JPH02158316A - Mold for injection molding - Google Patents

Mold for injection molding

Info

Publication number
JPH02158316A
JPH02158316A JP31451288A JP31451288A JPH02158316A JP H02158316 A JPH02158316 A JP H02158316A JP 31451288 A JP31451288 A JP 31451288A JP 31451288 A JP31451288 A JP 31451288A JP H02158316 A JPH02158316 A JP H02158316A
Authority
JP
Japan
Prior art keywords
mold
temperature
phosphorus
metal
electroless nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31451288A
Other languages
Japanese (ja)
Other versions
JPH0453690B2 (en
Inventor
Takashi Arai
隆 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31451288A priority Critical patent/JPH02158316A/en
Priority to US07/448,544 priority patent/US5062786A/en
Publication of JPH02158316A publication Critical patent/JPH02158316A/en
Publication of JPH0453690B2 publication Critical patent/JPH0453690B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould

Abstract

PURPOSE:To obtain a mold having a high heat speed capable of being heated to high temperature in a short time through high frequency conductive heating by heat-treating the magnetism being existed in an iron metal and an electroless nickel-phosphorus plated layer. CONSTITUTION:It is constituted with an iron metal and electroless nickel- phosphorus plated layer, wherein the phosphorus contained rate of the electroless nickel-phosphorus plating is made 8-13%, and the heat treating condition is to be at the temperature of 200-350 deg.C for one hour or three hours. For instance, the manufacture of a mold comprising an iron metal layer 100 and metal plated layer 110 is such that the configuration work of cavity configuration of a molded product is carried out on the surface of the iron metal. In the metal plating liquid contained phosphorus, an electroless nickel-phosphorus layer 110 is metal-plated on the cavity surface. After forming the metal plated layer, a heat treatment is conducted within an atmospheric constant temperature bath.

Description

【発明の詳細な説明】 〔発明の属する分野〕 本発明は射出成形に用いる金型に係り、より詳細には高
周波誘導加熱方式により加熱される金型に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a mold used for injection molding, and more particularly to a mold heated by a high frequency induction heating method.

〔発明の従来技術〕[Prior art to the invention]

従来、高周波加熱により金型を加熱し、射出成形するこ
とは、特開昭50−45039号等に記載されているよ
うに、金型内に発振電極と冷却水路を持ち、外部に発振
機と冷却水ポンプを持つよう構成され、樹脂の充填時に
金型を金型内に設けられた発振電極により瞬間的に加熱
し、充填完了後発振を停止し、冷却水ポンプにより冷却
水を金型へ流し、冷却し、樹脂を固化させる方法が提案
されている。
Conventionally, heating a mold using high-frequency heating and performing injection molding involves having an oscillating electrode and a cooling channel inside the mold, and an external oscillator as described in Japanese Patent Application Laid-open No. 50-45039. It is configured to have a cooling water pump, and when filling with resin, the mold is instantaneously heated by an oscillating electrode installed in the mold, and after filling is completed, the oscillation is stopped, and the cooling water pump supplies cooling water to the mold. A method has been proposed in which the resin is poured, cooled, and solidified.

又、特開昭58−40504号の公報には、熱可塑性樹
脂を射出成形するにあたり、射出成形品表面を形成させ
るべき金型表面を予め該熱可塑性樹脂の加熱変形温度以
上に高周波誘導加熱して射出成形する射出成形方法が提
案されている。
Furthermore, JP-A No. 58-40504 discloses that when injection molding a thermoplastic resin, the surface of the mold on which the surface of the injection molded product is to be formed is preheated by high frequency induction to a temperature higher than the heating deformation temperature of the thermoplastic resin. An injection molding method for injection molding has been proposed.

金型の材料としては圧延鋼材(SS)、機械構造用炭素
鋼(SS、5CK)、工具鋼(SK、5KS)、高速度
鋼(SNC)、クロムモリブデン鋼等の鋼材を鋳造、圧
延加工するか、又、熱処理する。そして切削加工、仕上
げ組立て加工によって金型を形成する。
Mold materials include cast and rolled steel materials such as rolled steel (SS), carbon steel for machine structures (SS, 5CK), tool steel (SK, 5KS), high speed steel (SNC), and chrome-molybdenum steel. Or, heat treatment. Then, a mold is formed by cutting and finishing assembly.

上述の鉄系金型材は前述の高周波誘導加熱方式による金
型の加熱に適している。
The above-mentioned iron-based mold material is suitable for heating a mold by the above-mentioned high frequency induction heating method.

又、金型材料として上述の鉄系材料以外に銅系、アルミ
ニウム系及びリン青銅等の材料がある。
In addition to the iron-based materials mentioned above, there are materials such as copper-based, aluminum-based, and phosphor bronze as mold materials.

〔発明の解決しようとする課題〕[Problem to be solved by the invention]

光学部品等の成形精度を高(要求される成形品、例えば
レンズ・フレネルレンズ等は表面の仕上げ精度、レンズ
曲率の形状精度を要求される。レンズの場合には金型の
キャビティに射出された溶融樹脂は射出終了後金型の冷
却によって射出樹脂の冷却固化が進み、レンズ形状が形
成される。このとき金型の冷却温度の制御の仕方の具合
が悪いとレンズ表面にひげを生じレンズの主となりレン
ズ曲率の形状が所望の通りにできない。
High molding precision for optical parts, etc. (Molded products that require high precision, such as lenses and Fresnel lenses, require surface finish precision and shape precision of lens curvature.In the case of lenses, molded products that are injected into the mold cavity After the injection is completed, the injected resin cools and solidifies as the mold cools, forming a lens shape.At this time, if the cooling temperature of the mold is not properly controlled, whiskers may appear on the lens surface and the lens shape may deteriorate. Mainly, the shape of the lens curvature cannot be made as desired.

第9図に示すフレネルレンズの場合もやはり金型の温度
制御が具合良く行われないと頂角部100Aの先端の鋭
角部の成形が行われない。
In the case of the Fresnel lens shown in FIG. 9 as well, unless the temperature of the mold is appropriately controlled, the acute angle portion at the tip of the apex portion 100A will not be formed.

金型の加熱を高周波誘導加熱で行うと金型を短時間内に
高温度に加熱操作することができる。そして金型材料と
して前述の鉄系材料を用いると前記高周波誘導加熱によ
る加熱が効率的に行われる。
If the mold is heated by high-frequency induction heating, the mold can be heated to a high temperature within a short time. When the above-mentioned iron-based material is used as the mold material, heating by the high-frequency induction heating can be efficiently performed.

しかしながら、前述鉄系材料、特に昨今多用される鋼基
材は切削加工性に難点がある。即ち、超硬度な材質なた
めにキャビテイ面を高精度の表面粗さを保って切削加工
により曲面創成したりキャビテイ面にフレネル形状を加
工すること、特にフレネルレンズの場合μmの凹凸部を
形成することは困難である。
However, the above-mentioned iron-based materials, especially the steel base materials that are frequently used these days, have difficulties in machinability. In other words, since the material is super hard, the cavity surface must be cut to create a curved surface while maintaining a high-precision surface roughness, or a Fresnel shape can be formed on the cavity surface, especially in the case of a Fresnel lens, to form micrometer-sized irregularities. That is difficult.

キャビデイ面への微細凹凸形状の形成のためには加工性
の良い金型材料が好ましく前述した銅系又はアルミニウ
ム系材料が適するのであるが、これらの材料は金型加熱
のための前記高周波誘導加熱手段を用いることができな
い。
In order to form fine irregularities on the cavity surface, mold materials with good workability are preferred, and the aforementioned copper-based or aluminum-based materials are suitable; cannot use any means.

本発明はキャビテイ面に微細形状を切削加工することが
可能で、かつ、キャビティ内に射出された溶融樹脂がキ
ャビティ内の前記微細凹凸部に注入し易くするため高周
波誘導加熱方式による加熱が可能となる金型を提案する
ことを目的とする。
The present invention makes it possible to cut a fine shape on the cavity surface, and also enables heating using a high-frequency induction heating method to make it easier for the molten resin injected into the cavity to be injected into the fine irregularities inside the cavity. The purpose is to propose a new mold.

更に本発明の課題の他の1つはレンズ・フレネルレンズ
等の光学部品で成形表面粗さの精度が高い精度を要求さ
れる成形品の生産性を向上することにある。前述した従
来用いられた鋼材を中心とした金型は鏡面切削が不可能
であった。
Another object of the present invention is to improve the productivity of molded products, such as optical parts such as lenses and Fresnel lenses, which require high accuracy in molding surface roughness. Mirror cutting was not possible with the previously used molds mainly made of steel.

本発明は金型のキャビティ表層部分を鏡面加工できる組
成として成形品の微細形状の転写率を向上するとともに
、金型基部を高周波誘導加熱手段によってキャビティ表
層部分を短い時間に高温加熱することにより成形サイク
ルを短くして時間当りの生産性を向上し得た金型を提案
する。
The present invention improves the transfer rate of fine shapes of molded products by creating a composition that can mirror-finish the surface layer of the cavity of the mold, and also forms the mold by heating the surface layer of the cavity at a high temperature in a short period of time using high-frequency induction heating means at the base of the mold. We propose a mold that can shorten the cycle and improve productivity per hour.

第1表は従来例(1)として炭素鋼(345C)、従来
例(2)としてリン青銅を用いた場合の鏡面性(表面粗
さ精度)と高周波加熱手段による金型の加熱速度を示す
が、表に示すように炭素鋼は加熱速度は22℃/sec
で速いが鏡面加工は不可能である。
Table 1 shows the specularity (surface roughness accuracy) and mold heating rate by high-frequency heating means when carbon steel (345C) is used as conventional example (1) and phosphor bronze is used as conventional example (2). As shown in the table, the heating rate for carbon steel is 22℃/sec.
Although it is fast, mirror finishing is impossible.

又、リン青銅は鏡面加工は可能であるが加熱速度は3℃
/SeCと非常に遅(、いずれも金型材料として不適当
である。
Also, phosphor bronze can be mirror-finished, but the heating rate is 3℃.
/SeC, both of which are unsuitable as mold materials.

本発明は光学部品を成形するために金型の鏡面加工が行
い得て、かつ、高周波誘導加熱手段による高速加熱が出
来る金型を提案する。
The present invention proposes a mold that can be mirror-finished and can be heated at high speed by high-frequency induction heating means for molding optical components.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る金型は金型の基部を鉄系金属材とし該鉄系
金属基部の表面に無電解ニッケル−リンメッキ層を形成
する。
In the mold according to the present invention, the base of the mold is made of an iron-based metal, and an electroless nickel-phosphorus plating layer is formed on the surface of the iron-based metal base.

本発明はニッケルN1とリンP1又はニッケルN】とリ
ンPとコバルトCOを組合わせた組成の特性に着目し、
ニッケルNi及びコバルトCoの持つ磁性による高周波
誘導による加熱と、ニッケルNiとリンPの組成物の有
する非晶質構造を金型表面に形成する。
The present invention focuses on the characteristics of a composition that combines nickel N1 and phosphorus P1 or nickel N], phosphorus P, and cobalt CO,
Heating is performed by high-frequency induction due to the magnetism of nickel Ni and cobalt Co, and an amorphous structure of the composition of nickel Ni and phosphorus P is formed on the mold surface.

〔作用〕[Effect]

リンPを含有したニッケルN1は組成が非晶質化しダイ
ヤモンドバイトを用いた鏡面切削加工による金型表面の
鏡面仕上げが出来て、ニッケルNi又はコバルトCoの
もつ磁性により高周波誘導加熱によって金型のキャビテ
ィの表層部分の温度を短時間に高めることができる。
The composition of nickel N1 containing phosphorus P becomes amorphous, and the mold surface can be mirror-finished by mirror cutting using a diamond cutting tool, and the mold cavity can be formed by high-frequency induction heating due to the magnetism of nickel Ni or cobalt Co. The temperature of the surface layer can be raised in a short time.

〔実施例の説明〕[Explanation of Examples]

第1図は本発明の後述する金型を用いた射出成形装置の
構成図、第2図は金型の温度曲線図、第3図は前記装置
を構成する各ユニットのタイミングチャート図である。
FIG. 1 is a block diagram of an injection molding apparatus using a mold according to the present invention which will be described later, FIG. 2 is a temperature curve diagram of the mold, and FIG. 3 is a timing chart of each unit constituting the apparatus.

図において、符号1は射出成形機の本体を示し、該本体
は不図示の成形品を形成するキャビティを有する固定側
金型2Aと移動側金型213と前記金型を支持する型板
4A・4B・移動ガイド部材6と、及びホッパー8、射
出シリンダーIOと並びに、前記金型の開閉及び型閉じ
めを行う駆動手段12等から構成する。
In the figure, reference numeral 1 indicates the main body of the injection molding machine, which includes a stationary mold 2A having a cavity (not shown) for forming a molded product, a movable mold 213, and a mold plate 4A supporting the mold. 4B, a moving guide member 6, a hopper 8, an injection cylinder IO, a driving means 12 for opening and closing the mold, and the like.

14は金型の温度を調整する温度調整器で、該調整器1
4はパイプ14Aを介して金型2A・2B内の冷却媒体
流通路(不図示)に接続し不図示のポンプによって冷却
媒体を循環させられるようになっている。
14 is a temperature regulator for adjusting the temperature of the mold;
4 is connected to a cooling medium flow path (not shown) in the molds 2A and 2B via a pipe 14A, so that the cooling medium can be circulated by a pump (not shown).

18は高周波誘導加熱手段を示し、該手段は高周波誘導
制御部18Aとコイル部18Bと、及び、前記コイル部
18Bを支持する支持部材18Cと、並びに、該支持部
材を図示矢印入方向に進退駆動する移動手段18Dから
構成されている。
Reference numeral 18 denotes a high-frequency induction heating means, which includes a high-frequency induction control section 18A, a coil section 18B, a support member 18C that supports the coil section 18B, and drives the support member forward and backward in the direction indicated by the arrow. It is composed of a moving means 18D.

20A・20Bは温度検知センサーであり、該センサー
は前記金型のキャビテイ面の温度を検出して検知信号を
出力するべく前記金型の適宜位置に埋設されており、該
検知信号はリード線22Aを介して温度検知手段22に
入力する。
20A and 20B are temperature detection sensors, which are embedded in appropriate positions of the mold to detect the temperature of the cavity surface of the mold and output a detection signal, and the detection signal is sent to the lead wire 22A. The temperature is inputted to the temperature detection means 22 via the temperature detection means 22.

24は成形品取出手段を示し、該手段24はオートハン
l’ 24 Aによって成形された成形品を取り出す。
Reference numeral 24 indicates a molded product take-out means, and the means 24 takes out the molded product molded by the automatic handler l' 24A.

26は成形装置全体を制御する制御器である。26 is a controller that controls the entire molding apparatus.

〔金型の第1の実施例〕 第3図は鉄系金属層100とメツキ層110から構成さ
れた金型を示す。鉄系金属として555Cを用いた。第
4図は第1実施例の金型の製造工程を示す。
[First Example of Mold] FIG. 3 shows a mold composed of an iron-based metal layer 100 and a plating layer 110. 555C was used as the iron-based metal. FIG. 4 shows the manufacturing process of the mold of the first embodiment.

まず、鉄系金属355Cの表面に成形品のキャビティ形
状の形状加工を行う(a)。表面粗さの精度Rmaxは
1μm以下に加工する。その後、リン含有量11%のメ
ツキ液中にて無電解ニッケル−リンメッキ層110を1
00μmの厚さに355Cのキャビテイ面にメツキする
(b)。メツキ層形成後、大気恒温槽内て250℃の温
度で2時間の熱処理を行った(c)。熱処理後ダイヤモ
ンド工具を用いて精密旋盤によって深さ50μmの山形
溝を鏡面切削加工してキャビテイ面を形成した。キャビ
テイ面の表面粗さ精度はRm a x 0 、01μm
以下の精度に保った(d)。
First, the surface of the iron-based metal 355C is processed into the shape of a cavity of a molded product (a). The surface roughness accuracy Rmax is processed to be 1 μm or less. After that, the electroless nickel-phosphorus plating layer 110 is coated in a plating solution with a phosphorus content of 11%.
Plate the cavity surface of 355C to a thickness of 00 μm (b). After the plating layer was formed, heat treatment was performed at a temperature of 250° C. for 2 hours in an atmospheric constant temperature bath (c). After the heat treatment, a cavity surface was formed by mirror cutting a 50 μm deep chevron groove using a precision lathe using a diamond tool. The surface roughness accuracy of the cavity surface is Rm a x 0, 01μm
The following accuracy was maintained (d).

上述第1実施例による金型を前記第1図に示した成形装
置に装着して該金型に温度センサーを設置する。
The mold according to the first embodiment is mounted on the molding apparatus shown in FIG. 1, and a temperature sensor is installed in the mold.

高周波誘導加熱手段16の加熱コイル1.6 Bと金型
キャビテイ面との空間間隔を2 m mに設定して高周
波出力8 、2 K w a t t 、周波数132
KHzの発振操作を行い、前述温度センサー20A・2
0Bの出力を温度制御器22で測定したところ、キャビ
テイ面の表面温度は9.5秒間で55℃から244℃に
瞬間的に加熱された。本実施例の金型の加熱速度は毎秒
20℃であった。第1表において本実施例と従来例(1
)、  (2)を鏡面性と加熱速度を比較するといずれ
の面においても本実施例の金型が優れている。
The space interval between the heating coil 1.6B of the high-frequency induction heating means 16 and the mold cavity surface was set to 2 mm, and the high-frequency output was 8.2 Kw at t and the frequency was 132.
KHz oscillation operation is performed, and the aforementioned temperature sensor 20A.
When the output of 0B was measured by the temperature controller 22, the surface temperature of the cavity surface was instantaneously heated from 55° C. to 244° C. in 9.5 seconds. The heating rate of the mold in this example was 20° C. per second. Table 1 shows this embodiment and the conventional example (1
) and (2) in terms of specularity and heating rate, the mold of this example is superior in both aspects.

第2表は前述リン含有率11%の第1実施例の金型と他
の比較例との比較を示す。比較例1はリン含有率4%で
250℃の熱処理を2時間行った型材をダイヤモンド切
削したところ表面粗さの精度は0゜15μmが限界であ
った。高周波加熱による加熱速度は21℃/secであ
ったが、光学部品等の高度の表面粗さ精度を要求された
金型の型材には不適当である。
Table 2 shows a comparison between the mold of the first example having a phosphorus content of 11% and other comparative examples. In Comparative Example 1, a mold material with a phosphorus content of 4% and heat treated at 250° C. for 2 hours was diamond-cut, and the surface roughness accuracy was limited to 0° and 15 μm. The heating rate by high-frequency heating was 21° C./sec, but this is not suitable for mold materials that require a high degree of surface roughness accuracy for optical parts and the like.

比較例2は11%含有率で400℃で2時間熱処理の型
材のデータであり、比較例3は14%含有率を250℃
2時間熱処理をした型材のデータを示す。
Comparative example 2 is the data of a mold material heat-treated at 400°C for 2 hours with a content of 11%, and comparative example 3 is the data of a mold material with a content of 14% and heat treated at 250°C.
Data for a molded material heat-treated for 2 hours is shown.

第2表の比較データから理解されるようにリンの含有率
を多(すると鏡面性の向上を図ることができる。又、ニ
ッケル自体は磁性を有するが鏡面性は低く、リンを含有
したニッケルのメツキ層は、組成が非晶質な為、鏡面切
削性が良く、又、熱処理することにより熱処理条件によ
って磁性化する為、高周波加熱が効率良く行うことが出
来る。
As can be understood from the comparative data in Table 2, increasing the phosphorus content (increasing the phosphorus content makes it possible to improve specularity.Also, although nickel itself has magnetism, its specularity is low, and nickel containing phosphorus Since the plating layer has an amorphous composition, it has good mirror machinability, and when heat treated, it becomes magnetized depending on the heat treatment conditions, so high frequency heating can be performed efficiently.

種々の実験検討の繰り返し作業の結果、リン含有率を8
%から13%以内にし、熱処理温度を2000Cから3
50℃の間、かっ、熱処理時間を1時間から3時間の間
で処理して形成した型材はメツキ層の切削加工の表面粗
さは0.01μm以下の精度が得られ、又、高周波誘導
加熱手段による加熱速度は20’C/ s e c以上
の速度が得られたことが判明した。
As a result of repeated various experimental studies, the phosphorus content was reduced to 8.
% to within 13%, and heat treatment temperature from 2000C to 3
The mold material formed by heat treatment at 50°C for 1 to 3 hours has a surface roughness of less than 0.01 μm when cutting the plating layer, and high-frequency induction heating It was found that a heating rate of 20'C/sec or more was obtained by this method.

第3表は前記第1実施例に示した金型を用いてフレネル
レンズを成形したときのデータを示す。
Table 3 shows data when a Fresnel lens was molded using the mold shown in the first embodiment.

次に第2図を加えて第1図装置の操作について説明する
。制御器26の不図示の成形起動操作により、初期の型
開きの位置に存する移動側金型2Bは型を閉じる方向に
移動を開始し、移動側金型2Bが固定側金型2Aと所定
の距離に保つ第1の位置に来ると移動側金型2Bは移動
を停止する。
Next, the operation of the apparatus shown in FIG. 1 will be explained with reference to FIG. By the molding start operation (not shown) of the controller 26, the movable mold 2B that is in the initial mold opening position starts moving in the direction of closing the mold, and the movable mold 2B is brought into contact with the fixed mold 2A at a predetermined position. When the movable mold 2B reaches the first position where the distance is maintained, the movable mold 2B stops moving.

前記移動側金型2Bが前記第1の位置に来て止まると前
記高周波誘導加熱手段16を制御する信号P、が前記制
御器26から出力する。前記制御信号P、を受けて、前
記移動手段16Dは前記金型2A・2Bの開閉移動域外
に退避していた加熱コイル18Bを移動側金型2Bと固
定側金型2人の間に進入を開始する。加熱コイル18B
Vは金型の不図示のキャビテイ面に対向する位置であっ
て、キャビテイ面を加熱するために好ましい位置に来た
ときに停止する。前記加熱コイル18Bの停止にともな
って高周波誘導制御部16Aは出力8.2Kwatt、
周波数132KHzの高周波発振を行い、これによって
前記加熱コイル18Bに高周波発振が伝えられ、公知の
高周波誘導加熱動作により金型2A・2Bは加熱されて
温度が第2図に示すように、発振開始時点t1の温度t
Aからピーク温度tBに向う曲線aに沿って上昇する。
When the movable mold 2B reaches the first position and stops, a signal P for controlling the high frequency induction heating means 16 is output from the controller 26. In response to the control signal P, the moving means 16D moves the heating coil 18B, which had been evacuated outside the opening/closing movement area of the molds 2A and 2B, to enter between the moving mold 2B and the fixed mold. Start. Heating coil 18B
V is a position facing a cavity surface (not shown) of the mold, and stops when it reaches a position suitable for heating the cavity surface. As the heating coil 18B is stopped, the high frequency induction control section 16A outputs 8.2Kwatt,
High-frequency oscillation with a frequency of 132 KHz is performed, and the high-frequency oscillation is transmitted to the heating coil 18B, and the molds 2A and 2B are heated by a known high-frequency induction heating operation, and the temperature reaches the point at which the oscillation starts, as shown in FIG. Temperature t at t1
The temperature rises along the curve a from A to the peak temperature tB.

制御部26からは前記温度調整器14を作動する信号P
2が作動し温度調整器14は前記制御器の成形起動操作
の初期操作時に作動する。前記温度調整器14は不図示
の貯蔵槽の冷却媒体を所定温度の80℃に温度調整する
と同時に不図示のポンプを作動させて流通路14.Aを
通して固定側金型と移動側金型内に冷却媒体を循環させ
る。冷却媒体が金型内を循環する一方において前記加熱
コイル16Bによる高周波誘導発振により金型のキャビ
ティは急速に第2図に示すピーク温度tBの244℃ま
で温度上昇する。金型の温度はそれぞれの金型に設置し
たセンサー2OA・20Bによって検知され検知信号は
温度検知手段22に入力する。
A signal P for operating the temperature regulator 14 is sent from the control unit 26.
2 is activated, and the temperature regulator 14 is activated during the initial operation of the molding start-up operation of the controller. The temperature regulator 14 adjusts the temperature of the cooling medium in a storage tank (not shown) to a predetermined temperature of 80° C., and at the same time operates a pump (not shown) to move the cooling medium into the flow path 14. A cooling medium is circulated through A into the stationary mold and the movable mold. While the cooling medium circulates within the mold, the temperature of the mold cavity rapidly rises to 244° C., the peak temperature tB shown in FIG. 2, due to high frequency induced oscillation by the heating coil 16B. The temperature of the mold is detected by sensors 2OA and 20B installed in each mold, and the detection signal is input to the temperature detection means 22.

温度検知手段22はセンサーが前記ピーク温度tB24
4℃を検知すると高周波発振制御部16Aに発振停止信
号を送ると同時に、前記移動手段16Dによって加熱コ
イル16Bを退避させる。
The temperature detection means 22 has a sensor that detects the peak temperature tB24.
When 4° C. is detected, an oscillation stop signal is sent to the high frequency oscillation control section 16A, and at the same time, the heating coil 16B is evacuated by the moving means 16D.

加熱コイル16Bの退避完了と同時に型駆動手段12に
よって移動側金型2Bが閉成し型締め動作が行われる。
Simultaneously with the completion of retraction of the heating coil 16B, the movable mold 2B is closed by the mold driving means 12, and a mold clamping operation is performed.

型締め動作の完了により、金型は樹脂材料(ポリカーボ
ネイト)の射出準備が完了するわけであるが、前述の加
熱コイルの発振停止による加熱停止から型締め動作の完
了までは第2図に示す時間t2から時間t3に至る時間
の経過Δt1がある。この経過時間Δt、の間に金型の
温度は(t B−t o) −244−160=84℃
の温度降下を生じるが、本装置の特徴の1つであつ高周
波誘導加熱による瞬間的加熱と前記加熱中も冷却媒体に
よる冷却操作によって、ピーク温度tB−244℃から
射出温度t。−160℃までの温度降下曲線すは常に一
定の曲線が形成されるようになり射出温度t。
When the mold clamping operation is completed, the mold is ready for injection of the resin material (polycarbonate), but it takes the time shown in Figure 2 from the time when the heating coil stops oscillating to the completion of the mold clamping operation. There is a time lapse Δt1 from t2 to time t3. During this elapsed time Δt, the temperature of the mold is (tB-t o) -244-160=84℃
However, one of the features of this device is instantaneous heating by high-frequency induction heating and cooling operation using a cooling medium during the heating, so that the injection temperature t is lowered from the peak temperature tB - 244°C. The temperature drop curve up to -160°C always forms a constant curve, and the injection temperature t.

160℃の温度は射出成形サイクルを何すイクル繰り返
しても常に一定である。
The temperature of 160° C. remains constant throughout the injection molding cycle.

制御部26からは射出シリンダ10を作動させホッパー
8内の溶融樹脂材料の射出が不図示のゲトから金型のキ
ャビティ内に注入される。樹脂材料が所定量注入された
後金型は温度曲線Cに沿って冷却されてキャビティ内の
溶融樹脂のキャビティ形状に沿った固化が進行して成形
品が形成される。
The control unit 26 operates the injection cylinder 10, and the molten resin material in the hopper 8 is injected into the mold cavity through a gate (not shown). After a predetermined amount of the resin material is injected, the mold is cooled along a temperature curve C, and the molten resin inside the cavity solidifies along the cavity shape to form a molded product.

その後、金型温度が離型に適する温度tD−11,00
Cに降下すると制御部26から型駆動手段12に型開き
信号が送られて移動側金型2Bが移動する。型開きが完
了すると成形品取出手段24が作動してオートハント2
4Aによって成形品の取り出しが行われ成形が終了し成
形の1サイクルが終る。
After that, the mold temperature is set to a temperature tD-11,00 suitable for mold release.
When it descends to C, a mold opening signal is sent from the control section 26 to the mold driving means 12, and the movable mold 2B moves. When the mold opening is completed, the molded product ejecting means 24 is activated and the auto hunt 2 is activated.
4A, the molded product is taken out, molding is completed, and one cycle of molding is completed.

前述した成形品が第9図に示すようなフレネルレンズの
場合、キャビティ内に射出された溶融樹脂材料はレンズ
の鋭角部分を形成するキャビティ内の隅々に行き渡り空
隙を生ずることがないようにする必要があり、そのため
には金型温度を高い温度に設定して樹脂の流動性を促進
することが要求されると同時に、成形サイクルを何すイ
クル繰り返しても、どのサイクルでも第2図の温度曲線
を保つ必要があるが、本発明は前述成形方法によって充
分満足を得られる結果があった。
If the above-mentioned molded product is a Fresnel lens as shown in Figure 9, the molten resin material injected into the cavity should spread to every corner of the cavity that forms the acute angle part of the lens, so that no voids are created. To achieve this, it is necessary to set the mold temperature to a high temperature to promote the fluidity of the resin, and at the same time, no matter how many times the molding cycle is repeated, the temperature shown in Fig. Although it is necessary to maintain the curve, the present invention has obtained sufficiently satisfactory results using the above-mentioned molding method.

第3表に示す比較例の金型の型材はS K D 61で
あり、第3表から理解できるように前記第1実施例に示
す型材の金型に依れば比較例に比し成形サイクルを大幅
に短縮することができた。
The material of the mold of the comparative example shown in Table 3 is S K D 61, and as can be understood from Table 3, the molding cycle of the mold of the comparative example shown in the first example is shorter than that of the comparative example. could be significantly shortened.

第8図A−Bは前記第1表のデータに基づく本発明によ
る成形方法と前述比較例による成形品の成形結果を示す
模式図である。
FIGS. 8A and 8B are schematic diagrams showing the molding results of molded products according to the molding method according to the present invention and the comparative example described above based on the data in Table 1.

上記第8図A−Bの成形品はフレネルレンズの断面の拡
大図を示し、第8図Bは従来技術の成形方法を示し、図
から明らかなように頂角部はダして、先端は丸まってい
る。これに対し第8図Aは本発明の成形方法を示し、頂
角部は角度が正確に鋭角となり先端は丸まっていない。
The molded product shown in FIG. 8A-B above shows an enlarged view of the cross section of a Fresnel lens, and FIG. 8B shows the molding method of the prior art. Curled up. On the other hand, FIG. 8A shows the molding method of the present invention, in which the apex angle is accurately acute and the tip is not rounded.

フレネルレンズの場合入射光Xl +  X2・・・は
レンズ面で屈折して光軸」二の一点に焦点を結ぶ必要が
ある。本発明に係る実施例は第4図Aに示すように頂角
部に入射した光は正確に屈折するので各入射光は一点に
焦点を結ぶことができ、結像のゴーストと云われる像の
ボケは生じない。これに対し従来技術の場合には第8図
Bに示すように頂角部に入射した光は頂角のブレのため
に屈折角が小さくなり入射光は光軸」二の一点で焦点を
結ぶことができずゴーストが発生し像のボケを生じる。
In the case of a Fresnel lens, the incident light Xl + X2... needs to be refracted at the lens surface and focused at one point on the optical axis. In the embodiment of the present invention, as shown in FIG. 4A, the light incident on the vertex is refracted accurately, so each incident light can be focused on one point, and the image called a ghost of the image is eliminated. No blurring occurs. On the other hand, in the case of the prior art, as shown in Figure 8B, the refraction angle of the light incident on the apex portion becomes smaller due to the blurring of the apex angle, and the incident light is focused at a point on the optical axis. This results in ghosting and blurring of the image.

フレネルレンズの成形精度を測る目安として第10図に
示す方法がある。
There is a method shown in FIG. 10 as a guideline for measuring the molding accuracy of Fresnel lenses.

フレネルレンズの底部から頂角部までの設計値上の高さ
Hに対し実際に成形によって得られた高さhの割合h/
Hが大きければ大きい程成形精度が高いと云える。
The ratio of the height h actually obtained by molding to the designed height H from the bottom of the Fresnel lens to the top corner h/
It can be said that the larger H is, the higher the molding accuracy is.

この方法によると従来技術の場合70%程度であったが
、本発明の上述実施例1・2の場合は98〜99%と非
常に高い数値を得ることができた。
According to this method, the value was about 70% in the case of the prior art, but in the case of the above-mentioned Examples 1 and 2 of the present invention, a very high value of 98 to 99% could be obtained.

〔金型の第2の実施例〕 本実施例は無電解メツキ層の上にコバルト層を形成した
型材を提供する。第5図は本実施例の型材の構成を示す
図である。図において100は鉄系金属、120は無電
解ニッケル−リンメッキ層、130は上記メツキ層の上
に蒸着したコバルト蒸着層である。鉄系金属として55
5Cを用いて前記第1の実施例と同様に形状加工とリン
含有率11%の無電解ニッケル−リンメッキ層120を
100μmの厚さに形成し、2508C,2時間の熱処
理を行う。その後深さ50μmの山形溝を鏡面加工した
後にイオン・ブレーティング方法によりコバルトを該鏡
面加工した表面に厚さ2μmに蒸着した。
[Second Example of Mold] This example provides a mold material in which a cobalt layer is formed on an electroless plating layer. FIG. 5 is a diagram showing the structure of the mold material of this example. In the figure, 100 is an iron-based metal, 120 is an electroless nickel-phosphorus plating layer, and 130 is a cobalt vapor deposition layer deposited on the plating layer. 55 as iron-based metals
Using 5C, shape processing is performed in the same manner as in the first embodiment, and an electroless nickel-phosphorus plating layer 120 with a phosphorus content of 11% is formed to a thickness of 100 μm, followed by heat treatment at 2508C for 2 hours. Thereafter, a chevron-shaped groove with a depth of 50 μm was mirror-finished, and then cobalt was deposited to a thickness of 2 μm on the mirror-finished surface by an ion blating method.

上述のように作った金型を前記第1図の装置に装着し、
出力8.2Kwatt、周波数132KHzにて高周波
誘導加熱手段を作動させて金型に加熱したところ、金型
表面温度は8秒間で55℃から245℃に上昇した。本
実施例の金型の加熱速度は24℃/ s e cてあっ
た。尚、」1記コバルト蒸着層の表面粗さの精度はRm
 a x 0 、01μmであった。
The mold made as described above is mounted on the apparatus shown in FIG. 1,
When the high frequency induction heating means was operated at an output of 8.2 Kwatt and a frequency of 132 KHz to heat the mold, the mold surface temperature rose from 55° C. to 245° C. in 8 seconds. The heating rate of the mold in this example was 24° C./sec. In addition, the accuracy of the surface roughness of the cobalt vapor deposited layer described in 1. is Rm
a x 0 was 01 μm.

上記の第2実施例の金型をフレネルレンズを成形するた
めに第3表実施例2の条件で成形して表のデータを得た
。その結果、成形サイクルは58±2秒のサイクル時間
であった。
The mold of Example 2 was molded to form a Fresnel lens under the conditions of Example 2 in Table 3 to obtain the data shown in the table. As a result, the molding cycle had a cycle time of 58±2 seconds.

本実施例の確認実験の結果、コバルト含有率2%から1
0%の範囲、かつリン含有率4%から10%の範囲で2
00℃〜350℃の温度で1時間乃至3時間の熱処理を
施した金型は第1表実施例(2)に示すデータを確保し
た。
As a result of the confirmation experiment of this example, the cobalt content ranges from 2% to 1%.
2 in the range of 0% and the phosphorus content in the range of 4% to 10%.
The molds subjected to heat treatment at a temperature of 00° C. to 350° C. for 1 hour to 3 hours secured the data shown in Example (2) of Table 1.

〔金型の第3の実施例〕 第6図は第3の実施例による金型の型材構造を示す。図
において、100は鉄系金属555Cであり、120は
無電解ニッケル−リンメッキ層、140はハードクロー
ムメツキ層である。鉄系金属555Cを用いて前述第1
実施例と同様に形状加工を行い、リン含有率10%の無
電解ニッケル−リンメッキ層を100μmの厚さに形成
し、2008Cの温度で2時間の熱処理操作を行い。前
記ニッケル−リンメッキ層の上に厚さ3μmのハートク
ロームメツキ層140を形成して金型と成した。
[Third Embodiment of Mold] FIG. 6 shows the structure of a mold material according to a third embodiment. In the figure, 100 is an iron-based metal 555C, 120 is an electroless nickel-phosphorus plating layer, and 140 is a hard chrome plating layer. Using iron-based metal 555C, the first
Shaping was carried out in the same manner as in the example, and an electroless nickel-phosphorus plating layer with a phosphorus content of 10% was formed to a thickness of 100 μm, and heat treatment was performed at a temperature of 2008C for 2 hours. A heart chrome plating layer 140 having a thickness of 3 μm was formed on the nickel-phosphorus plating layer to form a mold.

上記第3実施例の金型を第1図示の成形機に装着して金
型の温度テストを行ったところ、出力]OKwatt。
When the mold of the third embodiment was mounted on the molding machine shown in the first diagram and a temperature test of the mold was performed, the output was OKwatt.

周波数132 K Hzの条件で高周波誘電加熱手段を
作動させて温度測定を行った。その結果8秒間で550
Cから198℃への温度上昇が確認できた。この金型の
鏡面性は表面粗さ精度がRmaxo、01 lt mで
あった。
The temperature was measured by operating the high frequency dielectric heating means at a frequency of 132 KHz. As a result, 550 in 8 seconds
It was confirmed that the temperature rose from C to 198C. The specularity of this mold had a surface roughness accuracy of Rmaxo, 01 lt m.

〔金型の第4の実施例〕 第7図は第4の実施例を示す。図において200は銅合
金から成る金型の基部、210は無電解ニッケル−リン
メッキ層である。銅合金の表面粗さ精度はRm a x
 2μmに仕上げる。銅合金の表面に11%リン含有率
の無電解ニッケル−リンメッキ層を厚さ1mm形成して
鏡面切削により深さ50μmの山形溝を加工する。この
時粗さはRm a x O,01μmであった。この金
型を第1図示の成形機に装着して、出力30Kwatt
、周波数420 K Hzで高周波誘導加熱手段を作動
させたところ、10秒の間に金型表面は55℃から20
0℃に加熱した。
[Fourth embodiment of mold] FIG. 7 shows a fourth embodiment. In the figure, 200 is the base of a mold made of a copper alloy, and 210 is an electroless nickel-phosphorus plating layer. The surface roughness accuracy of copper alloy is Rmax
Finish to 2μm. An electroless nickel-phosphorus plating layer with a 11% phosphorus content is formed on the surface of a copper alloy to a thickness of 1 mm, and a 50 μm deep chevron groove is machined by mirror cutting. At this time, the roughness was RmaxO, 01 μm. This mold was installed in the molding machine shown in the first figure, and the output was 30Kwatt.
When the high-frequency induction heating means was operated at a frequency of 420 KHz, the mold surface was heated from 55°C to 20°C in 10 seconds.
Heated to 0°C.

上記第4の実施例の金型の基部は鉄系金属でない非磁性
の銅合金であり、銅合金の表面に無電解ツケルーリンメ
ッキ層を形成することにより該メツキ層をアモルファス
化させて型表面の形状加工の鏡面性を確保し、加熱のた
めに30Kwatt、420 K Hzと大出力の発振
によって金型の温度上昇を行うことができたものである
The base of the mold in the fourth embodiment is made of a non-magnetic copper alloy that is not an iron-based metal, and by forming an electroless plating layer on the surface of the copper alloy, the plating layer is made amorphous and the mold surface is It was possible to ensure the specularity of the shape processing, and to raise the temperature of the mold by oscillating at a high output of 30 Kwatts and 420 KHz for heating.

〔発明の効果〕〔Effect of the invention〕

本発明に依れば鉄系金属のもつ磁性と無電解ニッケル−
リンメッキ層を熱処理することにより金型表面の鏡面性
を併わせ備えた金型の型材を得ることにより、高周波誘
導加熱による短時間に高温度になる加熱速度の大きい金
型を得ることができた。本発明の金型により表面粗さ精
度に優れ、かつ、微細な凹凸形状を有するキャビティの
形成を可能とし光学部品等の成形精度を向上することが
できた。
According to the present invention, the magnetism of iron-based metals and electroless nickel
By heat-treating the phosphor plating layer to obtain a mold material with a specular surface, it was possible to obtain a mold that can reach high temperatures in a short time using high-frequency induction heating. . By using the mold of the present invention, it was possible to form a cavity with excellent surface roughness accuracy and a finely uneven shape, thereby improving the molding accuracy of optical components and the like.

又、前記鉄系金属の磁性と併せて高周波誘導加熱時の鉄
系金属の抵抗値によって短時間に高温度に加熱できこれ
により前述第2図示の成形サイクルを短くすることがで
きて生産性の向上を図れた。
In addition, due to the magnetism of the iron-based metal and the resistance value of the iron-based metal during high-frequency induction heating, it is possible to heat the iron-based metal to a high temperature in a short time, thereby shortening the molding cycle shown in the second diagram, which improves productivity. I was able to improve.

第  1 表 第 表 第  2  表Part 1 table No. table Table 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る金型を用いた成形機の装置構成図
。 第2図は温度曲線図。 第3図乃至第4図(a)、(b)、(c)、(d)は第
1の実施例を示し、第3図は金型の構成説明図、第4図
(a)、(b)、(c)、(d)は金型製造工程図。 第5図は第2実施例の金型の構成説明図。 第6図は第3実施例の金型の構成説明図。 第7図は第4実施例の金型の構成説明図。 第8図A−Bはフレネルレンズの説明図。 第9図はフレネルレンズの構成図。 第10図はフレネルレンズの説明図。 2A・2B・・・金型 16・16A・16B・]、 6 C・16D・・・高
周波誘導加熱手段100・鉄系金属
FIG. 1 is an apparatus configuration diagram of a molding machine using a mold according to the present invention. Figure 2 is a temperature curve diagram. 3 to 4 (a), (b), (c), and (d) show the first embodiment, and FIG. 3 is an explanatory diagram of the structure of the mold, and FIG. b), (c), and (d) are mold manufacturing process diagrams. FIG. 5 is an explanatory diagram of the structure of the mold of the second embodiment. FIG. 6 is an explanatory diagram of the structure of the mold of the third embodiment. FIG. 7 is an explanatory diagram of the structure of the mold of the fourth embodiment. FIG. 8A-B is an explanatory diagram of a Fresnel lens. FIG. 9 is a configuration diagram of a Fresnel lens. FIG. 10 is an explanatory diagram of a Fresnel lens. 2A, 2B... Mold 16, 16A, 16B, ], 6 C, 16D... High frequency induction heating means 100, iron-based metal

Claims (2)

【特許請求の範囲】[Claims] (1)鉄系金属と無電解ニッケル−リンメッキ層から構
成し、無電解ニッケル−リンメッキのリン含有率を8%
〜13%とし、熱処理条件を200℃〜350℃の温度
で1時間乃至3時間としたことを特徴とする射出成形用
金型。
(1) Composed of iron-based metal and electroless nickel-phosphorus plating layer, the phosphorus content of the electroless nickel-phosphorus plating is 8%.
13%, and the heat treatment conditions are 1 hour to 3 hours at a temperature of 200° C. to 350° C.
(2)鉄系金属と無電解ニッケル−リンメッキ層と、及
び、コバルト層から構成し、前記無電解ニッケル−リン
メッキ層のリン含有率が4%〜10%の範囲とし、コバ
ルト含有率を2%〜10%とし、200℃〜350℃の
温度で1〜3時間の熱処理を行ったことを特徴とする射
出成形用金型。
(2) Consisting of an iron-based metal, an electroless nickel-phosphorus plating layer, and a cobalt layer, the phosphorus content of the electroless nickel-phosphorus plating layer is in the range of 4% to 10%, and the cobalt content is 2%. 10%, and is heat treated at a temperature of 200°C to 350°C for 1 to 3 hours.
JP31451288A 1988-12-12 1988-12-12 Mold for injection molding Granted JPH02158316A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP31451288A JPH02158316A (en) 1988-12-12 1988-12-12 Mold for injection molding
US07/448,544 US5062786A (en) 1988-12-12 1989-12-11 Molding device for molding optical elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31451288A JPH02158316A (en) 1988-12-12 1988-12-12 Mold for injection molding

Publications (2)

Publication Number Publication Date
JPH02158316A true JPH02158316A (en) 1990-06-18
JPH0453690B2 JPH0453690B2 (en) 1992-08-27

Family

ID=18054180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31451288A Granted JPH02158316A (en) 1988-12-12 1988-12-12 Mold for injection molding

Country Status (1)

Country Link
JP (1) JPH02158316A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04173313A (en) * 1990-11-07 1992-06-22 Sanshu Mold:Kk Mold for injection molding and injection molding method using said mold
US7075394B2 (en) 2002-10-31 2006-07-11 Denso Corporation Electromagnetic drive flow controller
JP2013123884A (en) * 2011-12-15 2013-06-24 Konica Minolta Advanced Layers Inc Method for manufacturing forming mold
JP2019508558A (en) * 2016-03-02 2019-03-28 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Glass filler reinforced solid resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04173313A (en) * 1990-11-07 1992-06-22 Sanshu Mold:Kk Mold for injection molding and injection molding method using said mold
US7075394B2 (en) 2002-10-31 2006-07-11 Denso Corporation Electromagnetic drive flow controller
JP2013123884A (en) * 2011-12-15 2013-06-24 Konica Minolta Advanced Layers Inc Method for manufacturing forming mold
JP2019508558A (en) * 2016-03-02 2019-03-28 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Glass filler reinforced solid resin

Also Published As

Publication number Publication date
JPH0453690B2 (en) 1992-08-27

Similar Documents

Publication Publication Date Title
US5062786A (en) Molding device for molding optical elements
US10047420B2 (en) Multi step processing method for the fabrication of complex articles made of metallic glasses
CN105945281B (en) The deposition forming machining manufacture of part and mold
JPH11226696A (en) Die for manufacturing amorphous alloy, and amorphous alloy-formed article
CN108746615B (en) Method for improving interlayer bonding performance of titanium alloy manufactured by laser additive
JP2016013686A (en) Additive manufacturing method
JP3017498B2 (en) Amorphous alloy production equipment and amorphous alloy production method
US20050224209A1 (en) Fabrication of alloy variant structures using direct metal deposition
JP2001347346A (en) Method and apparatus for producing alloy block
JPH02158316A (en) Mold for injection molding
JP2008238264A (en) Centrifugal casting machine for rapidly cooled solidification
CN105689711B (en) A kind of electromagnetic agitation auxiliary laser Quick-forming nickel-base alloy part
US4772340A (en) Method of making iron-base articles having a remelted layer
JPS6223723A (en) Process for injection and compression molding
CN113878238A (en) Method for improving surface processing quality of soft metal by laser-assisted modification
CN111007142B (en) Electromagnetic-assisted online microstructure detection and regulation system and method
JPH04173313A (en) Mold for injection molding and injection molding method using said mold
JP3115982B2 (en) Method for producing titanium ring for electrodeposition drum
KR0155065B1 (en) Method for molding a disc substrate
JPH0336011A (en) Die for high frequency heating
JP2844579B2 (en) Mold equipment
JPH0596576A (en) Mold
JP2011047004A (en) High-frequency induction heating coil and method of manufacturing the same
JPH02162007A (en) Method for molding molded item
CN117697148A (en) Multi-heat source composite additive manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees