JPH0453690B2 - - Google Patents

Info

Publication number
JPH0453690B2
JPH0453690B2 JP31451288A JP31451288A JPH0453690B2 JP H0453690 B2 JPH0453690 B2 JP H0453690B2 JP 31451288 A JP31451288 A JP 31451288A JP 31451288 A JP31451288 A JP 31451288A JP H0453690 B2 JPH0453690 B2 JP H0453690B2
Authority
JP
Japan
Prior art keywords
mold
temperature
molding
phosphorus
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP31451288A
Other languages
Japanese (ja)
Other versions
JPH02158316A (en
Inventor
Takashi Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31451288A priority Critical patent/JPH02158316A/en
Priority to US07/448,544 priority patent/US5062786A/en
Publication of JPH02158316A publication Critical patent/JPH02158316A/en
Publication of JPH0453690B2 publication Critical patent/JPH0453690B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の属する分野〕 本発明は射出成形に用いる金型に係り、より詳
細に高周波誘導加熱方式により加熱される金型に
関する。 〔発明の従来技術〕 従来、高周波加熱により金型を加熱し、射出成
形することは、特開昭50−45039号等に記載され
ているように、金型内に発振電極と冷却水路を持
ち、外部に発振機と冷却水ポンプを持つよう構成
され、樹脂の充填時に金型を金型内に設けられた
発振電極により瞬間的に加熱し、充填完了後発振
を停止し、冷却水ポンプにより冷却水を金型へ流
し、冷却し、樹脂を固化させる方法が提案されて
いる。 又、特開昭58−40504号の公報には、熱可塑性
樹脂を射出成形するにあたり、射出成形品表面を
形成させるべき金型表面を予め該熱可塑性樹脂の
加熱変形温度以上に高周波誘導加熱して射出成形
する射出成形方法が提案されている。 金型の材料としては圧延鋼材(SS)、機械構造
用炭素鋼(SS、SCK)、工具鋼(SK、SKS)、高
速度鋼(SNC)、クロムモリブデン鋼等の鋼材を
鋳造、圧延加工するか、又、熱処理する。そして
切削加工、仕上げ組立て加工によつて金型をを形
成する。 上述の鉄系金型材は前述の高周波誘導加熱方式
による金型の加熱に適している。 又、金型材料として上述の鉄系材料以外に銅
系、アルミニウム系及びリン青銅等の材料があ
る。 〔発明の解決しようとする課題〕 光学部品等の成形精度を高く要求される成形
品、例えばレンズ・フレネルレンズ等は表面の仕
上げ精度、レンズ曲率の形成精度を要求される。
レンズの場合には金型のキヤビテイに射出された
溶融樹脂は射出終了後金型の冷却によつて射出樹
脂の冷却固化が進み、レンズ形状が形成される。
このとき金型の冷却温度の制御の仕方の具合が悪
いとレンズ表面にひけを生じレンズの主となりレ
ンズ曲率の形状が所望の通りにできない。 第9図に示すフレネルレンズの場合もやはり金
型の温度制御が具合良く行われないと頂角部10
0Aの先端の鋭角部の成形が行われない。 金型の加熱を高周波誘導加熱で行うと金型を短
時間内に高温度に加熱操作することができる。そ
して金型材料として前述の鉄系材料を用いると前
記高周波誘導加熱による加熱が効率的に行われ
る。しかしながら、前述鉄系材料、特に昨今多用
される鋼系材は切削加工性に難点がある。即ち、
超硬度な材質なためにキヤビテイ面を高精度の表
面粗さを保つて切削加工により曲面創成したりキ
ヤビテイ面にフレネル形状を加工すること、特に
フレネルレンズの場合μmの凹凸部を形成するこ
とは困難である。 キヤビテイ面への微細凹凸形状の形成のために
は加工性の良い金型材料が好ましく前述した銅系
又はアルミニウム系材料が適するのであるが、こ
れらの材料は金型加熱のための前記高周波誘導加
熱手段を用いることができない。 本発明はキヤビテイ面に微細形状を切削加工す
ることが可能で、かつ、キヤビテイ内に射出され
た溶融樹脂がキヤビテイ内の前記微細凹凸部に注
入し易くするため高周波誘導加熱方式による加熱
が可能となる金型を提案することを目的とする。 更に本発明の課題の他の1つはレンズ・フレネ
ルレンズ等の光学部品で成形表面粗さの精度が高
い精度を要求される成形品の生産性を向上するこ
とにある。前述した従来用いられた鋼材を中心と
した金型は鏡面切削が不可能であつた。 本発明は金型のキヤビテイ表層部分を鏡面加工
できる組成として成形品の微細形状の転写率を向
上するとともに、金型基部を高周波誘導加熱手段
によつてキヤビテイ表層部分を短い時間に高温加
熱することにより成形サイクルを短くして時間当
りの生産性を向上し得た金型を提案する。 第1表は従来例(1)として炭素鋼(S45C)、従来
例(2)としてリン青銅を用いた場合の鏡面性(表面
粗さ精度)と高周波加熱手段による金型の加熱速
度を示すが、表に示すように炭素鋼は加熱速度は
22℃/secで速いが鏡面加工は不可能である。又、
リン青銅は鏡面加工は可能であるが加熱速度は3
℃/secと非常に遅く、いずれも金型材料として
不適当である。 本発明は光学部品を成形するために金型の鏡面
加工が行い得て、かつ、高周波誘導加熱手段によ
る高速加熱が出来る金型を提案する。 〔課題を解決するための手段〕 本発明に係る金型は金型の基部を鉄系金属材と
し該鉄系金属基部の表面に無電解ニツケル−リン
メツキ層を形成する。 本発明はニツケルNiとリンP、又はニツケル
NiとリンPとコバルトCoを組合わせた組成の特
性に着目し、ニツケルNi及びコバルトCoの持つ
磁性による高周波誘導による加熱と、ニツケル
NiとリンPの組成物の有する非晶質構造を金型
表面に形成する。 〔作用〕 リンPを含有したニツケルNiは組成が非晶質
化しダイヤモンドバイトを用いた鏡面切削加工に
よる金型表面の鏡面仕上げが出来て、ニツケル
Ni又はコバルトCoのもつ磁性により高周波誘導
加熱によつて金型のキヤビテイの表層部分の温度
を短時間に高めることができる。 〔実施例の説明〕 第1図は本発明の後述する金型を用いた射出成
形装置の構成図、第2図は金型の温度曲線図、第
3図は前記装置を構成する各ユニツトのタイミン
グチヤート図である。 図において、符号1は射出成形機の本体を示
し、該本体は不図示の成形品を形成するキヤビテ
イを有する固定側金型2Aと移動側金型2Bと前
記金型を支持する型板4A・4B・移動ガイド部
材6と、及びホツパー8、射出シリンダー10と
並びに、前記金型の開閉及び型閉じめを行う駆動
手段12等から構成する。 14は金型の温度を調整する温度調整器で、該
調整器14はパイプ14Aを介して金型2A,2
B内の冷却媒体流通路(不図示)に接続し不図示
のポンプによつて冷却媒体を循環させられるよう
になつている。 18は高周波誘導加熱手段を示し、該手段は高
周波誘導制御部18Aとコイル部18Bと、及
び、前記コイル部18Bを支持する支持部材18
Cと、並びに、該支持部材を図示矢印A方向に進
退駆動する移動手段18Dから構成されている。 20A,20Bは温度検知センサーであり、該
センサーは前記金型のキヤビテイ面の温度を検出
して検知信号を出力するべく前記金型の適宜位置
に埋設されており、該検知信号はリード線22A
を介して温度検知手段22に入力する。 24は成形品取出手段を示し、該手段24はオ
ートハンド24Aによつて成形された成形品を取
り出す。 26は成形装置全体を制御する制御器である。 〔金型の第1の実施例〕 第3図は鉄系金属層100とメツキ層110か
ら構成された金型を示す。鉄系金属としてS55C
を用いた。第4図は第1実施例の金型の製造工程
を示す。 まず、鉄系金属S55Cの表面に成形品のキヤビ
テイ形状の形状加工を行う(a)。表面粗さの精度
Rmaxは1μm以下に加工する。その後、リン含有
量11%のメツキ液中にて無電解ニツケル−リンメ
ツキ層110層を100μmの厚さにS55Cのキヤビ
テイ面にメツキする(b)。メツキ層形成後、大気恒
温槽内で250℃の温度で2時間の熱処理を行つた
(c)。熱処理後ダイヤモンド工具を用いて精密施盤
によつて深さ50μmの山形溝を鏡面切削加工して
キヤビテイ面を形成した。キヤビテイ面の表面粗
さ精度はRmax0.01μm以下の精度に保つた(d)。 上述第1実施例による金型を前記第1図に示し
た成形装置に装着して該金型に温度センサーを設
置する。 高周波誘導加熱手段16の加熱コイル16Bと
金型キヤビテイ面との空間間隔を2mmに設定して
高周波出力8.2Kwatt、周波数132KHzの発振操作
を行い、前述温度センサー20A,20Bの出力
を温度制御器22で測定したところ、キヤビテイ
面の表面温度は9.5秒間で55℃から244℃に瞬間的
に加熱された。本実施例の金型の加熱速度は毎秒
20℃であつた。第1表において本実施例と従来例
1、2を鏡面性と加熱速度を比較するといずれの
面においても本実施例の金型が優れている。 第2表は前述リン含有率11%の第1実施例の金
型と他の比較例との比較を示す。比較例1はリン
含有率4%で250℃の熱処理を2時間行つた型材
をダイヤモンド切削したところ表面粗さの精度
0.15μmが限界であつた。高周波加熱による加熱
速度は21℃/secであつたが、光学部品等の高度
の表面粗さ精度を要求された金型の型材には不適
当である。 比較例2は11%含有率で400℃で2時間熱処理
の型材のデータであり、比較例3は14%含有率を
250℃2時間熱処理をした型材のデータを示す。 第2表の比較データから理解されるようにリン
の含有率を多くすると鏡面性の向上を図ることが
できる。又、ニツケル自体は磁性を有するが鏡面
性は低く、リンを含有したニツケルのメツキ層
は、組成が非晶質な為、鏡面切削性が良く、又、
熱処理することにより熱処理条件によつて磁性化
する為、高周波加熱が効率良く行うことが出来
る。 種々の実験検討の繰り返し作業の結果、リン含
有率を8%から13%以内にし、熱処理温度を200
℃から350℃の間、かつ、熱処理時間を1時間か
ら3時間の間で処理して形成した型材はメツキ層
の切削加工の表面粗さは0.01μm以下の精度が得
られ、又、高周波誘導加熱手段による加熱速度は
20℃/sec以上の速度が得られたことが判明した。 第3表は前記第1実施例に示した金型を用いて
フレネルレンズを成形したときのデータを示す。 次に第2図を加えて第1図装置の操作について
説明する。制御器26の不図示の成形起動操作に
より、初期の型開きの位置に存する移動側金型2
Bは型を閉じる方向に移動を開始し、移動側金型
2Bが固定側金型2Aと所定の距離に保つ第1の
位置に来ると移動側金型2Bは移動を停止する。 前記移動側金型2Bが前記第1の位置に来て止
まると前記高周波誘導加熱手段16を制御する信
号P1が前記制御器26から出力する。前記制御
信号P1を受けて、前記移動手段16Dは前記金
型2A,2Bの開閉移動域外に退避していた加熱
コイル18Bを移動側金型2Bと固定側金型2A
の間に進入を開始する。加熱コイル18BVは金
型の不図示のキヤビテイ面に対向する位置であつ
て、キヤビテイ面を加熱するために好ましい位置
に来たときに停止する。前記加熱コイル18Bの
停止にともなつて高周波誘導制御部16Aは出力
8.2Kwatt、周波数132KHzの高周波発振を行い、
これによつて前記加熱コイル18Bに高周波発振
が伝えられ、公知の高周波誘導加熱動作により金
型2A,2Bは加熱されて温度が第2図に示すよ
うに、発振開始時点t1の温度tAからピーク温度tB
に向う曲線aに沿つて上昇する。 制御部26からは前記温度調整器14を作動す
る信号P2が作動し温度調節器14は前記制御器
の成形起動操作の初期操作時に作動する。前記温
度調整器14は不図示の貯蔵槽の冷却媒体を所定
温度の80℃に温度調整すると同時に不図示のポン
プを作動させて流通路14Aを通して固定側金型
と移動側金型内に冷却媒体を循環させる。冷却媒
体が金型内を循環する一方において前記加熱コイ
ル16Bによる高周波誘導発振により金型のキヤ
ビテイは急速に第2図に示すピーク温度tBの244
℃まで温度上昇する。金型の温度はそれぞれの金
型に設置したセンサー20A,20Bによつて検
知され検知信号は温度検知手段22に入力する。 温度検知手段22はセンサーが前記ピーク温度
tB244℃を検知すると高周波発振制御部16Aに
発振停止信号を送ると同時に、前記移動手段16
Dによつて加熱コイル16Bを退避させる。 加熱コイル16Bの退避完了と同時に型駆動手
段12によつて移動側金型2Bが閉成し型締め動
作が行われる。型締め動作の完了により、金型は
樹脂材料(ポリカーボネイト)の射出準備が完了
するわけであるが、前述の加熱コイルの発振停止
による加熱停止から型締め動作の完了までは第2
図に示す時間t2から時間t3に至る時間の経過Δt1
がある。この経過時間Δt1の間に金型の温度は
(tB−tC)=244−160=84℃の温度降下を生じる
が、本装置の特徴の1つであつ高周波誘電加熱に
よる瞬間的加熱と前期加熱中も冷却媒体による冷
却操作によつて、ピーク温度tB=244℃から射出
温度tC=160℃までの温度降下曲線bは常に一定
の曲線が形成されるようになり射出温度tC=160
℃の温度は射出成形サイクルを何サイクル繰り返
しても常に一定である。 制御部26からは射出シリンダ10を作動させ
ホツパー8内の溶融樹脂材料の射出が不図示のゲ
ートから金型のキヤビテイ内に注入される。樹脂
材料が所定量注入された後金型は温度曲線Cに沿
つて冷却されてキヤビテイ内の溶融樹脂のキヤビ
テイ形状に沿つた固化が進行して成形品が形成さ
れる。 その後、金型温度が離型に適する温度tD=110
℃に降下すると制御部26から型駆動手段12に
型開き信号が送られて移動側金型2Bが移動す
る。型開きが完了すると成形取出手段24が作動
してオートハンド24Aによつて成形品の取り出
しが行われ成形が終了し成形の1サイクルが終
る。 前述した成形品が第9図に示すようなフレネル
レンズの場合、キヤビテイ内に射出された溶融樹
脂材料はレンズの鋭角部分を形成するキヤビテイ
内の隅々に行き渡り空〓を生ずることがないよう
にする必要があり、そのためには金型温度を高い
温度に設定して樹脂の流動性を促進することが要
求されると同時に、成形サイクルを何サイクル繰
り返しても、どのサイクルでも第2図の温度曲線
を保つ必要があるが、本発明は前述成形方法によ
つて充分満足を得られる効果があつた。 第3表に示す比較例の金型の型材はSKD61で
あり、第3表から理解できるように前記第1実施
例に示す型材の金型に依れば比較例に比し成形サ
イクルを大幅に短縮することができた。 第8図A,Bは前記第1表のデータに基づく本
発明による成形方法と前述比較例による成形品の
成形結果を示す模式図である。 上記第8図A,Bの成形品はフレネルレンズの
断面の拡大図を示し、第8図Bは従来技術の成形
方法を示し、図から明らかなように頂角部はダレ
て、先端な丸まつている。これに対し第8図Aは
本発明の成形方法を示し、頂角部は角度が正確に
鋭角となり先端は丸まつていない。フレネルレン
ズの場合入射光X1,X2…はレンズ面で屈折して
光軸上の一点に焦点を結ぶ必要がある。本発明に
係る実施例は第4図Aに示すように頂角部に入射
した光は正確に屈折するので各入射光は一点に焦
点を結ぶことができ、結像のゴーストと云われる
像のボケは生じない。これに対し従来技術の場合
には第8図Bに示すように頂角部に入射した光は
頂角のダレのために屈折角が小さくなり入射光は
光軸上の一点で焦点を結ぶことができずゴースト
が発生し像のボケを生じる。 フレネルレンズの成形精度を測る目安として第
10図に示す方法がある。 フレネルレンズの底部から頂角部までの設計値
上の高さHに対し実際に成形によつて得られた高
さhの割合h/Hが大きければ大きい程成形精度
が高いと云える。 この方法によると従来技術の場合70%程度であ
つたが、本発明の上述実施例1・2の場合は98〜
99%と非常に高い数値を得ることができた。 〔金型の第2の実施例〕 本実施例は無電解メツキ層の上にコバルト層を
形成した型材を提供する。第5図は本実施例の型
材の構成を示す図である。図において100は鉄
系金属、120は無電解ニツケル−リンメツキ
層、130は上記メツキ層の上に蒸着したコバル
ト蒸着層である。鉄系金属としてS55Cを用いて
前記第1の実施例と同様に形状加工とリン含有率
11%の無電解ニツケル−リンメツキ層120を
100μmの厚さに形成し、250℃、2時間の熱処理
を行う。その後深さ50μmの山形溝を鏡面加工し
た後にイオン・プレーテイング方法によりコバル
トを該鏡面加工した表面に厚さ2μmに蒸着した。 上述のように作つた金型を前記第1図の装置に
装着し、出力8.2Kwatt、周波数132KHzにて高周
波誘導加熱手段を作動させて金型に加熱したとこ
ろ、金型表面温度は8秒間で55℃から245℃に上
昇した。本実施例の金型の加熱速度は24℃/sec
であつた。尚、上記コバルト蒸着層の表面粗さの
精度はRmax0.01μmであつた。 上記の第2実施例の金型をフレネルレンズを成
形するために第3表実施例2の条件で成形して表
のデータを得た。その結果、成形サイクルは58±
2秒のサイクル時間であつた。 本実施例の確認実験の結果、コバルト含有率2
%から10%の範囲、かつリン含有率4%から10%
の範囲で200℃〜350℃の温度で1時間乃至3時間
の熱処理を施した金型は第1表実施例2に示すデ
ータを確保した。 〔金型の第3の実施例〕 第6図は第3の実施例による金型の型材構造を
示す。図において、100は鉄系金属S55Cであ
り、120は無電解ニツケル−リンメツキ層、1
40はハードクロームメツキ層である。鉄系金属
S55Cを用いて前述第1実施例と同様に形状加工
を行い、リン含有率10%の無電解ニツケル−リン
メツキ層100μmの厚さに形成し、200℃の温度で
2時間の熱処理操作を行い。前記ニツケル−リン
メツキ層の上に厚さ3μmのハードクロームメツ
キ層140を形成して金型と成した。 上記第3実施例の金型を第1図の成形機に装着
して金型の温度テストを行つたところ、出力
10Kwatt、周波数132KHzの条件で高周波誘導加
熱手段を作動させて温度測定を行つた。その結果
8秒間で55℃から198℃への温度上昇が確認でき
た。この金型の鏡面性は表面粗さがRmax0.01μ
mであつた。 〔金型の第4の実施例〕 第7図は第4の実施例を示す。図において20
0は銅合金から成る金型の基部、210は無電解
ニツケル−リンメツキ層である。銅合金の表面粗
さ精度はRmax2μmに仕上げる。銅合金の表面に
11%リン含有率の無電解ニツケル−リンメツキ層
を厚さ1mm形成して鏡面切削により深さ50μmの
山形溝を加工する。この時粗さはRmax0.01μm
であつた。この金型を第1図示の成形機に装着し
て、出力30Kwatt、周波数420KHzで高周波誘導
加熱手段を作動させたところ、10秒の間に金型表
面は55℃から200℃に加熱した。 上記第4の実施例の金型の基部は鉄系金属でな
い非磁性の銅合金であり、銅合金の表面に無電解
ニツケル−リンメツキ層を形成することにより該
メツキ層をアモルフアス化させて型表面の形状加
工の鏡面性を確保し、加熱のために30Kwatt、
420KHzと大出力の発振によつて金型の温度上昇
を行うことができたものである。 〔発明の効果〕 本発明に依れば鉄系金属のもつ磁性と無電解ニ
ツケル−リンメツキ層熱処理することにより金型
表面の鏡面性を併わせ備えた金型の型材を得るこ
とにより、高周波誘導加熱による短時間に高温度
になる加熱速度の大きい金型を得ることができ
た。本発明の金型により表面粗さ精度に優れ、か
つ、微細な凹凸形状を有するキヤビテイの形成を
可能とし光学部品等の成形精度を向上することが
できた。 又、前記鉄系金属の磁性と併せて高周波誘導加
熱時の鉄系金属の抵抗値によつて短時間に高温度
に加熱できこれにより前述第2図示の成形サイク
ルを短くすることができて生産性の向上を図れ
た。
[Field of the Invention] The present invention relates to a mold used for injection molding, and more particularly to a mold heated by a high-frequency induction heating method. [Prior Art to the Invention] Conventionally, injection molding by heating a mold using high-frequency heating has been described in Japanese Patent Application Laid-Open No. 50-45039, etc. The mold is equipped with an external oscillator and a cooling water pump, and when filling with resin, the mold is instantaneously heated by an oscillating electrode installed inside the mold, and after filling is completed, the oscillation is stopped and the cooling water pump is used to heat the mold. A method has been proposed in which cooling water is poured into a mold to cool it and solidify the resin. Furthermore, JP-A-58-40504 discloses that when injection molding a thermoplastic resin, the surface of the mold on which the surface of the injection molded product is to be formed is preheated by high-frequency induction to a temperature higher than the heating deformation temperature of the thermoplastic resin. An injection molding method for injection molding has been proposed. Mold materials include rolled steel (SS), mechanical structural carbon steel (SS, SCK), tool steel (SK, SKS), high-speed steel (SNC), chrome-molybdenum steel, and other steel materials that are cast and rolled. Or, heat treatment. Then, a mold is formed by cutting and finishing assembly. The above-mentioned iron-based mold material is suitable for heating the mold by the above-mentioned high frequency induction heating method. In addition to the iron-based materials mentioned above, there are materials such as copper-based, aluminum-based, and phosphor bronze as mold materials. [Problems to be Solved by the Invention] Molded products such as optical parts that require high molding precision, such as lenses and Fresnel lenses, require surface finishing precision and lens curvature forming precision.
In the case of a lens, the molten resin injected into the cavity of a mold is cooled and solidified by cooling of the mold after the injection is completed, and the lens shape is formed.
At this time, if the cooling temperature of the mold is improperly controlled, sink marks will occur on the lens surface and become the main part of the lens, making it impossible to obtain the desired shape of lens curvature. In the case of the Fresnel lens shown in FIG. 9, if the mold temperature is not properly controlled, the apex 10
The sharp corner of the tip of 0A is not formed. If the mold is heated by high-frequency induction heating, the mold can be heated to a high temperature within a short time. When the above-mentioned iron-based material is used as the mold material, heating by the high-frequency induction heating can be efficiently performed. However, the above-mentioned iron-based materials, especially the steel-based materials that are frequently used these days, have difficulties in machinability. That is,
Because it is a super hard material, it is difficult to create a curved surface by cutting the cavity surface while maintaining a high precision surface roughness, or to process a Fresnel shape on the cavity surface.In particular, in the case of a Fresnel lens, it is difficult to form micrometer-sized irregularities. Have difficulty. In order to form fine irregularities on the cavity surface, mold materials with good workability are preferred, and the aforementioned copper-based or aluminum-based materials are suitable; cannot use any means. The present invention makes it possible to cut a fine shape on the cavity surface, and also enables heating using a high-frequency induction heating method in order to make it easier for the molten resin injected into the cavity to be injected into the fine irregularities in the cavity. The purpose is to propose a new mold. Another object of the present invention is to improve the productivity of molded products, such as optical parts such as lenses and Fresnel lenses, which require high accuracy in molding surface roughness. Mirror cutting was not possible with the previously used molds mainly made of steel. The present invention improves the transfer rate of fine shapes of molded products by providing a composition that can mirror-finish the surface layer of the cavity of the mold, and also heats the surface layer of the cavity at a high temperature in a short time using high-frequency induction heating means at the base of the mold. We propose a mold that can shorten the molding cycle and improve productivity per hour. Table 1 shows the specularity (surface roughness accuracy) and mold heating rate by high-frequency heating means when carbon steel (S45C) is used as conventional example (1) and phosphor bronze is used as conventional example (2). , as shown in the table, the heating rate of carbon steel is
It is fast at 22℃/sec, but mirror finishing is impossible. or,
Phosphor bronze can be mirror-finished, but the heating rate is 3
C/sec, which makes them both unsuitable as mold materials. The present invention proposes a mold that can be mirror-finished and can be heated at high speed by high-frequency induction heating means for molding optical components. [Means for Solving the Problems] In the mold according to the present invention, the base of the mold is made of an iron-based metal, and an electroless nickel-phosphorus plating layer is formed on the surface of the iron-based metal base. The present invention uses nickel Ni and phosphorus P, or nickel
Focusing on the characteristics of the composition that combines Ni, phosphorus P, and cobalt Co, we focused on the properties of the composition that combines Ni, phosphorus P, and cobalt Co.
An amorphous structure having a composition of Ni and phosphorus P is formed on the mold surface. [Function] The composition of Nickel Ni containing phosphorus P becomes amorphous, and a mirror finish on the mold surface can be achieved by mirror cutting using a diamond cutting tool.
Due to the magnetism of Ni or cobalt Co, the temperature of the surface layer of the mold cavity can be raised in a short time by high-frequency induction heating. [Explanation of Examples] Fig. 1 is a block diagram of an injection molding apparatus using a mold described later in the present invention, Fig. 2 is a temperature curve diagram of the mold, and Fig. 3 is a diagram of each unit constituting the apparatus. It is a timing chart diagram. In the figure, reference numeral 1 indicates the main body of the injection molding machine, which includes a stationary mold 2A having a cavity (not shown) for forming a molded product, a movable mold 2B, and a template 4A supporting the mold. 4B, a moving guide member 6, a hopper 8, an injection cylinder 10, a driving means 12 for opening and closing the mold, and the like. 14 is a temperature regulator that adjusts the temperature of the mold, and the regulator 14 is connected to the molds 2A and 2 via a pipe 14A.
It is connected to a cooling medium flow path (not shown) in B, and the cooling medium can be circulated by a pump (not shown). Reference numeral 18 indicates a high-frequency induction heating means, which includes a high-frequency induction control section 18A, a coil section 18B, and a support member 18 that supports the coil section 18B.
C, and a moving means 18D that drives the support member forward and backward in the direction of arrow A in the figure. 20A and 20B are temperature detection sensors, which are embedded in appropriate positions of the mold to detect the temperature of the cavity surface of the mold and output a detection signal, and the detection signal is sent to the lead wire 22A.
The temperature is inputted to the temperature detection means 22 via the temperature detection means 22. Reference numeral 24 indicates a molded product take-out means, and the means 24 takes out the molded product molded by the automatic hand 24A. 26 is a controller that controls the entire molding apparatus. [First Example of Mold] FIG. 3 shows a mold composed of an iron-based metal layer 100 and a plating layer 110. S55C as ferrous metal
was used. FIG. 4 shows the manufacturing process of the mold of the first embodiment. First, the cavity shape of the molded product is processed on the surface of ferrous metal S55C (a). Surface roughness accuracy
Rmax is processed to 1μm or less. Thereafter, 110 electroless nickel-phosphorous plating layers are plated on the S55C cavity surface to a thickness of 100 μm in a plating solution with a phosphorus content of 11% (b). After forming the plating layer, heat treatment was performed at 250℃ for 2 hours in an atmospheric temperature chamber.
(c). After heat treatment, a cavity surface was formed by cutting a 50 μm deep chevron groove into a mirror surface using precision lathe using a diamond tool. The surface roughness accuracy of the cavity surface was maintained at Rmax0.01μm or less (d). The mold according to the first embodiment is mounted on the molding apparatus shown in FIG. 1, and a temperature sensor is installed in the mold. The space interval between the heating coil 16B of the high-frequency induction heating means 16 and the mold cavity surface is set to 2 mm, and the high-frequency output is 8.2 Kwatt and the frequency is 132 KHz. When measured, the surface temperature of the cavity surface was instantaneously heated from 55°C to 244°C in 9.5 seconds. The heating rate of the mold in this example is per second
It was 20℃. In Table 1, when comparing the specularity and heating rate between this example and conventional examples 1 and 2, the mold of this example is superior in all respects. Table 2 shows a comparison between the mold of the first example having a phosphorus content of 11% and other comparative examples. Comparative Example 1 shows the accuracy of the surface roughness when diamond cutting a molded material that had been heat treated at 250°C for 2 hours with a phosphorus content of 4%.
The limit was 0.15 μm. The heating rate by high-frequency heating was 21° C./sec, but this is not suitable for mold materials that require a high degree of surface roughness precision for optical parts and the like. Comparative example 2 is the data of the mold material heat-treated at 400℃ for 2 hours with a content of 11%, and comparative example 3 is the data of a mold with a content of 14%.
The data for the mold material heat treated at 250°C for 2 hours is shown. As understood from the comparative data in Table 2, increasing the phosphorus content can improve the specularity. In addition, although nickel itself has magnetism, it has low specularity, and the plating layer of nickel containing phosphorus has an amorphous composition, so it has good specular machinability, and
Since the material becomes magnetized by heat treatment depending on the heat treatment conditions, high frequency heating can be performed efficiently. As a result of repeated work of various experimental studies, the phosphorus content was reduced from 8% to 13% and the heat treatment temperature was increased to 200%.
For molds formed by heat treatment between ℃ and 350℃ and heat treatment time between 1 hour and 3 hours, the surface roughness of the plating layer can be cut with an accuracy of 0.01 μm or less, and high frequency induction The heating rate by heating means is
It was found that a speed of 20°C/sec or higher was obtained. Table 3 shows data when a Fresnel lens was molded using the mold shown in the first embodiment. Next, the operation of the apparatus shown in FIG. 1 will be explained with reference to FIG. The movable mold 2 in the initial mold opening position is moved by the molding starting operation (not shown) of the controller 26.
B starts moving in the direction of closing the mold, and when the movable mold 2B comes to the first position where it is kept at a predetermined distance from the stationary mold 2A, the movable mold 2B stops moving. When the movable mold 2B reaches the first position and stops, a signal P1 for controlling the high frequency induction heating means 16 is output from the controller 26. In response to the control signal P1 , the moving means 16D moves the heating coil 18B, which had been evacuated outside the opening/closing movement area of the molds 2A and 2B, to the movable mold 2B and the fixed mold 2A.
Start the approach between The heating coil 18BV is located at a position facing a cavity surface (not shown) of the mold, and stops when it reaches a position suitable for heating the cavity surface. As the heating coil 18B is stopped, the high frequency induction control section 16A outputs
8.2Kwatt, high frequency oscillation of 132KHz,
As a result, high-frequency oscillation is transmitted to the heating coil 18B, and the molds 2A and 2B are heated by a known high-frequency induction heating operation, so that the temperature reaches the temperature t A at the oscillation start time t 1 as shown in FIG. from peak temperature t B
It rises along curve a toward . A signal P2 for activating the temperature regulator 14 is activated from the control unit 26, and the temperature regulator 14 is activated at the initial operation of the molding start-up operation of the controller. The temperature regulator 14 adjusts the temperature of the cooling medium in a storage tank (not shown) to a predetermined temperature of 80° C., and at the same time operates a pump (not shown) to supply the cooling medium into the stationary mold and the movable mold through the flow path 14A. circulate. While the cooling medium circulates within the mold, the cavity of the mold rapidly reaches the peak temperature tB of 244 shown in FIG.
The temperature rises to ℃. The temperature of the mold is detected by sensors 20A and 20B installed in each mold, and the detection signal is input to the temperature detection means 22. The temperature detection means 22 has a sensor that detects the peak temperature.
tB When 244°C is detected, an oscillation stop signal is sent to the high frequency oscillation control unit 16A, and at the same time, the moving means 16
D, the heating coil 16B is retracted. Simultaneously with the completion of retraction of the heating coil 16B, the movable mold 2B is closed by the mold driving means 12, and a mold clamping operation is performed. When the mold clamping operation is completed, the mold is ready for injection of the resin material (polycarbonate), but from the heating stop due to the heating coil's oscillation stop described above to the completion of the mold clamping operation, the mold is ready for injection.
Time elapsed from time t 2 to time t 3 shown in the figure Δt 1
There is. During this elapsed time Δt 1 , the temperature of the mold decreases by (t B − t C ) = 244 − 160 = 84°C, but one of the features of this device is instantaneous heating by high-frequency dielectric heating. During the first heating period, due to the cooling operation using the cooling medium, the temperature drop curve b from the peak temperature t B = 244°C to the injection temperature t C = 160°C always forms a constant curve, and the injection temperature t C =160
The temperature in °C remains constant no matter how many injection molding cycles are repeated. The control unit 26 operates the injection cylinder 10, and the molten resin material in the hopper 8 is injected into the mold cavity through a gate (not shown). After a predetermined amount of resin material is injected, the mold is cooled along a temperature curve C, and the molten resin in the cavity solidifies along the shape of the cavity to form a molded product. After that, the mold temperature becomes the temperature suitable for mold release t D = 110
℃, a mold opening signal is sent from the control section 26 to the mold driving means 12, and the movable mold 2B is moved. When the mold opening is completed, the molding removal means 24 is activated and the molded product is taken out by the automatic hand 24A, and the molding is completed, thus completing one cycle of molding. When the above-mentioned molded product is a Fresnel lens as shown in Fig. 9, the molten resin material injected into the cavity is distributed to every corner of the cavity that forms the acute angle part of the lens, so that no voids occur. To achieve this, it is necessary to set the mold temperature to a high temperature to promote the fluidity of the resin, and at the same time, no matter how many molding cycles are repeated, the temperature shown in Figure 2 must be maintained at every cycle. Although it is necessary to maintain the curve, the present invention had a sufficiently satisfactory effect using the above-mentioned molding method. The mold material of the mold of the comparative example shown in Table 3 is SKD61, and as can be understood from Table 3, the molding cycle of the mold of the mold material shown in the first embodiment is significantly longer than that of the comparative example. I was able to shorten it. FIGS. 8A and 8B are schematic diagrams showing the molding results of molded products according to the molding method according to the present invention and the comparative example described above based on the data in Table 1. The molded products shown in FIGS. 8A and 8B above are enlarged views of the cross-section of Fresnel lenses, and FIG. 8B shows the molding method of the prior art. It is worshiped. On the other hand, FIG. 8A shows the molding method of the present invention, in which the apex angle is accurately acute and the tip is not rounded. In the case of a Fresnel lens, the incident lights X 1 , X 2 . . . need to be refracted at the lens surface and focused at one point on the optical axis. In the embodiment of the present invention, as shown in FIG. 4A, the light incident on the vertex is refracted accurately, so each incident light can be focused on one point, and the image called a ghost of the image is eliminated. No blurring occurs. On the other hand, in the case of the prior art, as shown in FIG. 8B, the angle of refraction of the light incident on the apex portion becomes small due to the sagging of the apex angle, and the incident light is focused at one point on the optical axis. This results in ghosting and blurring of the image. There is a method shown in FIG. 10 as a guideline for measuring the molding accuracy of Fresnel lenses. It can be said that the larger the ratio h/H of the height h actually obtained by molding to the designed height H from the bottom to the apex of the Fresnel lens, the higher the molding accuracy. According to this method, it was about 70% in the case of the conventional technology, but in the case of the above-mentioned embodiments 1 and 2 of the present invention, it was 98 to 98%.
We were able to obtain a very high value of 99%. [Second Example of Mold] This example provides a mold material in which a cobalt layer is formed on an electroless plating layer. FIG. 5 is a diagram showing the structure of the mold material of this example. In the figure, 100 is an iron-based metal, 120 is an electroless nickel-phosphorus plating layer, and 130 is a cobalt vapor deposition layer deposited on the above-mentioned plating layer. Using S55C as the iron-based metal, shape processing and phosphorus content were performed in the same manner as in the first example.
11% electroless nickel-phosphorus plating layer 120
It is formed to a thickness of 100 μm and heat treated at 250°C for 2 hours. Thereafter, a chevron-shaped groove with a depth of 50 μm was mirror-finished, and cobalt was deposited to a thickness of 2 μm on the mirror-finished surface by an ion plating method. The mold made as described above was installed in the apparatus shown in Fig. 1 above, and the high frequency induction heating means was operated at an output of 8.2 Kwatt and a frequency of 132 KHz to heat the mold, and the mold surface temperature increased in 8 seconds. The temperature rose from 55℃ to 245℃. The heating rate of the mold in this example is 24℃/sec
It was hot. Incidentally, the accuracy of the surface roughness of the cobalt vapor deposited layer was Rmax 0.01 μm. The mold of Example 2 was molded to form a Fresnel lens under the conditions of Example 2 in Table 3 to obtain the data shown in the table. As a result, the molding cycle is 58±
The cycle time was 2 seconds. As a result of the confirmation experiment of this example, the cobalt content was 2.
% to 10% and phosphorus content 4% to 10%
The molds subjected to heat treatment for 1 to 3 hours at a temperature of 200 DEG C. to 350 DEG C. had the data shown in Table 1, Example 2. [Third Embodiment of Mold] FIG. 6 shows the structure of a mold material according to a third embodiment. In the figure, 100 is iron-based metal S55C, 120 is an electroless nickel-phosphorus plating layer, 1
40 is a hard chrome plating layer. ferrous metals
Using S55C, the shape was processed in the same manner as in the first embodiment, an electroless nickel-phosphorus plating layer with a phosphorus content of 10% was formed to a thickness of 100 μm, and heat treatment was performed at a temperature of 200° C. for 2 hours. A hard chrome plating layer 140 having a thickness of 3 μm was formed on the nickel-phosphorus plating layer to form a mold. When the mold of the third embodiment was installed in the molding machine shown in Fig. 1 and a temperature test of the mold was performed, the output was
The temperature was measured by operating the high frequency induction heating means under the conditions of 10 Kwatt and 132 KHz frequency. As a result, it was confirmed that the temperature rose from 55°C to 198°C in 8 seconds. The specularity of this mold has a surface roughness of Rmax0.01μ
It was m. [Fourth embodiment of mold] FIG. 7 shows a fourth embodiment. 20 in the figure
0 is the base of the mold made of copper alloy, and 210 is an electroless nickel-phosphorus plating layer. The surface roughness accuracy of the copper alloy is finished to Rmax2μm. on the surface of copper alloy
An electroless nickel-phosphorus plating layer with a phosphorus content of 11% is formed to a thickness of 1 mm, and a 50 μm deep chevron groove is machined by mirror cutting. At this time, the roughness is Rmax0.01μm
It was hot. When this mold was installed in the molding machine shown in the first figure and the high frequency induction heating means was operated at an output of 30 Kwatt and a frequency of 420 KHz, the surface of the mold was heated from 55° C. to 200° C. in 10 seconds. The base of the mold in the fourth embodiment is made of a non-magnetic copper alloy that is not an iron-based metal, and by forming an electroless nickel-phosphorus plating layer on the surface of the copper alloy, the plating layer is made amorphous and the mold surface is 30Kwatt for heating to ensure mirror finish of shape processing,
It was possible to raise the temperature of the mold by oscillating at a high output of 420KHz. [Effects of the Invention] According to the present invention, by obtaining a mold material that combines the magnetism of iron-based metals and the specularity of the mold surface by heat-treating the electroless nickel-phosphorus plating layer, high-frequency induction can be achieved. It was possible to obtain a mold that has a high heating rate and can reach a high temperature in a short period of time. The mold of the present invention enables the formation of a cavity with excellent surface roughness accuracy and fine irregularities, thereby improving the molding accuracy of optical components and the like. In addition, due to the magnetism of the ferrous metal and the resistance value of the ferrous metal during high-frequency induction heating, it can be heated to a high temperature in a short time, thereby shortening the molding cycle as shown in the second figure above, and improving production. I was able to improve my sexuality.

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る金型を用いた成形機の装
置構成図。第2図は温度曲線図。第3図乃至第4
図a,b,c,dは第1の実施例を示し、第3図
は金型の構成説明図、第4図a,b,c,dは金
型製造工程図。第5図は第2実施例の金型の構成
説明図。第6図は第3実施例の金型の構成説明
図。第7図は第4実施例の金型の構成説明図。第
8図A,Bはフレネルレンズの説明図。第9図は
フレネルレンズの構成図。第10図はフレネルレ
ンズの説明図。 2A,2B……金型、16,16A,16B,
16C,16D……高周波誘導加熱手段、100
……鉄系金属、110,120……無電解ニツケ
ル−リンメツキ層。
FIG. 1 is an apparatus configuration diagram of a molding machine using a mold according to the present invention. Figure 2 is a temperature curve diagram. Figures 3 to 4
Figures a, b, c, and d show the first embodiment, Figure 3 is an explanatory diagram of the structure of the mold, and Figure 4 a, b, c, and d are mold manufacturing process diagrams. FIG. 5 is an explanatory diagram of the structure of the mold of the second embodiment. FIG. 6 is an explanatory diagram of the structure of the mold of the third embodiment. FIG. 7 is an explanatory diagram of the structure of the mold of the fourth embodiment. FIGS. 8A and 8B are explanatory diagrams of Fresnel lenses. FIG. 9 is a configuration diagram of a Fresnel lens. FIG. 10 is an explanatory diagram of a Fresnel lens. 2A, 2B... Mold, 16, 16A, 16B,
16C, 16D...High frequency induction heating means, 100
...Iron-based metal, 110,120...Electroless nickel-phosphorus plating layer.

Claims (1)

【特許請求の範囲】 1 鉄系金属と無電解ニツケル−リンメツキ層か
ら構成し、無電解ニツケル−リンメツキのリン含
有率を8%〜13%とし、熱処理条件を200℃〜350
℃の温度で1時間乃至3時間としたことを特徴と
する射出成形用金型。 2 鉄系金属と無電解ニツケル−リンメツキ層
と、及び、コバルト層から構成し、前記無電解ニ
ツケル−リンメツキ層のリン含有率が4%〜10%
の範囲とし、コバルト含有率を2%〜10%とし、
200℃〜350℃の温度で1〜3時間の熱処理を行つ
たことを特徴とする射出成形用金型。
[Claims] 1. Consisting of an iron-based metal and an electroless nickel-phosphorus plating layer, the phosphorus content of the electroless nickel-phosphorus plating is 8% to 13%, and the heat treatment conditions are 200°C to 350°C.
A mold for injection molding, characterized in that the mold is kept at a temperature of 1 to 3 hours at a temperature of °C. 2 Consisting of an iron-based metal, an electroless nickel-phosphorus plating layer, and a cobalt layer, the phosphorus content of the electroless nickel-phosphorus plating layer is 4% to 10%.
The range is 2% to 10%, and the cobalt content is 2% to 10%.
An injection mold, characterized in that it is heat treated at a temperature of 200°C to 350°C for 1 to 3 hours.
JP31451288A 1988-12-12 1988-12-12 Mold for injection molding Granted JPH02158316A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP31451288A JPH02158316A (en) 1988-12-12 1988-12-12 Mold for injection molding
US07/448,544 US5062786A (en) 1988-12-12 1989-12-11 Molding device for molding optical elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31451288A JPH02158316A (en) 1988-12-12 1988-12-12 Mold for injection molding

Publications (2)

Publication Number Publication Date
JPH02158316A JPH02158316A (en) 1990-06-18
JPH0453690B2 true JPH0453690B2 (en) 1992-08-27

Family

ID=18054180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31451288A Granted JPH02158316A (en) 1988-12-12 1988-12-12 Mold for injection molding

Country Status (1)

Country Link
JP (1) JPH02158316A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04173313A (en) * 1990-11-07 1992-06-22 Sanshu Mold:Kk Mold for injection molding and injection molding method using said mold
JP2004153161A (en) 2002-10-31 2004-05-27 Denso Corp Electromagnetic driving device and flow rate controller using the same
JP5838777B2 (en) * 2011-12-15 2016-01-06 コニカミノルタ株式会社 Manufacturing method of mold for molding
JP2019508558A (en) * 2016-03-02 2019-03-28 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Glass filler reinforced solid resin

Also Published As

Publication number Publication date
JPH02158316A (en) 1990-06-18

Similar Documents

Publication Publication Date Title
US5062786A (en) Molding device for molding optical elements
CN105945281B (en) The deposition forming machining manufacture of part and mold
JP4693772B2 (en) Metal glass forming method
EP2119549B1 (en) Resin molding apparatus
JP2000061614A (en) Apparatus for producing amorphous alloy and production of amorphous alloy
JPS59220340A (en) Method and device for manufacturing plastic part
TW201127605A (en) Device and method for producing thick-walled moulded plastics parts with reduced sink marks by injection moulding or injection-compression moulding
JP2001113580A (en) Injection molding machine
JPH0453690B2 (en)
JP2006205173A (en) Magnesium-based material processed product and its production method
JPS5840504B2 (en) Injection molding method
TWI235087B (en) A mold and a method for manufacturing the same
JPH066304B2 (en) Injection molding equipment
JPH081735A (en) Injection molding method
JPS6223723A (en) Process for injection and compression molding
CN111014600B (en) Process method for reducing difference between casting temperature and solidification temperature of amorphous alloy melt
JPH01200925A (en) Method for molding plastic lens
JPH04173313A (en) Mold for injection molding and injection molding method using said mold
JP2010173280A (en) Mold for molding very thin molding and method for molding very thin molding
JP2844579B2 (en) Mold equipment
JPH02162007A (en) Method for molding molded item
JPH0525659B2 (en)
JP2002187178A (en) Method for manufacturing cylindrical injection-molded article
JP2003191302A (en) Resin molding method, die used for the same and molded product by the same
KR0155065B1 (en) Method for molding a disc substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees