test piece of FIG. 4 was used for a scratch test (adhesion force measurement) and composition analysis. 3 and 4, reference numeral 9 indicates a screw hole, and reference numeral 10 indicates a curved portion of R17.

最初に、基材である鋼材材料に金型形状に加工した。次に、基材表面に無電解Ni−Pめっきを100μm施した。つづいて、熱処理を行った後、東芝機械製の商品名:ULG−100D(SH3)を使用してダイヤモンドバンドにて切削加工し、図示しない切削加工層(第1層)を形成した。更に、洗浄機にて洗浄した後、スパッタリング法にて膜厚50nmの中間層(第2層)、膜厚300nmの離型層(第3層)の成膜を行った。   First, a steel material as a base material was processed into a mold shape. Next, electroless Ni-P plating was applied to the substrate surface by 100 μm. Subsequently, after heat treatment, the product was cut with a diamond band using a trade name: ULG-100D (SH3) manufactured by Toshiba Machine, and a cutting layer (first layer) (not shown) was formed. Further, after cleaning with a cleaning machine, a 50 nm thick intermediate layer (second layer) and a 300 nm thick release layer (third layer) were formed by sputtering.

前記切削加工層はX線マイクロアナライザにて、離型層はX線電子分光にて分析を行った。下記表2及び表3は組成分析条件を示し、下記表4は組成分析結果を示す。

Figure 2009215156
The cutting layer was analyzed by an X-ray microanalyzer, and the release layer was analyzed by X-ray electron spectroscopy. Tables 2 and 3 below show the composition analysis conditions, and Table 4 below shows the results of the composition analysis.
Figure 2009215156

Figure 2009215156
Figure 2009215156

Figure 2009215156
Figure 2009215156

比較例3,4として、中間層にNi,離型層にIr−Pt,Ir−Re膜を施したもの、実施例3〜10として離型層にC含有量の異なる2種類のIr−Re−C膜を施したものを用いた。また、実施例3,4では中間層なし、実施例5,6ではNi中間層、実施例7〜10ではNi−C中間層を施したものを使用した。   In Comparative Examples 3 and 4, the intermediate layer is Ni, the release layer is Ir-Pt, Ir-Re film, and in Examples 3 to 10, the release layer has two types of Ir-Re having different C contents. What gave -C film | membrane was used. In Examples 3 and 4, no intermediate layer was used, in Examples 5 and 6, a Ni intermediate layer was used, and in Examples 7 to 10, a Ni-C intermediate layer was used.

次に、各薄膜の基材に対する密着力を測定した。試験方法はマイクロスクラッチ法にて行い、JIS R−3255に準拠した。マイクロスクラッチ試験測定条件を下記表5に示した。また、マイクロスクラッチ試験測定結果を下記表6に示した。

Figure 2009215156
Next, the adhesion of each thin film to the substrate was measured. The test method was performed by the micro scratch method and conformed to JIS R-3255. The micro scratch test measurement conditions are shown in Table 5 below. The micro scratch test measurement results are shown in Table 6 below.
Figure 2009215156

Figure 2009215156
Figure 2009215156

表6より、実施例7〜10の密着力が比較例3,4を上回っていることがわかる。
次に、実施例3〜10の試験片を使用し、K−PSFn214(住田光学製の商品名)の成形試験を行った。下記表7は成形条件を示し、下記表8は成形試験結果を示す。

Figure 2009215156
From Table 6, it can be seen that the adhesion of Examples 7 to 10 exceeds that of Comparative Examples 3 and 4.
Next, a molding test of K-PSFn214 (trade name, manufactured by Sumita Optical Co., Ltd.) was performed using the test pieces of Examples 3 to 10. Table 7 below shows molding conditions, and Table 8 below shows the molding test results.
Figure 2009215156

Figure 2009215156
Figure 2009215156

次に、成形試験500shotで融着してしまった実施例6の組成分析を行った。測定条件は上記表3と同様である。下記表9は、成形試験後の組成分析結果を示す。

Figure 2009215156
Next, the composition analysis of Example 6 which was fused by the molding test 500shot was performed. The measurement conditions are the same as in Table 3 above. Table 9 below shows the composition analysis results after the molding test.
Figure 2009215156

上記比較例3では、表面粗さは悪化しなかったものの、1shotで融着してしまった。比較例4では、Niが結晶化して表面粗さが悪化、金型表面が白く曇り、鏡面を失ってしまった。実施例3〜6では離型層中のCが離型性を向上させることで成形は可能であった。しかし、成形中に膜中のCが減少してしまい、500shotで融着してしまった。上記表10より、成形試験後のC含有量は1%以下であることがわかる。実施例7〜10では中間層にCを含有させることにより、離型層中に拡散することでC含有量の減少を防ぎ、2000shot成形後も離型することができた。なお、上記例以外にも、中間層にCu−C,Co−C,Cr−Cを施したものを使用して実験を行い、良好な離型性を確認した。   In Comparative Example 3, although the surface roughness did not deteriorate, it was fused in 1 shot. In Comparative Example 4, Ni crystallized, the surface roughness deteriorated, the mold surface was clouded white, and the mirror surface was lost. In Examples 3 to 6, molding in C was possible because C in the release layer improved release properties. However, C in the film decreased during molding, and was fused at 500 shots. From Table 10 above, it can be seen that the C content after the molding test is 1% or less. In Examples 7 to 10, by containing C in the intermediate layer, the C content was prevented from decreasing by diffusing into the release layer, and the mold could be released even after 2000 shot molding. In addition to the above examples, an experiment was performed using Cu—C, Co—C, and Cr—C applied to the intermediate layer, and good releasability was confirmed.

なお、この発明は、上記実施例そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、前記実施例に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。例えば、実施例に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施例に亘る構成要素を適宜組み合せてもよい。具体的には、上記実施例に記載した構成部材の材料、配合割合、厚み等は一例であり、本発明これに限定されない。   In addition, this invention is not limited to the said Example as it is, It can implement by modifying a component in the range which does not deviate from the summary in an implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiments. For example, some components may be deleted from all the components shown in the embodiments. Furthermore, the constituent elements in different embodiments may be appropriately combined. Specifically, the materials, blending ratios, thicknesses, and the like of the constituent members described in the above embodiments are merely examples, and the present invention is not limited thereto.

1…基材、2…Ni合金層(切削加工層)、3…中間層、4…離型層、5,6…ガラス成形用金型。   DESCRIPTION OF SYMBOLS 1 ... Base material, 2 ... Ni alloy layer (cutting layer), 3 ... Intermediate | middle layer, 4 ... Release layer, 5, 6 ... Mold for glass forming.

Claims (9)

鉄鋼製の基材と、この基材上に順次形成された,結晶化した切削加工層及び離型層を具備するガラス成形用金型であり、
前記切削加工層はリンを含有したニッケル合金層であり、前記離型層はイリジウム,レニウム及び炭素を含有する合金層であることを特徴とするガラス成形用金型。
A glass molding die comprising a steel base material, and a crystallized cutting layer and a release layer sequentially formed on the base material,
The glass forming mold, wherein the cutting layer is a nickel alloy layer containing phosphorus, and the release layer is an alloy layer containing iridium, rhenium, and carbon.
前記離型層の炭素濃度が1〜50at%であることを特徴とする請求項1記載のガラス成形用金型。 The glass mold according to claim 1, wherein the mold release layer has a carbon concentration of 1 to 50 at%. 前記切削加工層のリン濃度が1〜15重量%であることを特徴とする請求項1記載のガラス成形用金型。 2. The glass molding die according to claim 1, wherein the cutting layer has a phosphorus concentration of 1 to 15% by weight. 鉄鋼製の基材と、この基材上に順次形成された,切削加工層及び離型層を具備するガラス成形用金型を製造する方法であり、基材上に切削加工層を形成した後に加熱することにより結晶化させ、その後に前記離型層を形成することを特徴とするガラス成形用金型の製造方法。 This is a method for producing a glass mold having a steel base material and a cutting layer and a release layer sequentially formed on the base material, and after forming the cutting layer on the base material. A method for producing a glass molding die, characterized by crystallizing by heating and thereafter forming the release layer. 鉄鋼製の基材と、この基材上に順次形成された,結晶化した切削加工層、中間層及び離型層を具備するガラス成形用金型であり、
前記切削加工層はリンを含有したニッケル合金層であり、前記中間層はクロム、ニッケル、銅、コバルトのいずれかからなる層もしくはこれらの元素の少なくとも1種以上を含む合金層であり、さらに前記離型層はイリジウム,レニウム及び炭素を含有する合金層であることを特徴とするガラス成形用金型。
A glass molding die comprising a steel base material and a crystallized cutting layer, an intermediate layer and a release layer, which are sequentially formed on the base material,
The cutting layer is a nickel alloy layer containing phosphorus, the intermediate layer is a layer made of chromium, nickel, copper, cobalt, or an alloy layer containing at least one of these elements, and A mold for glass molding, wherein the release layer is an alloy layer containing iridium, rhenium and carbon.
前記離型層の炭素濃度が1〜50at%であることを特徴とする請求項5記載のガラス成形用金型。 The glass mold according to claim 5, wherein the release layer has a carbon concentration of 1 to 50 at%. 前記切削加工層のリン濃度が1〜15重量%であることを特徴とする請求項5記載のガラス成形用金型。 6. The glass molding die according to claim 5, wherein the cutting layer has a phosphorus concentration of 1 to 15% by weight. 前記中間層の炭素濃度が1〜80at%であることを特徴とする請求項5記載のガラス成形用金型。 The glass mold according to claim 5, wherein the intermediate layer has a carbon concentration of 1 to 80 at%. 鉄鋼製の基材と、この基材上に順次形成された,切削加工層、中間層及び離型層を具備するガラス成形用金型を製造する方法であり、基材上に切削加工層を形成した後に加熱することにより結晶化させ、その後に前記中間層及び離型層を順次形成することを特徴とするガラス成形用金型の製造方法。 A method of manufacturing a glass mold having a steel substrate and a cutting layer, an intermediate layer, and a release layer, which are sequentially formed on the substrate, the cutting layer being formed on the substrate. A method for producing a glass molding die, characterized in that the glass layer is crystallized by heating after being formed, and thereafter the intermediate layer and the release layer are formed in order.
JP2009031767A 2008-02-15 2009-02-13 Manufacturing method of glass mold Active JP5322684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009031767A JP5322684B2 (en) 2008-02-15 2009-02-13 Manufacturing method of glass mold

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008035215 2008-02-15
JP2008035215 2008-02-15
JP2009031767A JP5322684B2 (en) 2008-02-15 2009-02-13 Manufacturing method of glass mold

Publications (2)

Publication Number Publication Date
JP2009215156A true JP2009215156A (en) 2009-09-24
JP5322684B2 JP5322684B2 (en) 2013-10-23

Family

ID=41187411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009031767A Active JP5322684B2 (en) 2008-02-15 2009-02-13 Manufacturing method of glass mold

Country Status (1)

Country Link
JP (1) JP5322684B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147682A (en) * 2012-01-17 2013-08-01 Canon Inc Amorphous alloy, molding die and method for molding optical element

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103836A (en) * 1986-10-21 1988-05-09 Matsushita Electric Ind Co Ltd Mold for molding optical glass element
JPH08143320A (en) * 1994-11-22 1996-06-04 Hooya Precision Kk Forming die for glass formed article
WO2000040516A1 (en) * 1999-01-05 2000-07-13 Matsushita Electric Industrial Co., Ltd. Die for forming optical device, method for manufacturing the same, and optical device
JP2001302260A (en) * 2000-04-25 2001-10-31 Canon Inc Method for molding optical element
JP2002348129A (en) * 2001-05-25 2002-12-04 Canon Inc Method for manufacturing molding die for optical glass element and method for molding optical glass element
JP2003073134A (en) * 2001-08-31 2003-03-12 Canon Inc Method for forming optical element and mold
JP2003246629A (en) * 2002-02-26 2003-09-02 Olympus Optical Co Ltd Method of producing die for molding optical element and die for molding optical element
JP2004059368A (en) * 2002-07-29 2004-02-26 Matsushita Electric Ind Co Ltd Molding die and method of manufacturing molding die
JP2006290700A (en) * 2005-04-14 2006-10-26 Hoya Corp Mold for glass optical element and method of manufacturing glass optical element
JP2007001822A (en) * 2005-06-24 2007-01-11 Toshiba Mach Co Ltd Mold for molding glass and method of manufacturing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103836A (en) * 1986-10-21 1988-05-09 Matsushita Electric Ind Co Ltd Mold for molding optical glass element
JPH08143320A (en) * 1994-11-22 1996-06-04 Hooya Precision Kk Forming die for glass formed article
WO2000040516A1 (en) * 1999-01-05 2000-07-13 Matsushita Electric Industrial Co., Ltd. Die for forming optical device, method for manufacturing the same, and optical device
JP2001302260A (en) * 2000-04-25 2001-10-31 Canon Inc Method for molding optical element
JP2002348129A (en) * 2001-05-25 2002-12-04 Canon Inc Method for manufacturing molding die for optical glass element and method for molding optical glass element
JP2003073134A (en) * 2001-08-31 2003-03-12 Canon Inc Method for forming optical element and mold
JP2003246629A (en) * 2002-02-26 2003-09-02 Olympus Optical Co Ltd Method of producing die for molding optical element and die for molding optical element
JP2004059368A (en) * 2002-07-29 2004-02-26 Matsushita Electric Ind Co Ltd Molding die and method of manufacturing molding die
JP2006290700A (en) * 2005-04-14 2006-10-26 Hoya Corp Mold for glass optical element and method of manufacturing glass optical element
JP2007001822A (en) * 2005-06-24 2007-01-11 Toshiba Mach Co Ltd Mold for molding glass and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147682A (en) * 2012-01-17 2013-08-01 Canon Inc Amorphous alloy, molding die and method for molding optical element

Also Published As

Publication number Publication date
JP5322684B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
US7966845B2 (en) Glass-shaping mold and method for manufacturing the same
US20070040291A1 (en) Optical element forming mold and manufacturing method thereof
JP4753249B2 (en) Mold for glass molding
JP2014058716A (en) Metal mold, die roll and electroformed product
JP2006225190A (en) Metallic mold for molding optical element and its manufacturing method
JP5322684B2 (en) Manufacturing method of glass mold
WO2015076220A1 (en) Hard coating film and target for forming hard coating film
TW201200567A (en) TiAlN coatings for glass molding dies and tooling
JP2007302981A (en) METHOD FOR MANUFACTURING CYLINDRICAL SPUTTERING TARGET MATERIAL OF Mo ALLOY
TW200844056A (en) Method for producing mold for glass molding
JP2008024000A (en) Optical element molding die, manufacturing method for optical element, and optical element
JP5376984B2 (en) Mold for glass molding
JP5322456B2 (en) Manufacturing method of glass mold
TWI374860B (en)
JP5732004B2 (en) Metal material
JP5936487B2 (en) Amorphous alloy, molding die, and optical element manufacturing method
JPH11268921A (en) Press mold for forming glass
JP4962964B2 (en) Glass lens mold and manufacturing method thereof
JP4032165B2 (en) Optical element molding die and optical element manufacturing method
JP4922855B2 (en) Glass mold
JP2007254266A (en) Glass molding die
JP2007169098A (en) Mold for shaping optical glass element
JP2004307233A (en) Mold for molding optical element
JP2008110902A (en) Optical element forming die and its production method
JP2002220239A (en) Die for forming glass element and method of producing the same and method of producing optical element using the die

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R150 Certificate of patent or registration of utility model

Ref document number: 5322684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350