JP2006225190A - Metallic mold for molding optical element and its manufacturing method - Google Patents

Metallic mold for molding optical element and its manufacturing method Download PDF

Info

Publication number
JP2006225190A
JP2006225190A JP2005039491A JP2005039491A JP2006225190A JP 2006225190 A JP2006225190 A JP 2006225190A JP 2005039491 A JP2005039491 A JP 2005039491A JP 2005039491 A JP2005039491 A JP 2005039491A JP 2006225190 A JP2006225190 A JP 2006225190A
Authority
JP
Japan
Prior art keywords
optical glass
protective film
intermediate layer
glass element
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005039491A
Other languages
Japanese (ja)
Inventor
Asako Kasahara
麻子 笠原
Shotaro Miyake
正太郎 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Pentax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentax Corp filed Critical Pentax Corp
Priority to JP2005039491A priority Critical patent/JP2006225190A/en
Publication of JP2006225190A publication Critical patent/JP2006225190A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metallic mold for molding an optical element free from surface roughness and fusion even if a highly accurate and high-melting optical element is repeatedly press molded. <P>SOLUTION: The metallic mold for molding the optical element has a preform 10 for the metallic mold, an intermediate layer 12 formed at the preform 10 and a protective film 13 formed on the intermediate rayer 12, and the protective film 13 is substantially composed of an amorphous alloy. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は光学ガラス素子のプレス成形用金型、特に耐熱性、耐酸化性、高温強度、及び耐ガラス反応性に優れたプレス成形用金型、及びその製造方法に関する。   The present invention relates to a mold for press molding of an optical glass element, in particular, a mold for press molding excellent in heat resistance, oxidation resistance, high temperature strength, and glass resistance resistance, and a method for producing the same.

光学ガラス素子のプレス成形では、プレス成形用金型に対して常温と高温との間の昇温及び降温のサイクルが繰り返されるため、プレス成形用金型は優れた耐熱性、耐酸化性、高温強度、耐摩耗性、耐ガラス反応性等が要求される。また光学ガラス素子の小型化及び高精度化に伴い、高精度に加工し得ることも必要である。   In press molding of optical glass elements, the temperature rise and fall cycles between normal temperature and high temperature are repeated for the press mold, so the press mold has excellent heat resistance, oxidation resistance, and high temperature. Strength, abrasion resistance, glass reactivity resistance, etc. are required. In addition, with the miniaturization and high accuracy of optical glass elements, it is also necessary to be able to process with high accuracy.

これらの要求を満たす成形用金型の母材として、超硬合金(WC)等のセラミックスが使用されている。超硬合金は機械的強度に優れ、不活性雰囲気中での耐酸化性が高い。しかしながら、光学ガラス素子のプレス成形は高温で行われるため、光学ガラスと反応して表面が僅かに酸化して形状精度が低下する。そのため母材表面を再研磨する必要があるが、母材の材料である超硬合金は非常に固いので、高精度に再研磨するのに非常に手間がかかる。   Ceramics such as cemented carbide (WC) are used as a base material of a molding die that satisfies these requirements. Cemented carbide has excellent mechanical strength and high oxidation resistance in an inert atmosphere. However, since press molding of the optical glass element is performed at a high temperature, the surface is slightly oxidized by reacting with the optical glass, and the shape accuracy is lowered. Therefore, it is necessary to regrind the surface of the base material, but the cemented carbide, which is the material of the base material, is very hard, so it takes a lot of work to re-polish with high accuracy.

そこで、超硬合金製金型の成形面に貴金属合金の保護層を形成することが提案された。しかしながら貴金属合金の保護層では、光学ガラス素子のプレス温度で粒成長が起こり、成形面の面精度が劣化するため、プレス成形の繰り返し回数に限りがある。また長時間成形サイクルを行うと、母材の成分(WC)が貴金属合金の保護層に拡散して、表面で酸化物を形成する。その酸化物が光学ガラス素子中の成分と反応すると、光学ガラスと保護層表面とが融着するおそれがある。   Accordingly, it has been proposed to form a protective layer of a noble metal alloy on the molding surface of a cemented carbide mold. However, in the protective layer of the noble metal alloy, grain growth occurs at the pressing temperature of the optical glass element, and the surface accuracy of the molding surface deteriorates, so that the number of press molding repetitions is limited. In addition, when a long molding cycle is performed, the base material component (WC) diffuses into the protective layer of the noble metal alloy and forms an oxide on the surface. When the oxide reacts with a component in the optical glass element, the optical glass and the protective layer surface may be fused.

このような状況下で、特開平6-144850号(特許文献1)は、WCを主成分とする超硬合金等からなる母材の成形面を光学ガラス素子の反転形状に近い形状に粗加工し、その成形面にIr、Pt等の非晶質基合金の薄膜をスパッタリング法により形成し、その非晶質合金薄膜を高精度に切削加工した光学ガラス素子の成形用金型を開示している。この非晶質合金薄膜は、粒成長が起こりにくいが、母材と非晶質基合金薄膜との間に中間層がないので、母材成分の保護膜への拡散が十分に抑制されないという問題がある。   Under such circumstances, Japanese Patent Application Laid-Open No. 6-144850 (Patent Document 1) discloses rough machining of a molding surface of a base material made of a cemented carbide containing WC as a main component to a shape close to the inverted shape of an optical glass element. An optical glass element molding die is disclosed in which a thin film of an amorphous base alloy such as Ir or Pt is formed on the molding surface by a sputtering method, and the amorphous alloy thin film is cut with high precision. Yes. Although this amorphous alloy thin film does not easily cause grain growth, there is no intermediate layer between the base material and the amorphous base alloy thin film, so that the diffusion of the base material component into the protective film is not sufficiently suppressed. There is.

特開2004-59368号(特許文献2)は、金型用母材の成形面にTa、Cr等の接着層をスパッタリング法により形成した後に、Irを主材としてさらに1種以上の貴金属元素を含む合金からなる保護膜をスパッタリング法により形成し、加圧熱処理を施してなるガラス成形用金型を開示している。接着層により母材と保護膜との付着力が強化し、また加圧熱処理により金型の耐熱性が向上している。しかしながら、母材が超硬合金の場合、熱処理条件は650〜750℃及び14〜50時間であるので、保護膜中の貴金属合金は結晶化していると考えられる。そのため、プレス成形の繰り返しにより、母材や接着層の成分の保護膜への拡散が十分に抑制されないという問題がある。   JP-A-2004-59368 (Patent Document 2) discloses that after forming an adhesive layer of Ta, Cr or the like on the molding surface of a mold base material by a sputtering method, one or more kinds of noble metal elements are added using Ir as a main material. A glass molding die is disclosed in which a protective film made of an alloy is formed by sputtering and subjected to pressure heat treatment. The adhesion between the base material and the protective film is strengthened by the adhesive layer, and the heat resistance of the mold is improved by the pressure heat treatment. However, when the base material is a cemented carbide, the heat treatment conditions are 650 to 750 ° C. and 14 to 50 hours, so the noble metal alloy in the protective film is considered to be crystallized. Therefore, there is a problem that the diffusion of the base material and the components of the adhesive layer to the protective film is not sufficiently suppressed by repeated press molding.

特開平6-144850号公報JP-A-6-144850 特開平2004-59368号公報JP 2004-59368 A

従って本発明の目的は、高精度かつ高融点の光学ガラス素子を繰り返しプレス成形しても、面荒れや融着のない光学ガラス素子成形用金型を提供することである。   Accordingly, an object of the present invention is to provide a mold for molding an optical glass element that does not cause surface roughness or fusion even when a high-precision and high-melting optical glass element is repeatedly press-molded.

本発明のもう1つの目的は、かかる光学ガラス素子成形用金型の製造方法を提供することである。   Another object of the present invention is to provide a method for producing such an optical glass element molding die.

上記目的に鑑み鋭意研究の結果、本発明者らは、成形用金型の母材に中間層を介して実質的に非晶質な合金からなる保護膜を形成し、不活性ガス雰囲気中で保護膜合金の結晶化温度未満の温度で熱処理することにより、保護膜は実質的に非晶質合金のままアニールされ、耐熱性、耐酸化性及び耐ガラス反応性に優れた光学ガラス素子成形用金型が得られることを発見し、本発明に想到した。   As a result of diligent research in view of the above object, the present inventors formed a protective film made of a substantially amorphous alloy on the base material of the molding die through an intermediate layer, and in an inert gas atmosphere. By heat-treating at a temperature lower than the crystallization temperature of the protective film alloy, the protective film is annealed as a substantially amorphous alloy, and for optical glass element molding excellent in heat resistance, oxidation resistance and glass resistance. It was discovered that a mold can be obtained, and the present invention has been conceived.

すなわち、本発明は以下の手段により達成される。
(1) 金型用母材と、前記母材に形成された中間層と、前記中間層上に形成された保護膜とを有し、前記保護膜が実質的に非晶質な合金からなることを特徴とする光学ガラス素子成形用金型。
(2) 上記(1) に記載の光学ガラス素子成形用金型において、前記中間層がTi,V,Cr,Ni,Nb,Mo,Rh,Ta,W,Re,Ir及びこれらの合金からなる群から選ばれた少なくとも一種からなることを特徴とする光学ガラス素子成形用金型。
(3) 上記(2) に記載の光学ガラス素子成形用金型において、前記中間層がMoからなることを特徴とする光学ガラス素子成形用金型。
(4) 上記(1)〜(3) のいずれかに記載の光学ガラス素子成形用金型において、前記保護膜がPt,Ru,Rh,Pd,Re及びOsからなる群から選ばれた少なくとも一種を含有するIr基合金であることを特徴とする光学ガラス素子成形用金型。
(5) 上記(1)〜(4) のいずれかに記載の光学ガラス素子成形用金型を製造する方法であって、金型用母材に中間層を形成し、前記中間層上に保護膜として非晶質合金薄膜を形成し、前記合金の結晶化温度未満の温度で、かつ不活性ガス雰囲気中で熱処理を行うことを特徴とする方法。
(6) 上記(5) に記載の光学ガラス素子成形用金型の製造方法において、前記熱処理温度が500〜600℃であることを特徴とする方法。
That is, the present invention is achieved by the following means.
(1) A mold base material, an intermediate layer formed on the base material, and a protective film formed on the intermediate layer, wherein the protective film is made of a substantially amorphous alloy. An optical glass element molding die characterized by the above.
(2) In the optical glass element molding die described in (1) above, the intermediate layer is made of Ti, V, Cr, Ni, Nb, Mo, Rh, Ta, W, Re, Ir, and alloys thereof. An optical glass element molding die comprising at least one selected from the group.
(3) The optical glass element molding die according to (2), wherein the intermediate layer is made of Mo.
(4) In the optical glass element molding die according to any one of (1) to (3), the protective film is at least one selected from the group consisting of Pt, Ru, Rh, Pd, Re, and Os. An optical glass element molding die, which is an Ir-based alloy containing
(5) A method for producing a mold for optical glass element molding according to any one of (1) to (4) above, wherein an intermediate layer is formed on a mold base material, and the intermediate layer is protected. A method comprising forming an amorphous alloy thin film as a film, and performing a heat treatment at a temperature lower than a crystallization temperature of the alloy and in an inert gas atmosphere.
(6) The method for producing a mold for molding an optical glass element according to the above (5), wherein the heat treatment temperature is 500 to 600 ° C.

本発明の光学ガラス素子成形用金型は、母材の成形面に中間層を介して保護膜を有するとともに、保護膜が実質的に非晶質なままアニールされているので、保護膜における粒成長が抑制されているとともに、母材や中間層の成分の保護膜への拡散が十分に抑制されており、面荒れや融着なしに多数回のプレス成形を繰り返すことができる。   The optical glass element molding die of the present invention has a protective film on the molding surface of the base material through an intermediate layer and is annealed while the protective film is substantially amorphous. The growth is suppressed, and the diffusion of the base material and intermediate layer components into the protective film is sufficiently suppressed, so that press molding can be repeated many times without surface roughness or fusion.

(1) 光学ガラス素子成形用金型
図1に示すように、本発明の成形用金型を構成する母材10は所望の光学ガラス素子の反転形状の成形面11を有し、成形面11には中間層12を介して保護膜13が形成されている。母材10の成形面11は高精密に研磨加工されているので、保護膜13の成形面14も高精密な反転形状を有する。
(1) Optical Glass Element Molding Mold As shown in FIG. 1, a base material 10 constituting the molding mold of the present invention has a molding surface 11 having a reverse shape of a desired optical glass element. A protective film 13 is formed through the intermediate layer 12. Since the molding surface 11 of the base material 10 is polished with high precision, the molding surface 14 of the protective film 13 also has a highly precise inverted shape.

光学ガラスのプレス成形に使用するため、母材10は高温高圧下で高い機械的強度を有する材料からなる。かかる材料としては、WC粒子とCo金属バインダとの焼結体である超硬合金、WC粒子を焼結してなる超硬、SiC,ZrO2,TiC等のセラミックス、及びWC以外のセラミック(Cr2O3,Al2O3等)の粒子とNi金属等のバインダとの焼結体であるサーメット等が好ましい。 In order to be used for press molding of optical glass, the base material 10 is made of a material having high mechanical strength under high temperature and pressure. Such materials include cemented carbide, which is a sintered body of WC particles and Co metal binder, cemented carbide obtained by sintering WC particles, ceramics such as SiC, ZrO 2 and TiC, and ceramics other than WC (Cr 2 O 3 , Al 2 O 3 etc.) and a cermet which is a sintered body of a binder such as Ni metal is preferred.

中間層12は単層又は多層であり、多層の場合、各層の組成が同一であっても異なっていてもよい。中間層12を設けることにより、母材10と保護膜13との付着性が向上する。中間層12の材料としては、光学ガラス素子の成形温度以上の熔融温度を有する純金属又は合金が好ましい。具体的には、Ti,V,Cr,Ni,Nb,Mo,Rh,Ta,W,Re,Ir及びこれらの合金が挙げられる。中でも、低温から高温まで、化学的に安定なMoが特に好ましい。   The intermediate layer 12 is a single layer or multiple layers. In the case of multiple layers, the composition of each layer may be the same or different. By providing the intermediate layer 12, the adhesion between the base material 10 and the protective film 13 is improved. The material of the intermediate layer 12 is preferably a pure metal or alloy having a melting temperature equal to or higher than the molding temperature of the optical glass element. Specific examples include Ti, V, Cr, Ni, Nb, Mo, Rh, Ta, W, Re, Ir, and alloys thereof. Among these, Mo that is chemically stable from a low temperature to a high temperature is particularly preferable.

保護膜13は実質的に非晶質な合金からなる。保護膜13が非晶質合金からなるため、母材10及び中間層12の成分の保護膜13への拡散を抑制することができ、面荒れや融着なしに多数回のプレス成形を繰り返すことができる。保護膜13の材料としては、Pt、Ru、Rh、Pd、Re、Os、Ir等の金属が好ましく、特にPt,Ru,Rh,Pd,Re及びOsからなる群から選ばれた少なくとも一種を含有するIr基合金が好ましい。上記Ir合金は高硬度であるため、プレス成形を繰り返しても保護膜13の成形面14に傷がつきにくいため好ましい。   The protective film 13 is made of a substantially amorphous alloy. Since the protective film 13 is made of an amorphous alloy, it is possible to suppress the diffusion of the components of the base material 10 and the intermediate layer 12 into the protective film 13, and repeat press forming many times without surface roughness or fusion. Can do. The material of the protective film 13 is preferably a metal such as Pt, Ru, Rh, Pd, Re, Os, Ir, and particularly contains at least one selected from the group consisting of Pt, Ru, Rh, Pd, Re, and Os. Ir-based alloys are preferred. Since the Ir alloy has high hardness, it is preferable because the molding surface 14 of the protective film 13 is hardly scratched even if press molding is repeated.

(2) 光学ガラス素子成形用金型の製造方法
光学ガラス素子の反転形状のニアネットシェイプに焼結した母材10の一面を研削した後、ダイヤモンド研磨材により研磨することにより、高精度な成形面11を形成する。
(2) Manufacturing method of mold for molding optical glass element High precision molding by grinding one surface of base material 10 sintered to near net shape of inverted shape of optical glass element and then polishing with diamond abrasive Surface 11 is formed.

中間層12の形成方法は公知のもので良いが、例えばスパッタリング法、真空蒸着法、イオンプレーティング法、プラズマCVD等が好ましく、中でもスパッタリング法が特に好ましい。中間層12が合金からなる場合、各構成金属のブロックによりターゲットを構成すれば、各金属の面積比を変更することにより所望の組成の中間層12を形成することができる。   The intermediate layer 12 may be formed by a known method, but for example, sputtering, vacuum deposition, ion plating, plasma CVD, etc. are preferable, and sputtering is particularly preferable. When the intermediate layer 12 is made of an alloy, the intermediate layer 12 having a desired composition can be formed by changing the area ratio of each metal if the target is constituted by blocks of the respective constituent metals.

保護膜13を形成する方法は、例えばスパッタリング法、真空蒸着法、イオンプレーティング法、プラズマCVD等が好ましく、中でもスパッタリング法が特に好ましい。保護膜13用ターゲットは、中間層12の場合と同様に、各構成金属のブロックにより構成することができる。   As a method for forming the protective film 13, for example, a sputtering method, a vacuum deposition method, an ion plating method, plasma CVD, or the like is preferable, and a sputtering method is particularly preferable. As in the case of the intermediate layer 12, the target for the protective film 13 can be composed of blocks of constituent metals.

保護膜13を形成した後で、アルゴン、窒素等の不活性ガス雰囲気中で、かつ結晶化温度未満の温度で熱処理することにより、保護膜13は実質的に非晶質のままアニールされる。熱処理温度は500〜600℃であるのが好ましい。   After the protective film 13 is formed, the protective film 13 is annealed while being substantially amorphous by performing heat treatment in an inert gas atmosphere such as argon or nitrogen and at a temperature lower than the crystallization temperature. The heat treatment temperature is preferably 500 to 600 ° C.

本発明を以下の実施例によってさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

実施例1
光学ガラス素子の反転形状にほぼ等しい形状の成形面を有するようにWCを焼結して母材10を形成し、その成形面の精度を上げるために研削加工した後、ダイヤモンド研磨材を用いて表面粗さが0.02μm以下になるように研磨した。得られた成形面11に、スパッタリングによりMoからなる厚さ1μmの中間層12を形成した。さらに中間層12の表面に、保護膜13として、80質量%のIr、10質量%のRe及び10質量%のRhからなる貴金属合金の非晶質膜をスパッタリングにより1μmの厚さに形成した。スパッタリングの際の母材10の温度は約300℃であった。得られた金型を不活性ガス(アルゴン)雰囲気中において母材10を580℃で5時間熱処理することにより、保護膜13を実質的に非晶質に保ちつつアニールした。
Example 1
The base material 10 is formed by sintering WC so as to have a molding surface having a shape substantially equal to the inverted shape of the optical glass element, and after grinding to increase the accuracy of the molding surface, a diamond abrasive is used. Polishing was performed so that the surface roughness was 0.02 μm or less. An intermediate layer 12 made of Mo and having a thickness of 1 μm was formed on the obtained molding surface 11 by sputtering. Further, a noble metal alloy amorphous film composed of 80% by mass of Ir, 10% by mass of Re, and 10% by mass of Rh was formed as a protective film 13 on the surface of the intermediate layer 12 to a thickness of 1 μm by sputtering. The temperature of the base material 10 during sputtering was about 300 ° C. The obtained mold was annealed while keeping the protective film 13 substantially amorphous by heat-treating the base material 10 at 580 ° C. for 5 hours in an inert gas (argon) atmosphere.

このようにして得られた金型の成形面14からは母材10及び中間層12の成分は検出されなかった。また熱処理の前後で、成形面14の表面粗さは変わらなかった。   Components of the base material 10 and the intermediate layer 12 were not detected from the molding surface 14 of the mold thus obtained. Further, the surface roughness of the molding surface 14 did not change before and after the heat treatment.

この成形用金型を用いて実際に光学ガラス素子をプレス成形した。光学ガラスにはL-BAL35ガラス[(株)オハラ製]を使用した。プレス成形中の光学ガラスの温度は580℃であり、プレス成形後に成形用金型から取り出した時の光学ガラスの温度は230℃であった。プレス成形サイクルを5000回繰り返したが、保護膜13の表面粗さの変化は見られなかった。また光学ガラスとの融着も起こらなかった。   An optical glass element was actually press-molded using this molding die. As the optical glass, L-BAL35 glass [manufactured by OHARA INC.] Was used. The temperature of the optical glass during press molding was 580 ° C., and the temperature of the optical glass when taken out from the molding die after press molding was 230 ° C. The press molding cycle was repeated 5000 times, but no change in the surface roughness of the protective film 13 was observed. Further, no fusion with the optical glass occurred.

比較例1
実施例1と同様に作製したWCからなる母材10の成形面11に、スパッタリングによりMoからなる厚さ1μmの中間層12を形成した後、保護膜13として80質量%のIr、10質量%のRe及び10質量%のRhからなる貴金属合金の非晶質膜をスパッタリングにより1μmの厚さに形成した。スパッタリングの際の母材10の温度は約300℃であった。保護膜13を不活性ガス雰囲気中で700℃で5時間熱処理することにより、多結晶化させた。
Comparative Example 1
After forming the intermediate layer 12 of Mo having a thickness of 1 μm by sputtering on the molding surface 11 of the base material 10 made of WC produced in the same manner as in Example 1, 80% Ir, 10% by mass as the protective film 13 An amorphous film of a noble metal alloy composed of Re and 10% by mass of Rh was formed to a thickness of 1 μm by sputtering. The temperature of the base material 10 during sputtering was about 300 ° C. The protective film 13 was polycrystallized by heat treatment at 700 ° C. for 5 hours in an inert gas atmosphere.

このようにして得られた金型の成形面14から、母材10及び中間層12の成分が検出された。また成形面14にはクモリが生じていた。これから、成形面14が面荒れしていることが分かる。   Components of the base material 10 and the intermediate layer 12 were detected from the molding surface 14 of the mold thus obtained. Moreover, the molding surface 14 had spiders. From this, it can be seen that the molding surface 14 is rough.

この成形用金型を用いて実施例1と同じ条件下でプレス成形を行ったところ、ほぼ30回目で保護膜13と光学ガラスとの融着が生じ、保護膜13の一部が中間層12から剥離した。   When press molding was performed under the same conditions as in Example 1 using this molding die, the protective film 13 and the optical glass were fused at about the 30th time, and a part of the protective film 13 was the intermediate layer 12. Peeled off.

本発明の一実施例による光学ガラス素子成形用金型を概略的に示す断面図である。It is sectional drawing which shows schematically the optical glass element shaping die by one Example of this invention.

符号の説明Explanation of symbols

10・・・母材
11・・・成形面
12・・・中間層
13・・・保護膜
14・・・成形面
10 ... base material
11 ... Molded surface
12 ... Middle layer
13 ... Protective film
14 ... Molded surface

Claims (6)

金型用母材と、前記母材に形成された中間層と、前記中間層上に形成された保護膜とを有し、前記保護膜が実質的に非晶質な合金からなることを特徴とする光学ガラス素子成形用金型。 A mold base material, an intermediate layer formed on the base material, and a protective film formed on the intermediate layer, wherein the protective film is made of a substantially amorphous alloy. A mold for forming an optical glass element. 請求項1に記載の光学ガラス素子成形用金型において、前記中間層がTi,V,Cr,Ni,Nb,Mo,Rh,Ta,W,Re,Ir及びこれらの合金からなる群から選ばれた少なくとも一種からなることを特徴とする光学ガラス素子成形用金型。 The optical glass element molding die according to claim 1, wherein the intermediate layer is selected from the group consisting of Ti, V, Cr, Ni, Nb, Mo, Rh, Ta, W, Re, Ir, and alloys thereof. An optical glass element molding die comprising at least one kind. 請求項2に記載の光学ガラス素子成形用金型において、前記中間層がMoからなることを特徴とする光学ガラス素子成形用金型。 3. The optical glass element molding die according to claim 2, wherein the intermediate layer is made of Mo. 請求項1〜3のいずれかに記載の光学ガラス素子成形用金型において、前記保護膜がPt,Ru,Rh,Pd,Re及びOsからなる群から選ばれた少なくとも一種を含有するIr基合金であることを特徴とする光学ガラス素子成形用金型。 The optical glass element molding die according to any one of claims 1 to 3, wherein the protective film contains at least one selected from the group consisting of Pt, Ru, Rh, Pd, Re, and Os. An optical glass element molding die characterized by the above. 請求項1〜4のいずれかに記載の光学ガラス素子成形用金型を製造する方法であって、金型用母材に中間層を形成し、前記中間層上に保護膜として非晶質合金薄膜を形成し、前記合金の結晶化温度未満の温度で、かつ不活性ガス雰囲気中で熱処理を行うことを特徴とする方法。 A method for producing a mold for forming an optical glass element according to any one of claims 1 to 4, wherein an intermediate layer is formed on a base material for the mold, and an amorphous alloy is formed as a protective film on the intermediate layer. A method comprising forming a thin film and performing a heat treatment at a temperature lower than the crystallization temperature of the alloy and in an inert gas atmosphere. 請求項5に記載の光学ガラス素子成形用金型の製造方法において、前記熱処理温度が500〜600℃であることを特徴とする方法。 The method for producing an optical glass element molding die according to claim 5, wherein the heat treatment temperature is 500 to 600 ° C.
JP2005039491A 2005-02-16 2005-02-16 Metallic mold for molding optical element and its manufacturing method Pending JP2006225190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005039491A JP2006225190A (en) 2005-02-16 2005-02-16 Metallic mold for molding optical element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005039491A JP2006225190A (en) 2005-02-16 2005-02-16 Metallic mold for molding optical element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006225190A true JP2006225190A (en) 2006-08-31

Family

ID=36986881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005039491A Pending JP2006225190A (en) 2005-02-16 2005-02-16 Metallic mold for molding optical element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006225190A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120639A (en) * 2006-11-14 2008-05-29 Sumita Optical Glass Inc Optical glass element shaping mold
JP2009067607A (en) * 2007-09-11 2009-04-02 Hitachi Maxell Ltd Mold for molding glass optical device, glass optical device and manufacturing process of glass optical device
US20130140428A1 (en) * 2011-12-01 2013-06-06 Hon Hai Precision Industry Co., Ltd. Mold core and method for manufacturing the mold core
JP2013147682A (en) * 2012-01-17 2013-08-01 Canon Inc Amorphous alloy, molding die and method for molding optical element
JP2014040642A (en) * 2012-08-23 2014-03-06 Canon Inc Amorphous alloy, and method of manufacturing mold and optical device
JP2016053207A (en) * 2014-09-04 2016-04-14 キヤノン株式会社 Amorphous alloy, molding die and method for producing optical element
JP2016053206A (en) * 2014-09-04 2016-04-14 キヤノン株式会社 Amorphous alloy, molding die and method for producing optical element
JP2016053208A (en) * 2014-09-04 2016-04-14 キヤノン株式会社 Amorphous alloy, molding die and method for producing optical element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120639A (en) * 2006-11-14 2008-05-29 Sumita Optical Glass Inc Optical glass element shaping mold
JP2009067607A (en) * 2007-09-11 2009-04-02 Hitachi Maxell Ltd Mold for molding glass optical device, glass optical device and manufacturing process of glass optical device
US20130140428A1 (en) * 2011-12-01 2013-06-06 Hon Hai Precision Industry Co., Ltd. Mold core and method for manufacturing the mold core
JP2013147682A (en) * 2012-01-17 2013-08-01 Canon Inc Amorphous alloy, molding die and method for molding optical element
JP2014040642A (en) * 2012-08-23 2014-03-06 Canon Inc Amorphous alloy, and method of manufacturing mold and optical device
JP2016053207A (en) * 2014-09-04 2016-04-14 キヤノン株式会社 Amorphous alloy, molding die and method for producing optical element
JP2016053206A (en) * 2014-09-04 2016-04-14 キヤノン株式会社 Amorphous alloy, molding die and method for producing optical element
JP2016053208A (en) * 2014-09-04 2016-04-14 キヤノン株式会社 Amorphous alloy, molding die and method for producing optical element

Similar Documents

Publication Publication Date Title
JP2964779B2 (en) Press mold for optical element
JP2006225190A (en) Metallic mold for molding optical element and its manufacturing method
JPWO2007046437A1 (en) Corrosion-resistant and heat-resistant alloys for molding dies and optical element molding dies
JP4690100B2 (en) Mold for glass optical element and method for manufacturing glass optical element
US20060141093A1 (en) Composite mold and method for making the same
US20100011815A1 (en) Glass-shaping mold and method for manufacturing the same
US9102561B2 (en) Amorphous alloy, molding die, and method for producing optical element
JP5570047B2 (en) Optical glass element molding die and manufacturing method thereof
KR100947331B1 (en) Thin film layer structure having reinforcing layer for lens mold core and method of forming the same
JPH07172849A (en) Mold for press-forming optical element and its production
JP4667254B2 (en) Optical glass element mold
JP2004059368A (en) Molding die and method of manufacturing molding die
JP2009073693A (en) Optical element-molding die, and method for producing the same
JP3149636B2 (en) Press-molding mold for optical glass element, method for producing the same, and press-molding method for optical glass element
JPH11268921A (en) Press mold for forming glass
JP2007169098A (en) Mold for shaping optical glass element
JPS63297230A (en) Molding mold for glass moldings
JP4585558B2 (en) Optical glass element mold
JP2006347800A (en) Die for forming optical element
JP2003246629A (en) Method of producing die for molding optical element and die for molding optical element
JP6406938B2 (en) Amorphous alloy, mold for molding, and method of manufacturing optical element
JP5364434B2 (en) Mold for optical elements
JP5364433B2 (en) Mold for optical elements
JP2007137724A (en) Glass-made mold
JP2006151751A (en) Press forming mold and method of manufacturing the same