JPH05294650A - Mold for optical element and its production - Google Patents
Mold for optical element and its productionInfo
- Publication number
- JPH05294650A JPH05294650A JP11799292A JP11799292A JPH05294650A JP H05294650 A JPH05294650 A JP H05294650A JP 11799292 A JP11799292 A JP 11799292A JP 11799292 A JP11799292 A JP 11799292A JP H05294650 A JPH05294650 A JP H05294650A
- Authority
- JP
- Japan
- Prior art keywords
- optical element
- mold
- glass
- wall part
- die
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
- C03B11/084—Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/03—Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/05—Press-mould die materials
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光学素子を押圧成形す
る成形型と、その製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold for press-molding an optical element and a method for manufacturing the mold.
【0002】[0002]
【従来の技術】ガラス素材を加熱軟化して光学素子を加
圧成形する技術は知られている。この加圧成形する成形
型の型形状をガラス素材に正確に転写することが重要と
なるが、肉厚差が大きい成形品などを成形する場合にお
いて、ガラス素材内部の温度分布の差が大きくなり、い
わゆるヒケと称する現象が生じてしまう。このような現
象を防ぐために、従来例として、例えば特開平1−14
8716号公報がある。この公報に記載されている技術
は、型成形面部を同芯にいくつかの部材に分割してそれ
ぞれを独立に温度制御することでガラスの冷却速度に差
をつけるという技術である。なお、詳しくは図8に基づ
いて説明する。2. Description of the Related Art A technique for heating and softening a glass material to press-mold an optical element is known. It is important to accurately transfer the shape of the mold for pressure molding to the glass material, but when molding a molded product with a large difference in wall thickness, the difference in temperature distribution inside the glass material becomes large. However, a phenomenon called so-called sink occurs. In order to prevent such a phenomenon, as a conventional example, for example, Japanese Patent Laid-Open No. 1-14
There is an 8716 publication. The technique described in this publication is a technique in which the mold surface portion is divided into several members concentrically and the temperature is controlled independently of each other to make a difference in the glass cooling rate. The details will be described with reference to FIG.
【0003】図8は、上記公報に記載された第1図で、
成形用金型の成形中の状態を示す正面よりの断面図であ
る。押圧型30は、上側成形型31と、上側成形型31
に対向して配置されている下側型部材32とから構成さ
れている。下側型部材32は、軸方向に同心円状に分割
された分割型33と分割型34とから構成されている。
上記構成からなる押圧型30にてガラス素材35を押圧
成形する際、各分割型33,34をそれぞれ独立して温
度制御することにより、ガラス素材35に対して同心円
状に温度差をつけているという構成の技術である。FIG. 8 is a diagram shown in FIG.
It is a sectional view from the front showing the state of the molding die during molding. The pressing die 30 includes an upper molding die 31 and an upper molding die 31.
And a lower mold member 32 that is disposed so as to face the above. The lower die member 32 is composed of a split die 33 and a split die 34 that are concentrically split in the axial direction.
When the glass material 35 is press-molded by the pressing die 30 having the above structure, the temperature of each of the split dies 33 and 34 is controlled independently, so that a temperature difference is concentrically applied to the glass material 35. It is a technology of the configuration.
【0004】[0004]
【発明が解決しようとする課題】上記公報の押圧型によ
る成形方法を実施するに当たっては、成形装置の温度制
御手段やその構成が複雑化して、原価高となるという問
題があった。また、同芯円状に分割された型を製造する
には、極めて困難が伴うという問題があった。即ち、分
割された型同志の間に生ずる隙間や段差が少しでも生ず
れば、そこにガラスが食い込んで成形された光学素子に
バリの発生が生じてしまうという問題があった。In carrying out the molding method using the pressing mold described in the above publication, there is a problem that the temperature control means of the molding apparatus and the structure thereof are complicated and the cost is high. Further, there is a problem in that it is extremely difficult to manufacture a mold divided into concentric circles. That is, if a gap or a level difference is generated between the divided molds, there is a problem in that the glass bites into the mold and burrs are generated in the molded optical element.
【0005】また、上記隙間や段差を小さく構成するた
めには、同芯円状に組み合わせる部分の内外径の寸法や
円筒精度などの公差を極めてシビアな寸法に形成しなか
ればならず、非常に加工が難しい。特に、ガラス光学素
子成形用型として利用される耐熱材料は、超硬合金や各
種セラミックスなどであり、これらの難削材を上記した
ようなシビアな公差で加工するということは実質的困難
である。また、上記加工することができたとしても、そ
れぞれの部材の隙間が非常に小さいがために、組み合わ
せることが極めて困難であり、作業性が悪く従って、上
記の状態で組み合わせる際に、微かでも傾きがあれば両
部材がコジッテしまうという虞があり、更に全く隙間が
無く組み合わせて造ることは、現実的には無理である。
従って上記公報記載の方法の型にて成形できるのは、少
々のバリが発生しても使用上差しかえないものの光学素
子の成形か、または成形後のおける諸加工を施し大巾に
原価高となってもよい場合の光学素子に限られるという
制約があった。Further, in order to make the above-mentioned gaps and steps small, it is necessary to form tolerances such as inner and outer diameters and cylindrical precision of the concentric portions to be combined with each other in extremely severe dimensions, which is extremely difficult. It is difficult to process. In particular, the heat-resistant material used as a mold for molding a glass optical element is a cemented carbide or various ceramics, and it is substantially difficult to process these difficult-to-cut materials with severe tolerances as described above. .. Even if the above-mentioned processing is possible, it is extremely difficult to combine them because the gaps between the respective members are very small, and the workability is poor. If there is, there is a risk that both members will be kogitte, and it is actually impossible to construct them by combining them without any gap.
Therefore, it is possible to mold with the mold of the method described in the above publication, although it is possible to use it even if a small amount of burr is generated, it is possible to mold the optical element or perform various processes after molding to significantly increase the cost. There is a restriction that the optical element is limited to the case where it can be.
【0006】本発明は、上記諸問題に鑑みてなされたも
ので、簡単な構成で、かつ安価な成形型にてヒケを防止
した高品質の光学素子を成形する光学素子の成形型とそ
の製造方法を提供することを目的とするものである。The present invention has been made in view of the above problems, and is a mold for an optical element for molding a high quality optical element with a simple structure and an inexpensive molding die in which sink marks are prevented, and its manufacture. It is intended to provide a method.
【0007】[0007]
【課題を解決するための手段】本発明は、上型と下型と
より成る成形型において、成形する光学素子の薄肉部と
肉厚部に対応して、上記それぞれの型基材内に設けた気
孔の比率を異ならせた光学素子成形型である。According to the present invention, there is provided a mold comprising an upper mold and a lower mold, which are provided in respective mold bases corresponding to the thin portion and the thick portion of an optical element to be molded. It is an optical element molding die having different ratios of pores.
【0008】[0008]
【作用】上記構成の光学素子成形型にて成形すると気孔
率が変わり、熱伝導率は大きく変化する。気体の熱伝導
率は、固体の熱伝導率と比較して、例えば、空気=0.
02w/m・k,グラファイト=100w/m・kと、
2〜4桁も小さいため、気孔の存在により熱伝導率は著
しく小さくなる。即ち、気孔率の大きい方が熱伝導率が
小さくなる。従って、光学素子を成形する場合成形品の
厚肉部に対応する部分の気孔率を大きく、薄肉部に対応
する部分の気孔率を小さくすることで、成形品内部の温
度分布を小さくしてヒケを防止するようにした。上記し
た概念に基づいて、型基材の特定成分をエッチング、ま
たは含浸剤を含浸させるという手法を用いて、一体のも
のから内外周で気孔率の異なるものを製造することによ
り、簡単な構造で、かつ安価に成形が製造できると共
に、その型を用いて光学素子を成形することにより、ヒ
ケの無い高品質の光学素子が生産性よく成形できる。When the optical element molding die having the above structure is used for molding, the porosity changes and the thermal conductivity greatly changes. The thermal conductivity of gas is, for example, air = 0.
02w / m ・ k, graphite = 100w / m ・ k,
Since it is as small as 2 to 4 digits, the thermal conductivity is significantly reduced due to the presence of pores. That is, the larger the porosity, the smaller the thermal conductivity. Therefore, when molding an optical element, the porosity of the part corresponding to the thick part of the molded product is increased, and the porosity of the part corresponding to the thin part is decreased to reduce the temperature distribution inside the molded product. I tried to prevent. Based on the above concept, by using a method of etching a specific component of the mold base material or impregnating it with an impregnating agent, it is possible to produce a single structure with different porosities on the inner and outer circumferences, and with a simple structure. Moreover, molding can be manufactured at low cost, and by molding an optical element using the mold, a high-quality optical element without sink marks can be molded with high productivity.
【0009】[0009]
【実施例1】本発明の光学素子成形型とその製造方法の
具体例を図面に基づいて説明する。図1〜図3は、本発
明の光学素子成形型の製造方法に係わる実施例1の成形
型の製造工程を示す。図1は、溶液を満たした容器内に
型基材を浸した状態を示す正面よりの断面図である。図
2は、図1に続く工程を示した正面よりの断面図であ
る。図3は、本実施例により製造された成形型を成形機
に装着した状態の要部を示す正面よりの断面図である。Embodiment 1 A specific example of the optical element molding die of the present invention and its manufacturing method will be described with reference to the drawings. 1 to 3 show manufacturing steps of a molding die of Example 1 relating to a method of manufacturing an optical element molding die of the present invention. FIG. 1 is a front sectional view showing a state in which a mold base material is immersed in a container filled with a solution. FIG. 2 is a sectional view from the front showing the step following FIG. FIG. 3 is a cross-sectional view from the front showing a main part in a state where the molding die manufactured according to this example is mounted on a molding machine.
【0010】型基材を造るため、SiO2 76wt%,
B2 O3 13wt%,Na2 O6wt%,Al2 O3 4
wt%、その他不加避不純物から成る組成のガラス粉末
をルツボ内に投入し、混合して1100℃にて1時間溶
解したのち、ルツボを傾けて溶解したガラスを水槽内に
投入し、水中にて急冷することにより不定形状のガラス
塊を得る。更に、急冷したガラス塊を加熱炉にて510
℃で100時間熱処理して分相を生じさせる。次に、上
記ガラス塊を所望の寸法に形成すべく研削加工工程に回
送されて研削加工される。本実施例においては、例え
ば、φ8mm,長さ20mm形状の丸棒3に研削形成さ
れる。To make a mold substrate, SiO 2 76 wt%,
B 2 O 3 13wt%, Na 2 O6wt%, Al 2 O 3 4
Glass powder having a composition of wt% and other unavoidable impurities is put into a crucible, mixed and melted at 1100 ° C. for 1 hour, and then the crucible is tilted and the melted glass is put into a water tank and placed in water. A glass lump of indefinite shape is obtained by rapid cooling. Further, the quenched glass lump is heated to 510 in a heating furnace.
Heat treatment is performed at 100 ° C. for 100 hours to cause phase separation. Next, in order to form the glass gob into a desired size, it is sent to a grinding step and is ground. In this embodiment, for example, the round bar 3 having a diameter of 8 mm and a length of 20 mm is ground and formed.
【0011】上記研削工程により形成されたガラス素材
(丸棒)3を図1に矢印にて示すように、H2 SO4 溶
液2を満たした容器1内に投入して吊架にて240時間
浸せきする。この浸せきにより、ガラス塊3内に含まれ
ているB2 O3 相、Na2 O相が溶液内に溶出してい
く。上記溶出方法により製造した製造したガラス棒3を
径方向に切断した断面を観たところ、外周から3mm程
度深さの範囲まで多数の細孔が形成されていた。しかし
中心部(軸中心)からφ2の範囲では、細孔は見られな
かった。また、中心部と外周部とをガラス素材1から切
り出して熱伝導率を測定したところ、中心部は、1.1
3w/m・k,外周部は0.77w/m・kであった。The glass material (round bar) 3 formed by the above grinding step is put into a container 1 filled with H 2 SO 4 solution 2 as shown by an arrow in FIG. Soak. By this immersion, the B 2 O 3 phase and Na 2 O phase contained in the glass gob 3 are eluted into the solution. When the cross section of the manufactured glass rod 3 manufactured by the elution method was cut in the radial direction, a large number of pores were formed from the outer periphery to a depth of about 3 mm. However, no pores were observed in the range of φ2 from the center (axial center). Further, when the central part and the outer peripheral part were cut out from the glass material 1 and the thermal conductivity was measured, the central part was 1.1.
It was 3 w / m · k and the outer peripheral portion was 0.77 w / m · k.
【0012】図2に示すように、上記方法により製造さ
れた一対のガラス棒3のうちの一方のガラス棒3に成形
される光学素子の形状に対応した成形面を形成すべく研
削工程に回送される。この研削工程において、まず溶出
したガラス塊3の下端部5を5mm切断し、更に、面に
近軸に例えばR10.3の凹面状の非球面6を研削研磨
加工される。上記研削研磨加工された非球面6に、付着
力強化のための中間層を介して、CrN、BNなどのガ
ラス成形の際に融着防止効果の高い薄膜がコートされて
成形型の製造は終了する。As shown in FIG. 2, one of the pair of glass rods 3 manufactured by the above method is sent to the grinding step to form a molding surface corresponding to the shape of the optical element molded on one glass rod 3. To be done. In this grinding step, first, the lower end portion 5 of the eluted glass gob 3 is cut into 5 mm, and a concave aspherical surface 6 of, for example, R10.3 is paraxially ground to the surface. The aspherical surface 6 that has been ground and polished is coated with a thin film of CrN, BN or the like having a high fusion preventing effect during the glass molding through an intermediate layer for strengthening the adhesive force, and the manufacturing of the molding die is completed. To do.
【0013】上記方法により製造した成形型を用いて平
凸のガラス光学素子を成形する成形装置の構成を図3に
基づいて説明する。上記した方法により製造された一対
の成形型10,14は、それぞれにその基端部7と16
を装置に対向して配設した上型マウント11,下型マウ
ント17に、その成形面を互に対向して固定装着されて
いる。上型10を装着した上型マウント11内には、上
型10を加熱するため上型ヒータ13が埋設されて装置
に固定装着されている。また、下型14を装着した下型
マウント17内にも、下型14を加熱するための下型ヒ
ータ18が埋設されており、下型マウントは、成形され
るガラス素材を載置上昇して、上型10に当接して押圧
成形されるように上下動自在に構成されている。The structure of a molding apparatus for molding a plano-convex glass optical element using the molding die manufactured by the above method will be described with reference to FIG. The pair of molding dies 10 and 14 manufactured by the above-mentioned method respectively has base end portions 7 and 16 thereof.
Is fixedly mounted on the upper mold mount 11 and the lower mold mount 17 which are disposed so as to face the apparatus, with their molding surfaces facing each other. An upper die heater 13 for heating the upper die 10 is embedded in the upper die mount 11 on which the upper die 10 is mounted, and is fixedly mounted on the apparatus. Further, a lower die heater 18 for heating the lower die 14 is also embedded in the lower die mount 17 having the lower die 14 mounted thereon, and the lower die mount mounts and raises a glass material to be formed. , So that it can be moved up and down so as to come into contact with the upper mold 10 and be pressed.
【0014】即ち、上型10と下型14との間に被ガラ
ス成形素材の転移点近くまでに加熱軟化されたガラス素
材を搬送し、下型14の上昇により、上型10と当接し
押圧成形される。この押圧成形の結果において、ヒケの
無く形状精度の良好な光学素子が得られた。また、本実
施例において、ガラス材料を多孔質化して型として用い
た例を示したが、本実施例はこれに限定するものではな
く、例えばセラミックスなどの耐熱材料であっても本実
施例と同様の結果が得られることが判った。That is, a glass material that has been heated and softened near the transition point of the glass molding material is conveyed between the upper mold 10 and the lower mold 14, and as the lower mold 14 rises, it abuts and presses against the upper mold 10. Molded. As a result of this press molding, an optical element having a good shape accuracy without sink marks was obtained. In addition, although an example in which the glass material is made porous to be used as a mold is shown in the present embodiment, the present embodiment is not limited to this, and even a heat resistant material such as ceramics can be used as the present embodiment. It has been found that similar results are obtained.
【0015】上記成形型およびその製造方法によれば、
上型の外周部の気孔率を高くすることによって、成形す
る光学素子の薄肉部(外周部)ほど、冷却速度が遅くな
るので、成形品の肉厚部(中心部)と、成形品の薄肉部
(外周部)の冷却速度差を小さく抑えることが可能とな
り、ヒケの無い光学素子を得ることができる。According to the above molding die and the method for producing the same,
By increasing the porosity of the outer peripheral part of the upper die, the cooling rate becomes slower as the thinner part (outer peripheral part) of the optical element to be molded, so that the thicker part (center part) of the molded product and the thinner part of the molded product. It is possible to suppress the difference in cooling rate between the parts (outer peripheral part), and it is possible to obtain an optical element without sink marks.
【0016】[0016]
【実施例2】図4と図5に基づいて、本発明の光学素子
成形型とその製造方法の実施例2を説明する。図4は、
本発明の光学素子成形型とその製造方法に係わる実施例
2の製造工程を示す正面よりの断面図である。図5は、
実施例2によって製造された光学素子成形型の正面より
の断面図である。なお、本実施例の図中において、上記
実施例1と同一部材、同一形状、同一構成および同一方
法については、同一符号を用いてその説明は省略する。[Embodiment 2] Embodiment 2 of an optical element molding die and its manufacturing method of the present invention will be described with reference to FIGS. Figure 4
It is sectional drawing from the front which shows the manufacturing process of Example 2 regarding the optical element shaping | molding die of this invention, and its manufacturing method. Figure 5
FIG. 5 is a cross-sectional view from the front of the optical element molding die manufactured according to Example 2. In the drawings of the present embodiment, the same members, the same shapes, the same configurations and the same methods as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
【0017】本実施例は、上記実施例1に説明したガラ
ス基材の要素の溶解および冷却して不定形状のガラス塊
を得ること、そのガラス塊を加熱炉にて510℃の温度
にて100時間熱処理してガラス塊に分相を生じさせる
こと、このガラス塊を研削工程にて所望の寸法に研削し
てガラス丸棒を得るまでの諸工程は同一であるので省略
する。In this example, the elements of the glass substrate described in Example 1 above were melted and cooled to obtain a glass lump of indefinite shape, and the glass lump was heated at a temperature of 510 ° C. for 100 ° C. The steps of heat-treating for a period of time to cause phase separation in the glass gob and the steps of grinding this glass gob to a desired size in the grinding step to obtain a glass round bar are the same and therefore omitted.
【0018】図4に示すようにガラス丸棒20の上端面
の中心位置から例えば深さ15mmまでφ2の孔21を
穿設し、その孔21の中にH2 So4 溶液22を注入す
る。続いて溶液22を満たしたガラス丸棒20を100
℃に保った箱体内に(図示省略)に収納し、240時間
放置する。この放置にてガラス丸棒20内のB2 O
3相、Na2 O相が溶液22内に溶出する。この溶出に
より、ガラス丸棒20内の中心部(軸心部)近傍の気孔
率が大となり、外周部は気孔率OVo1%のガラス丸棒
2が形成される。上記のガラス丸棒20は、例えば図5
に示すように下端面を近軸R12.1の凸形状の非球面
23に研削研磨加工される。以後の工程は実施例1と同
一に付き省略する。As shown in FIG. 4, a hole 21 of φ2 is formed from the center position of the upper end surface of the glass rod 20 to a depth of 15 mm, for example, and the H 2 So 4 solution 22 is injected into the hole 21. Then, the glass round bar 20 filled with the solution 22 is filled with 100
Store in a box (not shown) kept at ℃ and leave it for 240 hours. B 2 O in the glass rod 20 is left in this state.
The 3 phase and the Na 2 O phase are eluted in the solution 22. Due to this elution, the porosity in the vicinity of the central portion (axial center portion) in the glass rod 20 becomes large, and the glass rod 2 having the porosity OVo1% is formed on the outer peripheral portion. The above glass round bar 20 is shown in FIG.
As shown in FIG. 5, the lower end surface is ground and polished into a convex aspherical surface 23 of paraxial R12.1. The subsequent steps are the same as those in the first embodiment and will not be described.
【0019】[0019]
【実施例3】図6と図7に基づいて、本発明の光学素子
成形型とその製造方法の実施例3を説明する。図6は、
本発明の光学素子成形型とその製造方法に係わる実施例
3の製造工程を示す正面よりの断面図である。図7は、
実施例3により製造された光学素子成形型を示す正面よ
りの断面図である。なお、本実施例の図中において、上
記実施例1および実施例2を同一部材、同一形状、同一
構成については、同一符号を用いてその説明は省略す
る。また、同一方法においても同様に説明を省略する。Third Embodiment A third embodiment of the optical element molding die and method of manufacturing the same according to the present invention will be described with reference to FIGS. 6 and 7. Figure 6
It is sectional drawing from the front which shows the manufacturing process of Example 3 regarding the optical element shaping | molding die of this invention, and its manufacturing method. Figure 7
7 is a sectional view from the front showing an optical element molding die manufactured according to Example 3. FIG. In the drawings of the present embodiment, the same members, shapes and configurations as those of the first and second embodiments are designated by the same reference numerals and the description thereof will be omitted. Further, the description of the same method will be omitted as well.
【0020】図6にて符号24で示す円柱形状の部材は
所望の形状のAl2 O3 焼結体よりなる基材を研削加工
したものである。例えばφ11長さ20mmに研削加工
されたものである。この研削加工された焼結基材24
を、SiO2 69%、B2 O310%、Na2 O9%、
K2 O8%、BaO3%と、不加避不純物からなるガラ
ス融液25を満たした溶器1内に吊架にて浸せきした状
態を示しているのが図6である。上記焼結基材24を浸
せきしたガラス融液25は、常に1500℃に保たれて
おり、このガラス融液25内に2時間浸せきすることに
より、図6に示す矢印のようにガラス溶融25は、焼結
基材24の内部に浸透していく。浸透したガラス融液2
5と焼結基材24内のAl2 O3 とが融合して完全に一
体化してガラス丸棒27となる。この一体化したガラス
丸棒27を再度φ11長さ20mm形状に研削加工され
る。In FIG. 6, a cylindrical member indicated by reference numeral 24 is obtained by grinding a base material made of an Al 2 O 3 sintered body having a desired shape. For example, φ11 is ground to a length of 20 mm. This grinding-processed sintered base material 24
To SiO 2 69%, B 2 O 3 10%, Na 2 O 9%,
FIG. 6 shows a state in which the glass is melted by suspending it in the melting vessel 1 filled with the glass melt 25 consisting of K 2 O 8% and BaO 3% and non-evading impurities. The glass melt 25 in which the sintering base material 24 has been dipped is always kept at 1500 ° C., and the glass melt 25 is dipped in this glass melt 25 for 2 hours, so that the glass melt 25 is melted as shown by the arrow in FIG. , Penetrates into the sintered base material 24. Penetrated glass melt 2
5 and Al 2 O 3 in the sintered base material 24 are fused and completely integrated to form a glass round bar 27. The integrated glass round bar 27 is again ground into a φ11 length 20 mm shape.
【0021】上記本実施例により製造したガラス丸棒2
7の断面形状を見ると、外周部では気孔率が3%、中心
部では24%となっており、外周から中心に向かって徐
々に気孔率が増加していた。また、熱伝導率は中心部が
10w/m.k,最外周部で18w/m.kであった。
上記方法により製造したガラス丸棒27の一端面(符号
27の上端面)をR20.9の凸球面28に研削加工し
た。更にその凸球面28の上面にCrN,BNなどの薄
膜を積層形成して、成形装置にてガラス光学素子を成形
したところヒケ無い形状精度の良好な光学素子を得るこ
とができた。Glass round bar 2 manufactured by the above-mentioned embodiment
Looking at the cross-sectional shape of No. 7, the porosity was 3% in the outer peripheral portion and 24% in the central portion, and the porosity gradually increased from the outer peripheral to the center. Further, the thermal conductivity of the central part is 10 w / m. k, 18 w / m at the outermost periphery. It was k.
One end surface (upper end surface of reference numeral 27) of the glass round bar 27 manufactured by the above method was ground into a convex spherical surface 28 of R20.9. Further, when a thin film of CrN, BN or the like was laminated on the upper surface of the convex spherical surface 28 and a glass optical element was molded by a molding apparatus, an optical element with good shape accuracy without sink marks could be obtained.
【0022】[0022]
【発明の効果】上記構成と方法による本発明によれば、
成形する光学素子の形状と対応形成した成形型を簡単な
方法で安価に製造することができるので、その成形型に
て成形した光学素子は、ヒケが無い高品質で原価性が良
く。かつ生産性よく成形ができるなどの諸効果を奏す
る。According to the present invention having the above structure and method,
The molding die corresponding to the shape of the optical element to be molded can be manufactured at a low cost by a simple method. Therefore, the optical element molded by the molding die has high quality with no sink mark and good cost performance. In addition, various effects such as molding with high productivity can be achieved.
【図1】本発明の光学素子成形型の製造方法に係わる実
施例1の成形型の製造工程を示す正面よりの断面図であ
る。FIG. 1 is a front sectional view showing a manufacturing process of a molding die of Example 1 according to a method for manufacturing an optical element molding die of the present invention.
【図2】図1に続く製造工程を示す正面よりの断面図で
ある。FIG. 2 is a sectional view from the front showing the manufacturing process following FIG.
【図3】実施例1により製造された成形型を成形装置に
装着した状態の要部を示す正面よりの断面図である。FIG. 3 is a cross-sectional view from the front showing a main part in a state where the molding die manufactured according to Example 1 is mounted on a molding device.
【図4】本発明の光学素子成形型とその製造方法に係わ
る実施例2の製造工程を示す正面よりの断面図である。FIG. 4 is a sectional view from the front showing the manufacturing process of Example 2 relating to the optical element molding die of the present invention and the manufacturing method thereof.
【図5】実施例2により製造された光学素子成形型を示
す正面よりの断面図である。5 is a front sectional view showing an optical element molding die manufactured in Example 2. FIG.
【図6】本発明の光学素子成形型とその製造方法に係わ
る実施例3の製造工程を示す正面より断面図である。FIG. 6 is a front sectional view showing a manufacturing process of Example 3 relating to the optical element molding die and the manufacturing method thereof according to the present invention.
【図7】実施例3により製造された光学素子成形型を示
す正面よりの断面図である。FIG. 7 is a cross-sectional front view showing an optical element molding die manufactured according to a third embodiment.
【図8】従来の光学素子の成形型による成形状態の要部
を示す正面よりの断面図である。FIG. 8 is a sectional view from the front showing a main part of a conventional optical element in a molding state by a molding die.
1 容器 2 H2 So4 溶液 3,20,27 ガラス棒 4,26 矢印 5 下端部 6,23,28 非球面 7 上端部 8 下端部 11 上型マウント 13 上型ヒータ 14 下型 15 上端面 16 下端面 17 下型マウント 18 下型ヒータ 21 孔 22 H2 So4 溶液 24 Al2 O3 焼結基材 25 ガラス溶液1 container 2 H 2 So 4 solution 3, 20, 27 glass rod 4, 26 arrow 5 lower end 6, 23, 28 aspherical surface 7 upper end 8 lower end 11 upper die mount 13 upper die heater 14 lower die 15 upper end surface 16 Bottom surface 17 Lower mount 18 Lower heater 21 Hole 22 H 2 So 4 solution 24 Al 2 O 3 sintering base material 25 Glass solution
Claims (3)
形する光学素子の薄肉部と肉厚部に対応して、上記それ
ぞれの型基板内に設けた気孔の比率を異ならせたことを
特徴とする光学素子成形型。1. A forming die comprising an upper die and a lower die, wherein the ratio of pores provided in each of the die substrates is made to correspond to the thin portion and the thick portion of the optical element to be formed. Characteristic optical element molding die.
において、型基材内に含有する特定成分を、成形する光
学素子の形状に対応選択して、エッチングにてその気孔
率を変化させて形成したことを特徴とする光学素子成形
型の製造方法。2. A method for producing a mold comprising an upper mold and a lower mold, wherein a specific component contained in the mold base material is selected in accordance with the shape of an optical element to be molded, and its porosity is adjusted by etching. A method for manufacturing an optical element molding die, which is formed by changing the shape.
において、型基材内に成形する光学素子の形状に対応し
て、上記基材内に含浸剤を含浸させ基材内の焼結体と融
合させて気孔率を変化させて形成したことを特徴とする
光学素子成形型の製造方法。3. A method for producing a mold comprising an upper mold and a lower mold, wherein the base material is impregnated with an impregnating agent in accordance with the shape of an optical element to be molded in the mold base material. A method for manufacturing an optical element molding die, which is formed by fusing with a sintered body and changing the porosity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11799292A JP3219460B2 (en) | 1992-04-10 | 1992-04-10 | Optical element mold and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11799292A JP3219460B2 (en) | 1992-04-10 | 1992-04-10 | Optical element mold and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05294650A true JPH05294650A (en) | 1993-11-09 |
JP3219460B2 JP3219460B2 (en) | 2001-10-15 |
Family
ID=14725353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11799292A Expired - Fee Related JP3219460B2 (en) | 1992-04-10 | 1992-04-10 | Optical element mold and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3219460B2 (en) |
-
1992
- 1992-04-10 JP JP11799292A patent/JP3219460B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3219460B2 (en) | 2001-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05294650A (en) | Mold for optical element and its production | |
JPS62207726A (en) | Production of pressed lens | |
JPH021779B2 (en) | ||
JP3229942B2 (en) | Method for manufacturing glass optical element | |
JP2001335334A (en) | Optical element-forming mold | |
KR870001737B1 (en) | The mould for making lenses by press | |
JPH0421608B2 (en) | ||
JPH0710546A (en) | Glass melting crucible | |
JP2501588B2 (en) | Mold for press molding optical glass element and molding method thereof | |
JPH021778B2 (en) | ||
JP2001220160A (en) | Carbon mold for producing quartz glass crucible | |
JP2004210550A (en) | Molding mold | |
JPH06102554B2 (en) | Optical element molding method and molding die thereof | |
JP2556569B2 (en) | Method for manufacturing base material for fluoride glass fiber | |
JPH0572336B2 (en) | ||
JPH046112A (en) | Glass for press forming and forming method using same | |
JP3164923B2 (en) | Glass material for molding optical element and method for producing the same | |
JPS62197326A (en) | Production of press lens | |
JPH06219754A (en) | Mold for forming optical element | |
JPS62256732A (en) | Molding tool for glass lens | |
JP2002080227A (en) | Method of manufacturing optical element | |
JPH02243524A (en) | Press-molding of optical element | |
JPH0259450A (en) | Mold for press-molding optical glass element | |
JP2003026430A (en) | Mold for molding high-precision prism, method for manufacturing the same and method for manufacturing high-precision prism | |
JPH06321561A (en) | Production of chalcogenide glass sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010724 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080810 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090810 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |