JP2008120639A - Optical glass element shaping mold - Google Patents

Optical glass element shaping mold Download PDF

Info

Publication number
JP2008120639A
JP2008120639A JP2006307750A JP2006307750A JP2008120639A JP 2008120639 A JP2008120639 A JP 2008120639A JP 2006307750 A JP2006307750 A JP 2006307750A JP 2006307750 A JP2006307750 A JP 2006307750A JP 2008120639 A JP2008120639 A JP 2008120639A
Authority
JP
Japan
Prior art keywords
coating layer
optical glass
glass element
glass
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006307750A
Other languages
Japanese (ja)
Other versions
JP4809192B2 (en
Inventor
Kiyoharu Umetsu
清春 梅津
Hiromi Watabe
洋己 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumita Optical Glass Inc
Original Assignee
Sumita Optical Glass Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumita Optical Glass Inc filed Critical Sumita Optical Glass Inc
Priority to JP2006307750A priority Critical patent/JP4809192B2/en
Publication of JP2008120639A publication Critical patent/JP2008120639A/en
Application granted granted Critical
Publication of JP4809192B2 publication Critical patent/JP4809192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical glass element shaping mold which exhibits a good release property between glass and the shaping mold even in repeated molding of phosphate glass or the like having strong reactivity and a high softening point, high adhesion strength between each of various optical glass element shaping mold base materials and a coating layer, excellent durability and suppressed of degradation and discoloration of the coating layer. <P>SOLUTION: A coating layer containing 1-10 wt.% molybdenum (Mo), 10-30 wt.% rhenium (Re), 1-15 wt.% Rhodium (Rh) and/or ruthenium (Ru), 40-85 wt.% iridium (Ir) and platinum (Pt) and 0-5 wt.% gold (Au) is laminated on the optical glass element forming surface of the optical glass element shaping mold base material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は反応性が強く軟化温度が高いリン酸塩ガラス等のガラス素材の繰り返し成形においても、ガラスとの離型性が良好で、耐久性に優れ、しかも成形時における光学ガラス素子の変色をも効果的に抑制し得る光学ガラス素子成形型に関する。   The present invention has excellent releasability from glass, excellent durability, and discoloration of the optical glass element during molding even in the repeated molding of glass materials such as phosphate glass having high reactivity and high softening temperature. The present invention also relates to an optical glass element mold that can be effectively suppressed.

デジタルカメラなどのコンパクトカメラや、その他の光学系ではその小型化のために高屈折率材料の使用が望まれている。また光通信分野で使用されるレンズはその小型化のためとその使用環境から、高屈折率で耐久性の高い光学材料の使用が望まれている。
従来は、高屈折率材料としては鉛を多く含む光学ガラスが使用されてきたが、環境問題から鉛を含まない光学材料の出現が望まれていた。
このような背景のもとで、K−PSFn1(商品名、住田光学ガラス社製、nd:1.9068)をはじめとするリン酸塩ガラスが開発された。K−PSFn1はリン酸を主成分とし、また軟化温度が高いため、直接プレス法で成形する場合、成形型(金型)との反応が非常に強い。
For compact cameras such as digital cameras and other optical systems, it is desired to use a high refractive index material for miniaturization. In addition, lenses used in the field of optical communication are required to use optical materials with high refractive index and high durability for their miniaturization and use environment.
Conventionally, optical glass containing a large amount of lead has been used as a high refractive index material, but the appearance of an optical material containing no lead has been desired due to environmental problems.
Against this background, phosphate glasses including K-PSFn1 (trade name, manufactured by Sumita Optical Glass Co., Ltd., nd: 1.9088) have been developed. Since K-PSFn1 contains phosphoric acid as a main component and has a high softening temperature, the reaction with the forming die (mold) is very strong when forming by direct pressing.

近年、光学ガラス素子の製造は、その量産性等の必要上から、ガラスのプレス成形後に研磨などを必要としない直接プレス成形法が多用されている。精密な光学ガラス素子を直接プレス成形で得るためには、その成形型のガラスプレス面が高温のガラスと不活性であって型とガラスとの密着性が低いこと、耐熱性があり緻密で熱伝導性の高い成形型であること等が要求される。
このような成形型としては、基材(母材)の成形面に白金(Pt)やイリジウム(Ir)を主成分とする合金薄膜をコーティングしたものが提案されている(特許文献1、2参照)。しかし、この成形型ではリン酸塩ガラスを繰り返し成形すると、ガラス中のリンが成形時に成形型のコーティング層中に拡散し、成形型とガラスとの離型性が損なわれるという欠点があり、特に前記のK−PSFn1のように軟化温度の高いリン酸塩ガラスの成形ではこの現象は顕著である。
光学ガラス素子成形面を構成するコーティング層と該素子成形型基材との密着強度を上げる方法としては、成形面を構成するコーティング層と光学ガラス素子成形型基材との間に中間層を設ける方法がある(特許文献3参照)。しかし、中間層を設ける手法はその製作が煩雑であり、経済的に不利である。
In recent years, in the manufacture of optical glass elements, a direct press molding method that does not require polishing or the like after press molding of glass has been frequently used due to the necessity of mass productivity. In order to obtain a precise optical glass element by direct press molding, the glass press surface of the mold is inactive with the high-temperature glass and the adhesion between the mold and the glass is low. A mold with high conductivity is required.
As such a mold, one in which a molding surface of a base material (base material) is coated with an alloy thin film containing platinum (Pt) or iridium (Ir) as a main component has been proposed (see Patent Documents 1 and 2). ). However, in this mold, when phosphate glass is repeatedly molded, phosphorus in the glass diffuses into the coating layer of the mold during molding, and the mold releasability between the mold and the glass is impaired. This phenomenon is remarkable in the formation of phosphate glass having a high softening temperature such as K-PSFn1.
As a method for increasing the adhesion strength between the coating layer constituting the optical glass element molding surface and the element molding die base material, an intermediate layer is provided between the coating layer constituting the molding surface and the optical glass element molding die base material. There is a method (see Patent Document 3). However, the method of providing the intermediate layer is complicated to manufacture and is disadvantageous economically.

また、本願出願人は上記の知見に基づき、ガラスと成形型との離型性が良好で成形型基材と成形型基材のガラス成形面のコーティング層との密着性の良い光学ガラス素子成形型として、モリブデン(Mo)を第一成分とし、イリジウム(Ir)を第二成分としたコーティング層を有する光学ガラス素子成形型を提案した(特許文献4参照)。
しかしながら、ガラス成形面に特許文献4に開示の組成をもったコーティング層を設けた光学ガラス素子成形型では、被成形ガラスのガラス成形面への付着は抑制されるものの揮発物によってコーティング層が変色してしまう場合があり、特に光学ガラス素子成形型のガラス成形面に設けるコーティング層のさらなる改良が望まれていた。
In addition, the applicant of the present application, based on the above knowledge, has a good mold releasability between the glass and the mold, and an optical glass element molding with good adhesion between the mold base and the coating layer on the glass molding surface of the mold base As a mold, an optical glass element molding die having a coating layer in which molybdenum (Mo) is the first component and iridium (Ir) is the second component has been proposed (see Patent Document 4).
However, in the optical glass element molding die in which the coating layer having the composition disclosed in Patent Document 4 is provided on the glass molding surface, although the adhesion of the glass to be molded to the glass molding surface is suppressed, the coating layer is discolored by volatiles. In particular, further improvement of the coating layer provided on the glass molding surface of the optical glass element molding die has been desired.

特公昭63−11285号公報Japanese Patent Publication No.63-11285 特公平4−16415号公報Japanese Patent Publication No. 4-16415 特開平10−231129号公報Japanese Patent Laid-Open No. 10-231129 特開2005−41739号公報JP 2005-41739 A

そこで本発明は、ガラス成形面にコーティング層が設けられた光学ガラス素子成形型であって、揮発物によるコーティング層の劣化はもとより変色をも効果的に抑制することができて、しかもリン酸塩ガラスのように反応性が強く軟化温度が高いガラスの繰り返し成形においても、被成形ガラスとの離型性が良好で、かつ、種々の光学ガラス素子成形型基材とコーティング層との密着強度が高くて耐久性に優れる光学ガラス素子成形型を提供することを目的とする。   Therefore, the present invention is an optical glass element molding die having a coating layer on a glass molding surface, which can effectively suppress discoloration as well as deterioration of the coating layer due to volatiles, and further, phosphate. Even in the repetitive molding of glass with high reactivity and high softening temperature like glass, the releasability from the glass to be molded is good, and the adhesion strength between various optical glass element mold bases and coating layers An object of the present invention is to provide an optical glass element mold that is high and excellent in durability.

本発明者は、上記目的を達成するために、ガラス成形面にコーティング層が設けられた光学ガラス素子の成形時におけるコーティング層の組成について鋭意検討をした結果、イリジウム(Ir)と白金(Pt)を主成分とし、さらにモリブデン(Mo)と、レニウム(Re)と、ロジウム(Rh)及び/又はルテニウム(Ru)とを必須成分として含有する合金からなるコーティング層を用いたところ、例えばリン酸塩ガラスからなるガラス素子の成形を行った場合にもリン酸塩ガラスが成形面に付着しにくいのみならず、ガラス素子の成形時において発生するH2Oなどの揮発物によるコーティング層の劣化、及び変色が効果的に抑制できるとの知見を得た。 In order to achieve the above object, the present inventor has conducted intensive studies on the composition of the coating layer at the time of molding an optical glass element having a coating layer on the glass molding surface. As a result, iridium (Ir) and platinum (Pt) When a coating layer made of an alloy containing, as a main component, molybdenum (Mo), rhenium (Re), rhodium (Rh) and / or ruthenium (Ru) as essential components is used, for example, phosphate When molding a glass element made of glass, the phosphate glass is not only difficult to adhere to the molding surface, but also the coating layer is deteriorated by volatile substances such as H 2 O generated during molding of the glass element, and The knowledge that discoloration can be suppressed effectively was obtained.

本発明は上記知見に基づくもので、下記(1)〜(4)の構成からなる。
(1)光学ガラス素子成形基材の光学ガラス素子成形面に
1〜10wt%のモリブデン(Mo)、
10〜30wt%のレニウム(Re)、
1〜15wt%のロジウム(Rh)及び/又はルテニウム(Ru)、
合計量で40〜85wt%のイリジウム(Ir)と白金(Pt)、及び
0〜5wt%の金(Au)
を含有するコーティング層を積層してなることを特徴とする光学ガラス素子成形型。
(2)光学ガラス素子成形基材の光学ガラス素子成形面に
2〜5wt%のモリブデン(Mo)、
10〜20wt%のレニウム(Re)、
2〜10wt%のロジウム(Rh)及び/又はルテニウム(Ru)、
合計量で50〜70wt%のイリジウム(Ir)と白金(Pt)、及び
0〜2wt%の金(Au)
を含有するコーティング層を積層してなることを特徴とする前記(1)に記載の光学ガラス素子成形型。
This invention is based on the said knowledge, and consists of the structure of following (1)-(4).
(1) 1-10 wt% molybdenum (Mo) on the optical glass element molding surface of the optical glass element molding substrate,
10-30 wt% rhenium (Re),
1-15 wt% rhodium (Rh) and / or ruthenium (Ru),
40-85 wt% iridium (Ir) and platinum (Pt) in total amount, and 0-5 wt% gold (Au)
An optical glass element molding die, wherein a coating layer containing is laminated.
(2) 2-5 wt% molybdenum (Mo) on the optical glass element molding surface of the optical glass element molding substrate,
10-20 wt% rhenium (Re),
2-10 wt% rhodium (Rh) and / or ruthenium (Ru),
50-70 wt% iridium (Ir) and platinum (Pt) in total amount, and 0-2 wt% gold (Au)
The optical glass element molding die according to (1), wherein a coating layer containing is laminated.

(3)前記コーティング層の厚みが0.1〜20μmであることを特徴とする前記(1)又は(2)に記載の光学ガラス素子成形型。
(4)前記コーティング層の厚みが0.5〜10μmであることを特徴とする請求項3に記載の光学ガラス素子成形型。
(3) The optical glass element mold according to (1) or (2), wherein the coating layer has a thickness of 0.1 to 20 μm.
(4) The optical glass element mold according to claim 3, wherein the coating layer has a thickness of 0.5 to 10 μm.

本発明の光学ガラス素子成形型によれば、軟化温度の高いリン酸塩ガラスからなるガラス素子を繰り返し成形しても、コーティング層が原料ガラス中のリンと反応しにくいため、コーティング層が劣化することがなく、ガラスとの離型性が損なわれることはない。このため、成形型へのガラスの付着が発生せず、高精度の光学ガラス素子の成形が可能となる。
また、本発明におけるコーティング層を構成する合金薄膜は、超硬合金、酸化アルミニウム、サーメット、炭化ケイ素等の光学ガラス素子成形型基材(成形型基材)との密着強度が高いため、これらの材料からなる成形型基材とコーティング層とを密着させるための中間層を必要としない。
さらに、コーティング層の表面が不動態を形成してコーティング層の酸化を抑制し、光学ガラス素子の成形時においてガラスから発生するH2Oなどの揮発性物質によるコーティング層の劣化、変色及び揮発物の付着を抑制することができるため、成形型の寿命を延ばすことができる上に、コーティング層にRe、Ru及び/又はRhを含有させることにより光学ガラス素子成型の機械的強度をより高めることができる。
According to the optical glass element molding die of the present invention, even if a glass element made of a phosphate glass having a high softening temperature is repeatedly molded, the coating layer is hardly reacted with phosphorus in the raw glass, so that the coating layer is deteriorated. And the releasability from the glass is not impaired. For this reason, adhesion of glass to the mold does not occur, and a highly accurate optical glass element can be molded.
In addition, the alloy thin film constituting the coating layer in the present invention has high adhesion strength with optical glass element mold base materials (mold base materials) such as cemented carbide, aluminum oxide, cermet, and silicon carbide. There is no need for an intermediate layer for closely attaching the mold base made of the material and the coating layer.
Further, the surface of the coating layer forms a passive state to suppress the oxidation of the coating layer, and the deterioration, discoloration and volatile matter of the coating layer due to volatile substances such as H 2 O generated from the glass during molding of the optical glass element. In addition to extending the life of the mold, it is possible to further increase the mechanical strength of the optical glass element molding by adding Re, Ru and / or Rh to the coating layer. it can.

以下、本発明のガラス成形型について図面を例示して説明する。
図1は本発明のガラス成形型の一例を模式的に示すもので、上下一対の型からなる断面図である。図1中、2と3は光学ガラス素子成形型基材、4は各光学ガラス素子成形型基材2、3に設けられたコーティング層である。
光学ガラス素子成形型基材2、3は、耐熱性があり緻密で熱伝導性の高い材料であり、好適なものとして具体的には例えば、サーメット(TiC−Ni系合金)、シリコンナイトライド(Si34)、超硬合金(WC−Co、W−Ni等)、酸化アルミニウム、サーメット、炭化ケイ素などが挙げられる。超硬合金は炭化ケイ素よりも柔らかく加工性が高いという特徴を有するが、バインダーが存在するために徐々に酸化が進行して行き易くて多少酸化に弱いという欠点がある。炭化ケイ素(SiC)は硬度が非常に高く、加工性が悪い欠点があるが酸化に強く高寿命である特徴がある。酸化アルミニウム、サーメットはその中間にあたる。これらの特性を考慮して、光学ガラス素子成形型基材2、3の種類は、生産するロット数やガラスの種類によって適宜選択される。
Hereinafter, the glass mold of the present invention will be described with reference to the drawings.
FIG. 1 schematically shows an example of a glass mold according to the present invention, and is a cross-sectional view comprising a pair of upper and lower molds. In FIG. 1, 2 and 3 are optical glass element molding die base materials, and 4 is a coating layer provided on each optical glass element molding die base material 2 and 3.
The optical glass element mold base materials 2 and 3 are heat-resistant, dense, and highly heat-conductive materials. Specific examples of suitable materials include cermet (TiC-Ni alloy), silicon nitride ( Si 3 N 4 ), cemented carbide (WC-Co, W-Ni, etc.), aluminum oxide, cermet, silicon carbide and the like. Although the cemented carbide has the characteristics that it is softer and has higher workability than silicon carbide, it has a drawback that it is easy to proceed with oxidation gradually because of the presence of a binder and is somewhat vulnerable to oxidation. Silicon carbide (SiC) has the characteristics that it has a very high hardness and poor workability, but is resistant to oxidation and has a long life. Aluminum oxide and cermet are in the middle. Considering these characteristics, the type of the optical glass element mold bases 2 and 3 is appropriately selected depending on the number of lots to be produced and the type of glass.

本発明のガラス成形型のガラス成形面(すなわち、ガラス成形型基材2、3の表面)に積層されるコーティング層4は、Moと、Reと、Rh及び/又はRuと、Irと、Ptとを必須成分として含み、さらに任意成分としてAuを含む合金からなる。   The coating layer 4 laminated on the glass forming surface of the glass mold of the present invention (that is, the surface of the glass mold bases 2 and 3) is composed of Mo, Re, Rh and / or Ru, Ir, and Pt. And an essential component, and an alloy containing Au as an optional component.

コーティング層4中のMoの割合は、1〜10wt%、好ましくは2〜5wt%である。コーティング層4中のMoの割合が1wt%よりも少なくても10wt%より多すぎても、コーティング層4の劣化や変色を抑制する効果が低くなる場合がある。
Reの割合は、10〜30wt%、好ましくは10〜20wt%である。コーティング層4中のReの割合が10wt%よりも少なくても30wt%より多すぎても、コーティング層4の劣化や変色を抑制する効果が低くなる場合がある。
The ratio of Mo in the coating layer 4 is 1 to 10 wt%, preferably 2 to 5 wt%. Even if the Mo ratio in the coating layer 4 is less than 1 wt% or more than 10 wt%, the effect of suppressing the deterioration and discoloration of the coating layer 4 may be lowered.
The ratio of Re is 10 to 30 wt%, preferably 10 to 20 wt%. Even if the ratio of Re in the coating layer 4 is less than 10 wt% or more than 30 wt%, the effect of suppressing deterioration and discoloration of the coating layer 4 may be lowered.

Rh及び/又はRuの含有量は1〜15wt%、好ましくは2〜10wt%とする。コーティング層4中にRhとRuとをともに含有させる場合にはその合計量が、また、Rh又はRuの何れかを単独で含有させる場合にはRh又はRuの何れかの含有量が1wt%よりも少なくても、また、15wt%より多すぎても成形時のガラス加熱により発生するH2O等の揮発物による膜劣化や変色の抑制効果が得られない。
IrとPtとの合計量は40〜85wt%、好ましくは50〜70wt%である。コーティング層4中のIrとPtとの合計量が40wt%よりも少なくても85wt%より多すぎても、コーティング層4の劣化や変色を抑制する効果が低くなるので好ましくない。
The content of Rh and / or Ru is 1 to 15 wt%, preferably 2 to 10 wt%. When both Rh and Ru are contained in the coating layer 4, the total amount thereof, and when either Rh or Ru is contained alone, the content of either Rh or Ru is more than 1 wt%. Even if the amount is less than 15 wt%, the effect of suppressing film deterioration and discoloration due to volatile substances such as H 2 O generated by glass heating during molding cannot be obtained.
The total amount of Ir and Pt is 40 to 85 wt%, preferably 50 to 70 wt%. If the total amount of Ir and Pt in the coating layer 4 is less than 40 wt% or more than 85 wt%, the effect of suppressing deterioration and discoloration of the coating layer 4 becomes low, which is not preferable.

Auは本発明の光学ガラス素子成形型の成形面に設けられるコーティンッグ層の必須構成成分ではないが、5wt%を上限として含有させておいても良い。コーティンッグ層中にAuを含有させることにより、ガラスとの反応、又はガラス加熱により発生するH2O等の揮発物との反応などによる膜劣化や変色を抑制する効果が得られるが、Auを5wt%より多く含有させるとコーティング層の硬度が低下し、コーティング層の表面に傷が入りやすくなるため好ましくない。より好ましいAuの含有量は0〜2wt%である。 Au is not an essential component of the coating layer provided on the molding surface of the optical glass element molding die of the present invention, but may be contained up to 5 wt%. By including Au in the coating layer, an effect of suppressing film deterioration or discoloration due to reaction with glass or reaction with volatiles such as H 2 O generated by glass heating can be obtained. If it is contained in an amount of more than%, the hardness of the coating layer is lowered, and the surface of the coating layer is likely to be damaged, which is not preferable. A more preferable Au content is 0 to 2 wt%.

特に成形型基材2、3として超硬合金、酸化アルミニウム、サーメット、炭化ケイ素等の素材を用い、この成形型基材2、3の成形面に前記の組成を有するコーティング層4を積層すれば、成形型基材2、3との密着強度が高い。このため、成形面を構成するコーティング層4と光学ガラス素子成形型基材2、3との間には接合強度を上げるための中間層を設けることなく、耐久性に優れた成形型を得ることができる。   In particular, if materials such as cemented carbide, aluminum oxide, cermet, and silicon carbide are used as the mold bases 2 and 3, and the coating layer 4 having the above composition is laminated on the molding surfaces of the mold bases 2 and 3, The adhesion strength with the mold bases 2 and 3 is high. For this reason, a mold having excellent durability can be obtained without providing an intermediate layer for increasing the bonding strength between the coating layer 4 constituting the molding surface and the optical glass element mold bases 2 and 3. Can do.

コーティング層4の形成方法としては、特に制限されず種々の方法が採用できるが、例えば、Mo、Re、Pt、Rh及び/又はRu、Ir、Pt、及びさらに必要に応じてAuの各金属粉末を焼結してターゲットを作成し、スパッタリングする方法、1つの構成成分の金属からなるターゲットの上に他の成分チップを配置し、スパッタリングする方法、イオンプレーティング法などを採用することができる。
コーティング層の組成は、例えば、スパッタリングする方法による場合にはターゲットを調製する際の原料となる各金属粉末の配合比によって調整し、オンチップの場合はチップ数量を所望の数量に変更することによって調整することができる。
The method for forming the coating layer 4 is not particularly limited, and various methods can be adopted. For example, Mo, Re, Pt, Rh and / or Ru, Ir, Pt, and, if necessary, each metal powder of Au. A method in which a target is prepared by sputtering and sputtering, a method in which another component chip is placed on a target made of one constituent metal, and a sputtering method, an ion plating method, or the like can be employed.
The composition of the coating layer is adjusted by, for example, the mixing ratio of each metal powder used as a raw material when preparing the target in the case of sputtering, and by changing the number of chips to a desired number in the case of on-chip. Can be adjusted.

コーティング層4の厚さは、0.1〜20μmとするのが好ましく、特に0.5〜10μmとするのがより好ましい。コーティング層4の厚さが0.1μmより薄いとコーティング層4を設ける本発明の目的が達成されないばかりではなく、引っかき傷等の取り扱い上のダメージを受け易くなる場合があり、10μmより厚くても技術的効果が飽和する。   The thickness of the coating layer 4 is preferably 0.1 to 20 μm, and more preferably 0.5 to 10 μm. When the thickness of the coating layer 4 is less than 0.1 μm, not only the object of the present invention for providing the coating layer 4 is not achieved, but also there is a case where the coating layer 4 is susceptible to handling damage such as scratches. Technical effect is saturated.

なお、本発明の光学ガラス素子成形型は、特にリン酸塩ガラスからなる光学ガラス素子の成形に適用するのが最適であるが、リン酸塩ガラスのほか、硼珪酸塩系ガラスのK−PBK40{商品名、住田光学ガラス社製、屈折率(nd):1.5176、アッベ数(νd):63.5、転移点(Tg):501℃、屈伏点(At):549℃}、ホウ酸ランタン系ガラスK−VC79{商品名、住田光学ガラス社製、屈折率(nd):1.6097、アッベ数(νd):57.8、転移点(Tg):516℃、屈伏点(At):553℃)、ホウ酸亜鉛系ガラスK−ZnSF8(商品名、住田光学ガラス社製、屈折率(nd):1.7143、アッベ数(νd):38.9、転移点(Tg):518℃、屈伏点(At):546℃}等の光学ガラスの成形にも好適に用いることができる。   The optical glass element molding die of the present invention is optimally applied particularly to the molding of optical glass elements made of phosphate glass. In addition to phosphate glass, borosilicate glass K-PBK40 is used. {Product name, Sumita Optical Glass Co., Ltd., refractive index (nd): 1.5176, Abbe number (νd): 63.5, transition point (Tg): 501 ° C., yield point (At): 549 ° C.}, Ho Lanthanum acid glass K-VC79 {trade name, manufactured by Sumita Optical Glass Co., Ltd., refractive index (nd): 1.6097, Abbe number (νd): 57.8, transition point (Tg): 516 ° C., yield point (At ): 553 ° C.), zinc borate glass K-ZnSF8 (trade name, manufactured by Sumita Optical Glass Co., Ltd., refractive index (nd): 1.7143, Abbe number (νd): 38.9, transition point (Tg): Optical glass such as 518 ° C., yield point (At): 546 ° C.} It can also be used for the molding suitable.

次に実施例により本発明を説明する。なお、本発明は下記実施例中に記述した材料、組成、および作製方法に何等限定されるものではない。
〔実施例1〕
直径12mmの超硬合金(WC99wt%、残りCo及び不可避成分からなるガラス成形型基材を、それぞれ曲率半径10mm(ガラス成形型基材3)および20mm(ガラス成形型基材2)の凹面に加工し、0.5μm粒度のダイヤモンドペーストにより研磨し、成形面を鏡面とした。これにより上下一対のガラス成形型基材2、3を作製した。
一方、表1に示す組成比で焼結体を成形してターゲットを作成し、次に、前記のようにして作製した上下一対の光学ガラス素子成形型基材2、3をスパッタ装置にセットし、前記組成のターゲットを用いてガラス成形型基材2、3のそれぞれの成形面に表1の実施例1に示す組成比の膜を1μmの厚みにコーティングして、図1に示すコーティング層4を成形することにより、実施例1の光学ガラス素子成形型を製造した。
Next, an example explains the present invention. Note that the present invention is not limited to the materials, compositions, and manufacturing methods described in the following examples.
[Example 1]
Cemented carbide with a diameter of 12 mm (WC 99 wt%, remaining Co and inevitable component glass mold base material processed into concave surfaces with curvature radii of 10 mm (glass mold base material 3) and 20 mm (glass mold base material 2), respectively. Then, it was polished with a diamond paste having a particle size of 0.5 μm, and the molding surface was made into a mirror surface, whereby a pair of upper and lower glass mold bases 2 and 3 were produced.
On the other hand, a sintered compact was molded at a composition ratio shown in Table 1 to prepare a target, and then the pair of upper and lower optical glass element forming mold bases 2 and 3 prepared as described above were set in a sputtering apparatus. A film having the composition ratio shown in Example 1 in Table 1 is coated to a thickness of 1 μm on each molding surface of the glass mold bases 2 and 3 using the target having the above composition, and the coating layer 4 shown in FIG. The optical glass element molding die of Example 1 was manufactured.

〔実施例2〜12、比較例1〜7〕
表1の実施例2〜12、及び比較例1〜7に示す組成比で焼結体を成形してターゲットを作成した以外は実施例1の光学ガラス素子成形型と同様にして実施例2〜12、及び比較例1〜7の光学ガラス素子成形型を製造した。
[Examples 2 to 12, Comparative Examples 1 to 7]
Example 2 to Example 2 were carried out in the same manner as the optical glass element mold of Example 1 except that the sintered compact was molded at the composition ratio shown in Examples 1 to 12 in Table 1 and the target was prepared. 12, and the optical glass element shaping | molding die of Comparative Examples 1-7 were manufactured.

前記のようにして製造した実施例1〜12、及び比較例1〜7の各光学ガラス素子成形型を用いて、リン酸系高融点ガラスK−PSKFn1{商品名、住田光学製、屈折率(nd):1.9068、アッベ数(νd):21.2、転移点(Tg):498℃、屈伏点(At):543℃}を直径7mmのボールプリフォームに加工した。
このプリフォームを原料とし、図2に示す成形機を用いて光学ガラスレンズを下記の要領で成形した。
なお、図2において、10はチャンバーで、内部にヒータ11が円筒体状にセットされ、該円筒体状ヒータ11の内側に下軸12と、チャンバー10の天部外側に設けられているエアーシリンダー14に連結された上軸13とがセットされ、該上下軸13、12の各々の成形面にコーティング層4が積層された光学ガラス素子成形型基材2、3を夫々固定し、上型、及び下型としている。
Using the optical glass element molds of Examples 1 to 12 and Comparative Examples 1 to 7 manufactured as described above, phosphate-based high melting point glass K-PSKFn1 {trade name, manufactured by Sumita Optical Co., Ltd., refractive index ( nd): 1.9068, Abbe number (νd): 21.2, transition point (Tg): 498 ° C., yield point (At): 543 ° C.} were processed into a ball preform having a diameter of 7 mm.
Using this preform as a raw material, an optical glass lens was molded in the following manner using a molding machine shown in FIG.
In FIG. 2, reference numeral 10 denotes a chamber, in which a heater 11 is set in a cylindrical shape, and a lower shaft 12 is provided inside the cylindrical heater 11 and an air cylinder provided outside the top of the chamber 10. The upper glass 13 connected to the upper shaft 13 is set, and the optical glass element molding base materials 2 and 3 each having the coating layer 4 laminated on the molding surfaces of the upper and lower shafts 13 and 12 are fixed, respectively. And the lower mold.

この成形機の上型と下型の間に、前記のボールプリフォームを配置し、チャンバー10内に窒素を10000ml/分で注入しつつ、該チャンバー10内を455℃に加熱し、3000Nの荷重でプレス成形した。プレス終了後、250℃の温度まで冷却し、成形品であるレンズを取り出した。
これを1000回行ったときの、上型の光学ガラス素子成形型基材2、および下型の光学ガラス素子成形型基材3の各コーティング層4面へのガラスの付着と、コーティング層4の「劣化」並びに「変色」を目視により評価した結果を表1に示す。
なお、表1の評価において、「劣化あり」とは離型性や耐熱性等の本来コーティング層4に必要とされる性能を有さなくなった場合や、該コーティング層4に変色が認められ本来コーティング層4に必要とされる性能は未だ保持しているが変色した場合をいう。
The ball preform is placed between the upper mold and the lower mold of this molding machine, and nitrogen is injected into the chamber 10 at 10000 ml / min, while the chamber 10 is heated to 455 ° C. and a load of 3000 N And press-molded. After the press, the product was cooled to a temperature of 250 ° C., and the lens as a molded product was taken out.
When this is performed 1000 times, the glass adheres to the surface of each coating layer 4 of the upper mold optical glass element mold base 2 and the lower mold optical glass element mold base 3, and the coating layer 4 The results of visual evaluation of “deterioration” and “discoloration” are shown in Table 1.
In the evaluation of Table 1, “degraded” means that the coating layer 4 does not have the performance required for the coating layer 4 such as releasability and heat resistance, or the coating layer 4 is discolored and is inherently discolored. Although the performance required for the coating layer 4 is still maintained, the color is changed.

Figure 2008120639
Figure 2008120639

表1からわかるように、ガラス成形型基材のガラス成形面に、1〜10wt%のMo、10〜30wt%のRe、1〜15wt%のRh及び/又はRu、及び合計量で40〜80wt%のIrとPtを含有し、さらにこれに5wt%を上限とするAuを含有する薄膜状の合金からなるコーティング層をガラス成形面に形成した実施例1〜12の光学ガラス素子成形型を用いてリン酸塩ガラスからなる光学ガラスを繰り返し成形した場合、光学ガラス素子成形型の成形面へのガラスの付着、及び成形型の成形面に積層されたコーティング層の劣化は認められないが、Mo、Re、Rh及び/又はRu、IrとPtの合計量、及びAuの中の少なくとも1種の含有量が前記の量範囲外にある合金の薄膜からなるコーティング層をガラス成形面に積層した比較例1〜7の光学ガラス素子成形型を用いてリン酸塩ガラスからなる光学ガラスを繰り返し成形した場合、成形型の成形面へのガラスの付着や成形面コーティング層(成形面)の劣化が認められた。   As can be seen from Table 1, 1 to 10 wt% Mo, 10 to 30 wt% Re, 1 to 15 wt% Rh and / or Ru, and a total amount of 40 to 80 wt% on the glass forming surface of the glass mold base. Using the optical glass element molds of Examples 1 to 12, in which a coating layer made of a thin-film alloy containing Au containing 5% Ir and Pt and further containing 5 wt% as an upper limit is formed on the glass molding surface When optical glass made of phosphate glass is repeatedly molded, glass adhesion to the molding surface of the optical glass element molding die and deterioration of the coating layer laminated on the molding surface of the molding die are not recognized. , Re, Rh and / or Ru, a total amount of Ir, Pt, and a coating layer made of a thin film of an alloy in which at least one of the contents of Au is outside the above amount range is stacked on the glass molding surface. When optical glass made of phosphate glass is repeatedly molded using the optical glass element molds of Comparative Examples 1 to 7, adhesion of glass to the molding surface of the molding die and deterioration of the molding surface coating layer (molding surface) Was recognized.

本発明の成形型を模式的に示す断面図である。It is sectional drawing which shows the shaping | molding die of this invention typically. 実施例で用いた光学素子のプレス成形装置を模式的に示す断面図である。It is sectional drawing which shows typically the press molding apparatus of the optical element used in the Example.

符号の説明Explanation of symbols

1 光学ガラス素子成形型
2、3 光学ガラス素子成形型基材
4 コーティング層
10 チャンバー
11 ヒータ
12 下軸
13 上軸
14 エアーシリンダー
DESCRIPTION OF SYMBOLS 1 Optical glass element shaping | molding die 2, 3 Optical glass element shaping | molding die base material 4 Coating layer 10 Chamber 11 Heater 12 Lower shaft 13 Upper shaft 14 Air cylinder

Claims (4)

光学ガラス素子成形基材の光学ガラス素子成形面に
1〜10wt%のモリブデン(Mo)、
10〜30wt%のレニウム(Re)、
1〜15wt%のロジウム(Rh)及び/又はルテニウム(Ru)、
合計量で40〜85wt%のイリジウム(Ir)と白金(Pt)、及び
0〜5wt%の金(Au)
を含有するコーティング層を積層してなることを特徴とする光学ガラス素子成形型。
1-10 wt% molybdenum (Mo) on the optical glass element molding surface of the optical glass element molding substrate,
10-30 wt% rhenium (Re),
1-15 wt% rhodium (Rh) and / or ruthenium (Ru),
40-85 wt% iridium (Ir) and platinum (Pt) in total amount, and 0-5 wt% gold (Au)
An optical glass element molding die, wherein a coating layer containing is laminated.
光学ガラス素子成形基材の光学ガラス素子成形面に
2〜5wt%のモリブデン(Mo)、
10〜20wt%のレニウム(Re)、
2〜10wt%のロジウム(Rh)及び/又はルテニウム(Ru)、
合計量で50〜70wt%のイリジウム(Ir)と白金(Pt)、及び
0〜2wt%の金(Au)
を含有するコーティング層を積層してなることを特徴とする請求項1に記載の光学ガラス素子成形型。
2-5 wt% molybdenum (Mo) on the optical glass element molding surface of the optical glass element molding substrate,
10-20 wt% rhenium (Re),
2-10 wt% rhodium (Rh) and / or ruthenium (Ru),
50-70 wt% iridium (Ir) and platinum (Pt) in total amount, and 0-2 wt% gold (Au)
The optical glass element mold according to claim 1, wherein a coating layer containing is laminated.
前記コーティング層の厚みが0.1〜20μmであることを特徴とする請求項1又は2に記載の光学ガラス素子成形型。   The optical glass element molding die according to claim 1, wherein the coating layer has a thickness of 0.1 to 20 μm. 前記コーティング層の厚みが0.5〜10μmであることを特徴とする請求項3に記載の光学ガラス素子成形型。   The optical glass element molding die according to claim 3, wherein the coating layer has a thickness of 0.5 to 10 μm.
JP2006307750A 2006-11-14 2006-11-14 Optical glass element mold Active JP4809192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006307750A JP4809192B2 (en) 2006-11-14 2006-11-14 Optical glass element mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006307750A JP4809192B2 (en) 2006-11-14 2006-11-14 Optical glass element mold

Publications (2)

Publication Number Publication Date
JP2008120639A true JP2008120639A (en) 2008-05-29
JP4809192B2 JP4809192B2 (en) 2011-11-09

Family

ID=39505796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006307750A Active JP4809192B2 (en) 2006-11-14 2006-11-14 Optical glass element mold

Country Status (1)

Country Link
JP (1) JP4809192B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235569A (en) * 2020-01-14 2020-06-05 瑞声通讯科技(常州)有限公司 Forming die for manufacturing optical glass element and optical glass element
CN115637348A (en) * 2021-07-19 2023-01-24 张潇 Platinum-rhenium-based high-temperature alloy material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302273A (en) * 2000-04-21 2001-10-31 Canon Inc Mold for molding optical glass element
JP2002327266A (en) * 2001-04-27 2002-11-15 Furuya Kinzoku:Kk Iridium alloy target material for forming thin film
JP2005041739A (en) * 2003-07-23 2005-02-17 Sumita Optical Glass Inc Optical glass element shaping mold
JP2006225190A (en) * 2005-02-16 2006-08-31 Pentax Corp Metallic mold for molding optical element and its manufacturing method
JP2007137737A (en) * 2005-11-21 2007-06-07 Sumita Optical Glass Inc Optical glass element shaping mold
JP2007191331A (en) * 2006-01-18 2007-08-02 Sumita Optical Glass Inc Optical glass element shaping mold

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302273A (en) * 2000-04-21 2001-10-31 Canon Inc Mold for molding optical glass element
JP2002327266A (en) * 2001-04-27 2002-11-15 Furuya Kinzoku:Kk Iridium alloy target material for forming thin film
JP2005041739A (en) * 2003-07-23 2005-02-17 Sumita Optical Glass Inc Optical glass element shaping mold
JP2006225190A (en) * 2005-02-16 2006-08-31 Pentax Corp Metallic mold for molding optical element and its manufacturing method
JP2007137737A (en) * 2005-11-21 2007-06-07 Sumita Optical Glass Inc Optical glass element shaping mold
JP2007191331A (en) * 2006-01-18 2007-08-02 Sumita Optical Glass Inc Optical glass element shaping mold

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235569A (en) * 2020-01-14 2020-06-05 瑞声通讯科技(常州)有限公司 Forming die for manufacturing optical glass element and optical glass element
WO2021142882A1 (en) * 2020-01-14 2021-07-22 诚瑞光学(常州)股份有限公司 Forming mold for manufacturing optical glass element, and optical glass element
CN115637348A (en) * 2021-07-19 2023-01-24 张潇 Platinum-rhenium-based high-temperature alloy material and preparation method thereof

Also Published As

Publication number Publication date
JP4809192B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
KR101347944B1 (en) Glass material for press forming, method for manufacturing glass optical element using same, and glass optical element
KR101348051B1 (en) Glass material for press forming, method for manufacturing glass optical element using same, and glass optical element
KR900002704B1 (en) Elements and a molding method using the same
JP5364568B2 (en) Glass material for press molding, method for manufacturing glass material for press molding, and method for manufacturing optical element
JP4690100B2 (en) Mold for glass optical element and method for manufacturing glass optical element
JP2005298262A (en) Method of mass-producing optical device
JP4809192B2 (en) Optical glass element mold
JP4667254B2 (en) Optical glass element mold
JP4409876B2 (en) Optical glass element mold
JP4669775B2 (en) Optical glass element mold
JP2008285396A (en) Method for producing optical element
JP2011027992A (en) Optical component and method for producing the same
JP4585558B2 (en) Optical glass element mold
JP2001302273A (en) Mold for molding optical glass element
JP2001302260A (en) Method for molding optical element
EP1428801B1 (en) A coated moulding die for producing an optical glass element
JP4303949B2 (en) Optical glass element mold
JP2009073707A (en) Production method for optical element
JP2007269511A (en) Molding die for optical glass and press molding method of optical glass using the same
US20090001619A1 (en) Optical glass forming mold and method for press-forming optical glass using such optical glass forming mold
JP3185299B2 (en) Glass lens molding die and glass lens molding device
JP7132589B2 (en) Optical glass, preforms for precision press molding, and optical elements
JP2011027993A (en) Optical component and method for producing the same
JP2009046320A5 (en)
JP2000185926A (en) Mold for molding glass optical device, molding method and optical device thus molded

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090408

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4809192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250