JPH02162007A - Method for molding molded item - Google Patents

Method for molding molded item

Info

Publication number
JPH02162007A
JPH02162007A JP31769888A JP31769888A JPH02162007A JP H02162007 A JPH02162007 A JP H02162007A JP 31769888 A JP31769888 A JP 31769888A JP 31769888 A JP31769888 A JP 31769888A JP H02162007 A JPH02162007 A JP H02162007A
Authority
JP
Japan
Prior art keywords
temperature
mold
cooling medium
molding
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31769888A
Other languages
Japanese (ja)
Other versions
JPH0443769B2 (en
Inventor
Takashi Arai
隆 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31769888A priority Critical patent/JPH02162007A/en
Priority to US07/448,544 priority patent/US5062786A/en
Publication of JPH02162007A publication Critical patent/JPH02162007A/en
Publication of JPH0443769B2 publication Critical patent/JPH0443769B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To make the temperature control of a cavity surface, onto which precise and minute projected and recessed surface is provided, possible by a method wherein a mold is heated with a high frequency induction heating means and at the same time cooling medium, the temperature of which is held at the predetermined value, is circulated. CONSTITUTION:A temperature controller 14 controls the temperature of cooling medium to the predetermined value and, at the same time, circulates the cooling medium through a circulating path 14A in a fixed mold 2A and a movable mold 2B. The cooling medium circulates in the molds on one hand and the cavity of the mold is rapidly heated through the high frequency induction oscillation up to the peak temperature tB. When the peak temperature tB is detected with sensors 20A and 20B, a temperature detecting means 22 sends the oscillation stop signal to a high frequency oscillation controlling section 16A. At the same time, a moving means 18D retreats a heating coil 16B. Though the temperature of the molds lowers the temperature lowering curve (b) is formed in the form of a certain curve ranging from the peak temperature tC to the injection temperature tB through the instantaneous heating by high frequency induction heating and the cooling operation by the cooling medium during heating, resulting in keeping the injection temperature tC constant.

Description

【発明の詳細な説明】 〔発明の属する分野〕 本発明は成形品を成形する方法に関する。特に本発明は
金型を高周波加熱手段によって加熱して成形する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a method of molding a molded article. In particular, the present invention relates to a method of heating and molding a mold using high-frequency heating means.

〔発明の従来技術〕[Prior art to the invention]

従来、高周波加熱により金型を加熱し、射出成形するこ
とは、特開昭50−45039号等に記載されているよ
うに、金型内に発振電極と冷却水路を持ち、外部に発振
域と冷却水ポンプを持つよう構成され、樹脂の充填時に
金型を金型内に設けられた発振電極により瞬間的に加熱
し、充填完了後、発振を停止し、冷却水ポンプにより冷
却水を金型へ流し、冷却し、樹脂を固化させる方法が提
案されている。
Conventionally, injection molding by heating a mold by high-frequency heating involves having an oscillation electrode and a cooling channel inside the mold, and an oscillation area and an external oscillation area, as described in Japanese Patent Laid-Open No. 50-45039. It is configured to have a cooling water pump, and when filling with resin, the mold is instantaneously heated by an oscillating electrode installed in the mold, and after filling is completed, the oscillation is stopped, and the cooling water pump pumps cooling water into the mold. A method has been proposed in which the resin is poured into a container, cooled, and solidified.

又、特公昭58−40504号の公報には、熱可塑性樹
脂を射出成形するにあたり、射出成形品表面を形成させ
るべき金型表面を予め該熱可塑性樹脂の加熱変形温度以
上に高周波誘導加熱して射出成形する射出成形方法が提
案されている。
Furthermore, Japanese Patent Publication No. 58-40504 discloses that when injection molding a thermoplastic resin, the surface of the mold on which the surface of the injection molded product is to be formed is preheated by high-frequency induction to a temperature higher than the heating deformation temperature of the thermoplastic resin. An injection molding method for injection molding has been proposed.

〔発明が解決する課題〕[Problems solved by the invention]

前述した従来の高周波加熱により金型を加熱して成形品
を射出成形する場合の問題の1つとして、金型の温度管
理の困難性がある。固定側金型と移動画金型の中間に高
周波誘導加熱のインダクターを設置し、固定側金型と移
動側金型の間にインダクターをはさみ込んで高周波を発
振し、その間金型冷却水は金型内を流れないようにする
と、金型は効率よく短時間に所定の温度に加熱される。
One of the problems in injection molding a molded product by heating a mold using the conventional high-frequency heating described above is the difficulty in controlling the temperature of the mold. A high-frequency induction heating inductor is installed between the stationary mold and the movable mold, and the inductor is inserted between the stationary mold and the movable mold to oscillate a high frequency, while the mold cooling water flows through the metal. By preventing fluid from flowing inside the mold, the mold can be efficiently heated to a predetermined temperature in a short time.

しかしながら、所定温度に加熱後、インダクター退出の
ための金型の型開き、型閉め、射出材料の射出、加圧成
形、冷却、成形品の離型と云った一連の成形サイクルに
おいて各工程毎に要求される温度に金型を温度制御する
ことはむづかしい面がある。高周波誘導加熱による金型
の加熱後、型開きによる熱の逃げと成形工程後の冷却水
による冷却による高温状態から急激に冷却されるために
金型の温度の管理が非常にむつかしいためである。
However, after heating to a predetermined temperature, the mold is opened for the inductor to exit, the mold is closed, the injection material is injected, pressure molding, cooling, and the molded product is released. It is difficult to control the temperature of the mold to the required temperature. This is because after the mold is heated by high-frequency induction heating, it is rapidly cooled down from a high temperature state due to the escape of heat by opening the mold and cooling by cooling water after the molding process, making it very difficult to control the temperature of the mold.

成形品の形状が複雑であったり、成形品表面の表面粗さ
精度が高い精度を要求される成形品である場合、上述の
問題は非常に重要となる。
The above-mentioned problem becomes very important when the shape of the molded product is complex or when the molded product surface requires high accuracy in surface roughness.

例えば、レンズ等の光学部品を射出成形で作る場合には
金型の成形キャビテイ面の表面粗さ精度が要求されると
ともに、金型の温度管理が特に重要となる。
For example, when optical parts such as lenses are manufactured by injection molding, surface roughness precision of the molding cavity surface of the mold is required, and temperature control of the mold is particularly important.

射出直前の金型温度は射出材料の流動性に大きな影響を
与え射出材料が金型のキャビティ内の隅々に流動して充
填される。その後、射出材料の成形品形状にそって固化
する際、冷却手段によって金型は冷やされるわけである
が成形品の固化の進行と金型温度の冷却温度が具合良く
調和しないと成形品のびりや成形品の歪が発生する。
The temperature of the mold immediately before injection has a large effect on the fluidity of the injection material, and the injection material flows and fills every corner of the cavity of the mold. After that, when the injection material solidifies along the shape of the molded product, the mold is cooled down by a cooling means, but if the solidification of the molded product and the cooling temperature of the mold are not well matched, the molded product may swell. or distortion of the molded product.

成形品の肉厚寸法が比較的厚い場合や、成形品の必要と
される機能によってはこれ等の問題は特に支障を来たさ
ないが、成形品が前述した光学部品の場合には成形品と
しての合否につながる。
These problems do not pose a particular problem when the molded product has a relatively large wall thickness or depending on the required functions of the molded product, but if the molded product is the optical component mentioned above, the molded product This will lead to pass/fail results.

本発明はカメラ用のレンズ・フレネルレンズ等の光学部
品を射出成形するにあたり金型を高周波誘導加熱すると
ともに、成形サイクル終了までの金型温度の管理制御が
正確に行われ前述光学部品のひけ、歪の生じない射出成
形方法を提案する。
The present invention uses high-frequency induction heating of the mold when injection molding optical parts such as camera lenses and Fresnel lenses, and accurately controls the mold temperature until the end of the molding cycle, thereby reducing the shrinkage of the optical parts. We propose an injection molding method that does not cause distortion.

光学部品として例えば第6図に示すようなフレネルレン
ズ100を射出成形する場合に結像光線の入射側には曲
率をもった頂角部100Aの先端部100Bは一定の鋭
角を形成する必要があるが、前述従来の技術では射出成
形において、金型の温度を射出された材料の形状固化が
進行する過程において、成形品の樹脂のひけや歪が発生
して前記先端部の鋭角が崩れて精度の高いフレネルレン
ズ等の成形品が出来なかった。本発明は金型のキャビテ
イ面の前述フレネルレンズ等のキャビテイ面に精細かつ
微細な凹凸面を設けたキャビティ表面の温度制御を可能
とする成形方法を提案する。
For example, when injection molding a Fresnel lens 100 as shown in FIG. 6 as an optical component, the tip 100B of the apex corner 100A with curvature must form a certain acute angle on the incident side of the imaging light beam. However, in injection molding using the conventional technology mentioned above, as the temperature of the mold progresses and the shape of the injected material solidifies, sink marks and distortions occur in the resin of the molded product, causing the acute angle of the tip to collapse and accuracy to deteriorate. Molded products such as Fresnel lenses with high temperatures could not be produced. The present invention proposes a molding method that makes it possible to control the temperature of a cavity surface of a mold, such as the aforementioned Fresnel lens, in which a fine and fine uneven surface is provided.

〔課題達成のための手段及び作用〕[Means and actions for achieving the task]

本発明は金型の固定側金型と移動側金型の間に高周波誘
導加熱手段を進退可能に配置し、かつ前記金型に冷却媒
体を循環流通する流通路を配し、前記高周波誘導加熱手
段の加熱操作中に前記冷却媒体を前記流通路内を循環さ
せることにより、前記高周波誘導加熱手段によって前記
金型を加熱するとともに前記冷却媒体を所定の温度を保
って循環するようにしたものである。
In the present invention, a high-frequency induction heating means is arranged movably between a stationary side mold and a movable side mold, and a flow passage through which a cooling medium circulates is arranged in the mold, and the high-frequency induction heating means By circulating the cooling medium in the flow path during the heating operation of the means, the mold is heated by the high frequency induction heating means and the cooling medium is kept at a predetermined temperature and circulated. be.

〔実施例の説明〕[Explanation of Examples]

第1図は本発明の詳細な説明する射出成形装置の構成図
、第2図は金型の温度曲線図、第3図は前記装置を構成
する各ユニットのタイミングチャート図である。
FIG. 1 is a configuration diagram of an injection molding apparatus for explaining the present invention in detail, FIG. 2 is a temperature curve diagram of a mold, and FIG. 3 is a timing chart diagram of each unit constituting the apparatus.

図において、符号1は射出成形機の本体を示し、該本体
は不図示の成形品を形成するキャビティを有する固定側
金型2Aと移動側金型2Bと前記金型を支持する型板4
A・4B・移動ガ、イド部材6と、及び、ホッパー8、
射出シリンダー10と並びに、前記金型の開閉及び型閉
じめを行う駆動手段12等から構成する。
In the figure, reference numeral 1 indicates the main body of the injection molding machine, which includes a stationary mold 2A having a cavity (not shown) for forming a molded product, a movable mold 2B, and a mold plate 4 that supports the mold.
A・4B・Movement guide, ID member 6, and hopper 8,
It consists of an injection cylinder 10, a driving means 12 for opening and closing the mold, and the like.

14は金型の温度を調整する温度調整器で、該調整器1
4はバイブ14Aを介して金型2A・2B内の冷却媒体
流通路(不図示)に接続し、不図示のポンプによって冷
却媒体を循環させられるようになっている。
14 is a temperature regulator for adjusting the temperature of the mold;
4 is connected to a cooling medium flow path (not shown) in the molds 2A and 2B via a vibrator 14A, so that the cooling medium can be circulated by a pump (not shown).

18は高周波誘導加熱手段を示し、該手段は高周波誘導
制御部18Aとコイル部18Bと、及び、前記コイル部
18Bを支持する支持部材18cと、並びに、該支持部
材を図示矢印A方向に進退駆動する移動手段、18 D
から構成される装置 20A・20Bは温度検知センサーであり、該センサー
は前記金型のキャビテイ面の温度を検出して検知信号を
出力するべ(前記金型の適宜位置に埋設されており、該
検知信号はリード線22Aを介して温度検知手段22に
入力する。
Reference numeral 18 denotes a high-frequency induction heating means, which includes a high-frequency induction control section 18A, a coil section 18B, a support member 18c that supports the coil section 18B, and drives the support member forward and backward in the direction of arrow A in the figure. means of transportation, 18 D
The devices 20A and 20B are temperature detection sensors, which detect the temperature of the cavity surface of the mold and output a detection signal (embedded at an appropriate position in the mold, and detect the temperature of the cavity surface of the mold). The detection signal is input to the temperature detection means 22 via the lead wire 22A.

24は成形品取出手段を示し、該手段24はオートハン
ド24Aによって成形された成形品を取り出す。
Reference numeral 24 indicates a molded product take-out means, and the means 24 takes out the molded product molded by the automatic hand 24A.

26は成形装置全体を制御する制御器である。26 is a controller that controls the entire molding apparatus.

次に第2図、第3図を加えて第1図装置の操作について
説明する。制御器26の不図示の成形起動操作により、
初期の型開きの位置に存る移動側金型2Bは型を閉じる
方向に移動を開始し、移動側金型2Bが固定側金型2A
と所定の距離に保つ第1の位置に来ると、移動側金型2
Bは移動を停止する。
Next, the operation of the apparatus shown in FIG. 1 will be explained with reference to FIGS. 2 and 3. By the molding starting operation (not shown) of the controller 26,
The movable mold 2B, which is in the initial mold opening position, starts moving in the direction of closing the mold, and the movable mold 2B moves to the fixed mold 2A.
When the mold 2 on the moving side reaches the first position where it is kept at a predetermined distance from
B stops moving.

前記移動側金型2Bが前記第1の位置に来て止まると前
記高周波誘導加熱手段16を制御する信号P1が前記制
御器26から出力する。前記制御信号P1を受けて、前
記移動手段16Dは前記金型2A・2Bの開閉移動域外
に退避していた加熱コイル18Bを移動側金型2Bと固
定側金型2Aの間に進入を開始する。加熱コイル18B
は金型の不図示のキャビテイ面に対向する位置であって
キャビテイ面を加熱するために好ましい位置に来たとき
に停止する。
When the movable mold 2B reaches the first position and stops, a signal P1 for controlling the high frequency induction heating means 16 is output from the controller 26. Upon receiving the control signal P1, the moving means 16D starts moving the heating coil 18B, which had been evacuated outside the opening/closing movement area of the molds 2A and 2B, between the moving mold 2B and the stationary mold 2A. . Heating coil 18B
is a position facing a cavity surface (not shown) of the mold, and stops when it reaches a position suitable for heating the cavity surface.

前記加熱コイル18Bの停止にともなって高周波誘導制
御部16Aは高周波発振を行い、これによて前記加熱コ
イル18Bに高周波発振が伝えられ、公知の高周波誘導
加熱動作により金型2A・2Bに加熱されて温度が第2
図に示すように、発振開始時点1、の温度tAからピー
ク温度t8に向かう曲線aに沿って上昇する。制御部2
6からは前記温度調整器14を作動させ信号P2が作動
し、温度調整器14は前記制御器の成形起動操作の初期
操作時に作動する。前記温度調整器14は不図示の貯蔵
槽の冷却媒体を所定温度に温度調整すると同時に不図示
のポンプを作動させて流通路14Aを通して固定側金型
と移動側金型内に冷却媒体を循環させる。冷却媒体が金
型内を循環する一方において前記加熱コイル16Bによ
る高周波誘導発振により金型のキャビティは急速に第2
図に示すピーク温度tBまで温度上昇する。金型の温度
はそれぞれの金型に設置したセンサー20A・20Bに
よりて検知され検知信号は温度検知手段22に入力する
When the heating coil 18B is stopped, the high-frequency induction control section 16A performs high-frequency oscillation, thereby transmitting the high-frequency oscillation to the heating coil 18B, which heats the molds 2A and 2B by a known high-frequency induction heating operation. temperature is second
As shown in the figure, the temperature rises from the temperature tA at the oscillation start time 1 to the peak temperature t8 along a curve a. Control part 2
6, the temperature regulator 14 is activated and the signal P2 is activated, and the temperature regulator 14 is activated at the initial operation of the molding starting operation of the controller. The temperature regulator 14 adjusts the temperature of a cooling medium in a storage tank (not shown) to a predetermined temperature, and at the same time operates a pump (not shown) to circulate the cooling medium into the stationary mold and the movable mold through the flow path 14A. . While the cooling medium circulates within the mold, the cavity of the mold is rapidly heated to the second
The temperature rises to the peak temperature tB shown in the figure. The temperature of the mold is detected by sensors 20A and 20B installed in each mold, and the detection signal is input to the temperature detection means 22.

温度検知手段22はセンサーが前記ピーク温度t8を検
知すると高周波発振制御部16Aに発振停止信号を送る
と同時に、前記移動手段16Dによって加熱コイル16
Bを退避させる。加熱コイル16Bの退避完了と同時に
型駆動手段12によって移動側金型2Bが閉成し型締め
動作が行われる。
When the temperature detecting means 22 detects the peak temperature t8, the temperature detecting means 22 sends an oscillation stop signal to the high frequency oscillation control section 16A, and at the same time, the heating coil 16 is activated by the moving means 16D.
Evacuate B. Simultaneously with the completion of retraction of the heating coil 16B, the movable mold 2B is closed by the mold driving means 12, and a mold clamping operation is performed.

型締め動作の完了により、金型は樹脂材料の射出準備が
完了するわけであるが、前述の加熱コイルの発振停止に
よる加熱停止から型締め動作の完了までは第2図に示す
時間t2から時間t3に至る時間の経過Δt、がある。
When the mold clamping operation is completed, the mold is ready for injection of the resin material, but it takes time from time t2 shown in FIG. There is a time lapse Δt leading to t3.

この経過時間Δt1の間に金型の温度は(tB tc)
の温度降下を生じるが、本装置の特徴の1つである高周
波誘導加熱による瞬間的加熱と前記加熱中も冷却媒体に
よる冷却操作によって、ピーク温度tBから射出温度t
cまでの温度降下曲線すは常に一定の曲線が形成される
ようになり射出温度t。の温度は射出成形サイクルを何
すイクル繰り返しても常に一定である。
During this elapsed time Δt1, the temperature of the mold is (tB tc)
However, due to instantaneous heating by high-frequency induction heating, which is one of the features of this device, and cooling operation using a cooling medium during the heating, the injection temperature t is lowered from the peak temperature tB.
The temperature drop curve up to c always forms a constant curve, and the injection temperature t. The temperature remains constant throughout the injection molding cycle.

制御部26からは射出シリンダ10を作動させホッパー
8内の溶融樹脂材料の射出が不図示のゲートから金型の
キャビティ内に注入される。樹脂材料が所定量注入され
た後金型は温度曲線Cに沿って冷却されてキャビティ内
の溶融樹脂のキャビティ形状に沿った固化が進行して成
形品が形成される。
The control unit 26 operates the injection cylinder 10, and the molten resin material in the hopper 8 is injected into the mold cavity through a gate (not shown). After a predetermined amount of the resin material is injected, the mold is cooled along a temperature curve C, and the molten resin inside the cavity solidifies along the cavity shape to form a molded product.

その後、金型温度が離型に適する温度t。に降下すると
制御部26から型駆動手段12に型開き信号が送られて
移動側金型2Bが移動する。型開きが完了すると成形品
取出手段24が作動してオートハンド24Aによって成
形品の取り出しが行われ成形が終了し成形の1サイクル
が終る。
Thereafter, the mold temperature reaches a temperature t suitable for mold release. When the movable mold 2B descends, a mold opening signal is sent from the control section 26 to the mold driving means 12, and the movable mold 2B moves. When the mold opening is completed, the molded product ejecting means 24 is activated and the molded product is taken out by the automatic hand 24A, thereby completing the molding and completing one cycle of molding.

前述した成形品が第6図に示すようなフレネルレンズの
場合、キャビティ内に射出された溶融樹脂材料はレンズ
の鋭角部分を形成するキャビティ内の隅々に生き渡り空
隙を生ずることがないようにする必要があり、そのため
には金型温度を高い温度に設定して樹脂の流動性を促進
することが要求されると同時に、成形サイクルを何すイ
クル繰り返しても、どのサイクルでも第2図の温度曲線
を保つ必要があるが、本発明は前述成形方法によって充
分満足を得られる結果であった。
When the above-mentioned molded product is a Fresnel lens as shown in Figure 6, the molten resin material injected into the cavity survives in every corner of the cavity that forms the acute angle part of the lens, so that no voids are created. To achieve this, it is necessary to set the mold temperature to a high temperature to promote the fluidity of the resin, and at the same time, no matter how many times the molding cycle is repeated, the temperature shown in Figure 2 must be maintained at every cycle. Although it is necessary to maintain a temperature curve, the results of the present invention were sufficiently satisfactory using the above-mentioned molding method.

第1表は本発明の成形方法による同一金型、同一装置を
用いた実施例1と実施例2と及び従来技術を用いた比較
例の各成形条件の比較データである。第1表において、
比較例は6.5Kwattの出力を132KHzの周波
数で発振操作して温度センサーによる数サイクルの成形
の温度測定の結果ピーク温度t8=182〜215℃、
射出温度tc=llO〜142℃、型開き温度t。=6
5〜94℃となり、各成形サイクル毎の各温度の測定分
布にバラツキを生じた。
Table 1 shows comparative data of each molding condition of Examples 1 and 2 using the same mold and the same apparatus according to the molding method of the present invention, and a comparative example using the conventional technology. In Table 1,
In the comparative example, the output of 6.5 Kwatt was oscillated at a frequency of 132 KHz, and the temperature measurement of several cycles of molding using a temperature sensor resulted in a peak temperature t8 = 182 to 215°C.
Injection temperature tc=llO~142°C, mold opening temperature t. =6
The temperature ranged from 5 to 94°C, and variations occurred in the measurement distribution of each temperature for each molding cycle.

この比較例は高周波誘導加熱手段16の作動時間中は温
度調整器14の作動をOFFにしたため温度調整器内、
冷却流通路内、金型内の冷却媒体の温度が均一でなくな
り、高周波誘導加熱による金型の瞬間的高温加熱に対し
、温度が安定しない冷却媒体による冷却作用による金型
の温度のバラツキとなった。
In this comparative example, the operation of the temperature regulator 14 was turned off during the operation time of the high-frequency induction heating means 16.
The temperature of the cooling medium inside the cooling flow path and inside the mold becomes uneven, and the temperature of the mold becomes uneven due to the cooling effect of the cooling medium, which is not stable in response to the instantaneous high-temperature heating of the mold due to high-frequency induction heating. Ta.

実施例1と実施例2はそれぞれポリカーボネートとポリ
メチルメタクリレートを用いた例を示し、8゜2Kwa
tt、6.5Kwatt出力で132KHzの周波数に
よる発振操作を行い、かつ、温度調整器14は成形制御
部の作動信号によって初期から作動させてヒータによる
冷却媒体の加熱及びポンプによる冷却媒体の金型内への
循環を行わせて冷却媒体温度をそれぞれ80℃と50℃
に保つ。上記条件で加熱操作を行いピーク温度t 8=
244°C・218℃に金型を加熱してセンサーから温
度測定して金型温度1o−1,を数サイクル繰り返して
温度測定した結果、ピーク温度t B=244°C・2
18℃、射出時金型温度t。=160℃・135℃、及
び、型開き温度t、=110℃・80℃にコントロール
することができた。上述及び第1表に示すデータにおい
て本発明の成形方法による実施例においては高周波誘導
加熱による金型のピーク温度は比較例との同一材料の場
合でも高い温度が常に得られた。又、射出温度tcも実
施例1・2においては常に同一温度(110℃、80℃
)を得ることができ、更に第2図に示すピーク温度t8
から射出温度tcへの温度降下曲線すの曲線も常に同一
曲線に沿って降下することが確認出来た。
Example 1 and Example 2 show examples using polycarbonate and polymethyl methacrylate, respectively, and have a diameter of 8°2 Kwa.
tt, the oscillation operation is performed at a frequency of 132 KHz with an output of 6.5 Kwatts, and the temperature regulator 14 is activated from the beginning according to the operation signal of the molding control section to heat the coolant by the heater and to cool the coolant inside the mold by the pump. The cooling medium temperature is 80℃ and 50℃, respectively.
Keep it. The heating operation is performed under the above conditions and the peak temperature t8=
The mold was heated to 244°C/218°C and the temperature was measured from the sensor, and the mold temperature was repeated several cycles at 1o-1. As a result, the peak temperature t B = 244°C/2
18°C, mold temperature t during injection. It was possible to control the mold opening temperature t to =160°C/135°C and the mold opening temperature t to =110°C/80°C. According to the data described above and shown in Table 1, in the examples using the molding method of the present invention, the peak temperature of the mold due to high frequency induction heating was always high even in the case of the same material as the comparative example. In addition, the injection temperature tc was always the same temperature (110°C, 80°C) in Examples 1 and 2.
) can be obtained, and furthermore, the peak temperature t8 shown in Fig. 2 can be obtained.
It was confirmed that the temperature drop curve from tc to injection temperature tc always falls along the same curve.

第4図A−Bは前記第1表のデータに基づく本発明によ
る成形方法と前述比較例による成形品の成形結果を示す
模式図である。
FIGS. 4A and 4B are schematic diagrams showing the molding results of molded products according to the molding method according to the present invention and the comparative example described above based on the data in Table 1 above.

上記第4図A−Bの成形品はフレネルレンズの断面の拡
大図を示し、第4図Bは従来技術の成形方法を示し、図
から明らかなように頂角部はダして、先端は丸まってい
る。これに対し第4図Aは本発明の成形方法を示し、頂
角部は角度が正確に鋭角となり先端は丸まっていない。
The molded product shown in FIG. 4A-B above shows an enlarged view of the cross section of a Fresnel lens, and FIG. 4B shows the molding method of the prior art. Curled up. On the other hand, FIG. 4A shows the molding method of the present invention, in which the apex angle is accurately acute and the tip is not rounded.

フレネルレンズの場合入射光X1・x2・・・はレンズ
面で屈折して光軸上の一点に焦点を結ぶ必要がある。本
発明に係る実施例は第4図Aに示すように頂角部に入射
した光は正確に屈折するので各入射光は一点に焦点を結
ぶことができ、結像のゴーストと云われる像のボケは生
じない。これに対し従来技術の場合には第4図Bに示す
ように頂角部に入射した光は頂角のブレのために屈折角
が小さくなり入射光は光軸上の一点で焦点を結ぶことが
できずゴーストが発生し像のボケを生じる。
In the case of a Fresnel lens, the incident lights X1, x2, etc. need to be refracted at the lens surface and focused at one point on the optical axis. In the embodiment of the present invention, as shown in FIG. 4A, the light incident on the vertex is refracted accurately, so each incident light can be focused on one point, and the image called a ghost of the image is eliminated. No blurring occurs. On the other hand, in the case of the prior art, as shown in FIG. 4B, the refraction angle of the light incident on the apex portion becomes small due to the blurring of the apex angle, and the incident light is focused at one point on the optical axis. This results in ghosting and blurring of the image.

フレネルレンズの成形精度を測る目安として第5図に示
す方法がある。フレネルレンズの底部から頂角部までの
設計値上の高さHに対し実際に成形によって得られた高
さhの割合h/Hが大きければ大きい程成形精度が高い
と云える。
There is a method shown in Fig. 5 as a guideline for measuring the molding accuracy of Fresnel lenses. It can be said that the larger the ratio h/H of the height h actually obtained by molding to the designed height H from the bottom to the apex of the Fresnel lens, the higher the molding accuracy.

この方法によると従来技術の場合60〜80%程度であ
ったが、本発明の上述実施例1・2の場合は98〜99
%と非常に高い数値を得ることができた。
According to this method, in the case of the prior art, it was about 60 to 80%, but in the case of Examples 1 and 2 of the present invention, it was 98 to 99%.
We were able to obtain a very high percentage.

〔発明の効果〕〔Effect of the invention〕

本発明に依れば金型の温度管理を高精度に制御すること
ができる。成形サイクルを繰り返し行うことによる金型
温度のバラツキが無く各サイクル毎に射出時の金型温度
及び型開き時の金型温度は常に決められた温度に制御す
ることができる。その結果、前述第4図A−B、第5図
にて説明したように非常に高精度の成形精度を得ること
ができ、光学素子、光学部品の成形方法として優れた成
形品を得ることができた。
According to the present invention, temperature management of a mold can be controlled with high precision. There is no variation in mold temperature due to repeated molding cycles, and the mold temperature at the time of injection and the mold temperature at the time of mold opening can always be controlled to a predetermined temperature for each cycle. As a result, as explained in FIGS. 4A-B and 5 above, it is possible to obtain extremely high molding accuracy, and it is possible to obtain molded products that are excellent as a method for molding optical elements and optical parts. did it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の成形方法を実施する成形装置の構成図
。 第2図は本発明による成形方法の金型の温度曲線図。 第3図は第1図装置の各構成ユニットのタイミングチャ
ート図。 第4図A−Bは成形品の成形精度の説明図。 第5図は成形品の成形精度測定の説明図。 第6図は本発明の成形方法をフレネルレンズに用いた図
FIG. 1 is a configuration diagram of a molding apparatus that implements the molding method of the present invention. FIG. 2 is a temperature curve diagram of the mold of the molding method according to the present invention. FIG. 3 is a timing chart diagram of each component unit of the apparatus shown in FIG. 1. FIGS. 4A and 4B are explanatory diagrams of the molding accuracy of the molded product. FIG. 5 is an explanatory diagram of measuring molding accuracy of a molded product. FIG. 6 is a diagram in which the molding method of the present invention is applied to a Fresnel lens.

Claims (1)

【特許請求の範囲】[Claims] (1)成形品を成形する金型の型締途中の型開き状態で
前記金型内に高周波加熱手段を挿入して該金型を急速に
加熱し、 前記金型の高周波加熱操作中に前記金型内に設けた冷却
媒体路内に略一定温度の冷却媒体を循環させるとともに
、 前記金型の温度を測るセンサーの温度検出に基づいて前
記高周波加熱手段の退出と型締再開及び、成形材料の射
出動作により成形品の成形サイクルを行い、前記成形サ
イクル中は前記冷却媒体の温度を略一定に保つようにし
たことを特徴とする成形品の成形方法。
(1) In the open state of a mold for molding a molded article during clamping, a high-frequency heating means is inserted into the mold to rapidly heat the mold, and during the high-frequency heating operation of the mold, A cooling medium having a substantially constant temperature is circulated in a cooling medium path provided in the mold, and the high-frequency heating means is withdrawn and mold clamping is resumed based on temperature detection by a sensor that measures the temperature of the mold, and the molding material is removed. A method for molding a molded article, characterized in that a molding cycle of the molded article is performed by an injection operation, and the temperature of the cooling medium is kept substantially constant during the molding cycle.
JP31769888A 1988-12-12 1988-12-16 Method for molding molded item Granted JPH02162007A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP31769888A JPH02162007A (en) 1988-12-16 1988-12-16 Method for molding molded item
US07/448,544 US5062786A (en) 1988-12-12 1989-12-11 Molding device for molding optical elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31769888A JPH02162007A (en) 1988-12-16 1988-12-16 Method for molding molded item

Publications (2)

Publication Number Publication Date
JPH02162007A true JPH02162007A (en) 1990-06-21
JPH0443769B2 JPH0443769B2 (en) 1992-07-17

Family

ID=18091029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31769888A Granted JPH02162007A (en) 1988-12-12 1988-12-16 Method for molding molded item

Country Status (1)

Country Link
JP (1) JPH02162007A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254389A (en) * 2007-04-09 2008-10-23 Totoku Electric Co Ltd Molding die
US9895832B2 (en) 2012-03-30 2018-02-20 Hoya Corporation Method of manufacturing plastic lens, and method for manufacturing mold for forming optical lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254389A (en) * 2007-04-09 2008-10-23 Totoku Electric Co Ltd Molding die
US9895832B2 (en) 2012-03-30 2018-02-20 Hoya Corporation Method of manufacturing plastic lens, and method for manufacturing mold for forming optical lens

Also Published As

Publication number Publication date
JPH0443769B2 (en) 1992-07-17

Similar Documents

Publication Publication Date Title
TW323365B (en)
CN101528440B (en) Injection molding system, computer program, method of injection molding, and injection molding machine
KR20060048245A (en) Forming method of thick leading light plate and forming die
SU1831427A3 (en) Method and device for moulding articles with compaction
WO2011114378A1 (en) Injection molding method, method for manufacturing molded product, and injection molding device
JPH02162007A (en) Method for molding molded item
JPH081735A (en) Injection molding method
JPH066304B2 (en) Injection molding equipment
JPS636341B2 (en)
JPH01200925A (en) Method for molding plastic lens
JPH0513531Y2 (en)
JPH10323872A (en) Method and machine for injection molding
EP0511637A1 (en) A method and apparatus for injecting and mold clamping control of a blow molding machine
JPS61233520A (en) Preparation of molded product
JP2019177660A (en) Injection molding machine and injection molding method
JP3438908B2 (en) Heat cycle system for injection molding
JP2797705B2 (en) Mold clamping method and apparatus for blow molding machine
JPH0453690B2 (en)
JP2006137119A (en) Temperature control method and object to be controlled
JP2008238687A (en) Mold device, injection molding method, and optical element
JP2011126186A (en) Resin molding process and injection molding machine
JP2510575B2 (en) Molding temperature analysis method for molded products
JP2009137014A (en) Die device, molding machine, and molding method
Wadhwa et al. Experimental Results of Low Thermal Inertia Molding. I. Length of Filling
JP3154379B2 (en) Injection compression molding method and apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080717

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees