JPS61233520A - Preparation of molded product - Google Patents

Preparation of molded product

Info

Publication number
JPS61233520A
JPS61233520A JP7591185A JP7591185A JPS61233520A JP S61233520 A JPS61233520 A JP S61233520A JP 7591185 A JP7591185 A JP 7591185A JP 7591185 A JP7591185 A JP 7591185A JP S61233520 A JPS61233520 A JP S61233520A
Authority
JP
Japan
Prior art keywords
temperature
resin
mold
temp
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7591185A
Other languages
Japanese (ja)
Other versions
JPH0354608B2 (en
Inventor
Hiroshi Nakanishi
弘 中西
Shoji Akino
正二 秋野
Kunio Takada
高田 国夫
Yoshihisa Masuda
芳久 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7591185A priority Critical patent/JPS61233520A/en
Publication of JPS61233520A publication Critical patent/JPS61233520A/en
Publication of JPH0354608B2 publication Critical patent/JPH0354608B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7356Heating or cooling of the mould the temperature of the mould being near or higher than the melting temperature or glass transition temperature of the moulding material

Abstract

PURPOSE:To obtain excellent accuracy in the molding of optical parts, by charging a resin melted under heating in a mold held to glass transition temp. of the resin or more at the pour point of the resin or less and subsequently cooling the mold to take out a molded product. CONSTITUTION:When a top is heated to predetermined temp. by the temp. detected by the timer or temp. sensor 15 mounted in a heater temp. controller 16, the heating of a heater is stopped and a resin melted under heating is injected in a mold and passes through a sprue 10 to fill a cavity 9. Thereafter, a medium having proper temp. is flowed to medium passages 3, 4 or temp. is controlled by heaters 7, 8 to cool the temps. of tops 1, 2 to the glass transition temp. of the resin. When the tops 1, 2 are cooled to the glass transition temp. over 10sec or more after the resin was charged, a cooling medium is flowed to the medium passages 3, 4 to further cooling the tops 1, 2 and, at the point of time when the tops are cooled to certain temp., cooling is stopped to take out the molded product from the mold.

Description

【発明の詳細な説明】 〔発明の属する分野の説明〕 本発明は高い寸法精度が要求され、かつ内部歪の少なh
成形品を製造する製造方法に関するピント板などの光学
部品の成形に特に優れた精度を得ることのできる成形品
の成形に関する。
[Detailed description of the invention] [Description of the field to which the invention pertains] The present invention requires high dimensional accuracy and has low internal distortion.
The present invention relates to a manufacturing method for manufacturing a molded product, and relates to a method of manufacturing a molded product that can obtain particularly excellent precision in molding optical parts such as focusing plates.

〔従来の技術の説明〕[Description of conventional technology]

ここでは射出成形(射出圧縮成形等を含む)を例にとっ
て説明する。従来、一般に射出成形法においては、金型
を樹脂のガラス転移点もしくは熱変形温度と呼ばれる温
度以下に設定し、その温度で一定に保ちながら、溶融し
た樹脂を金型内に射出し、高圧をかけ金型内キャビティ
壁面の形状を転写させ、そして冷却固化させて取り出す
という方法がとられていた。
Here, injection molding (including injection compression molding, etc.) will be explained as an example. Conventionally, in injection molding, a mold is set at a temperature below the glass transition point or heat distortion temperature of the resin, and while keeping the temperature constant, molten resin is injected into the mold and high pressure is applied. The method used was to transfer the shape of the wall surface of the cavity in the hanging mold, cool it, solidify it, and then take it out.

しかしこの方法では金型内に射出された樹脂のうち、金
型内キャビティ壁面に接した樹脂は瞬時に冷却固化され
、スキン層を形成し、その上部を溶融された樹脂が高圧
で押し込まれるととkよシ、前記スキン層との界面でせ
ん断応力が発生し、それが複屈折によシ観察される歪を
生じさせる原因となっていた。また、このように瞬時に
冷却固化されることによシ、その時点十分に転写できな
いということも生じている。
However, with this method, of the resin injected into the mold, the resin that comes into contact with the wall of the cavity inside the mold is instantly cooled and solidified to form a skin layer, and when the molten resin is forced into the upper part of the skin layer under high pressure, Additionally, shear stress is generated at the interface with the skin layer, which causes the distortion observed by birefringence. Furthermore, due to this instantaneous cooling and solidification, sufficient transfer may not be possible at that point.

さらに金型に接している樹脂と、成形品内部の溶融して
いる樹脂との間にはかなり大きな温度差が生じ、金型に
接している樹脂から徐々に冷却されることにより、成形
品内部と外表面で均一に収縮されず、厚肉部においては
内部の樹脂が冷却固化するときに、外表面の樹脂をひっ
ばりこむ様に収縮し、外表面に「ひけ」と呼ばれる凹み
が生じてしまったり、仮りに「ひけ」が生じなくても密
度分布を生じ、それが残留応力の分布となって、成形品
の機械的性質に影響を及ぼしたり、光学部品ではその光
学性能に支障をきたしたりしていた。
Furthermore, a fairly large temperature difference occurs between the resin in contact with the mold and the molten resin inside the molded product, and as the resin in contact with the mold gradually cools down, the inside of the molded product When the inner resin cools and solidifies, it shrinks in a way that encloses the resin on the outer surface, creating a dent called a "sink mark" on the outer surface. Even if "sink" does not occur, a density distribution occurs, which becomes a distribution of residual stress, which affects the mechanical properties of molded products, and impairs the optical performance of optical parts. I was doing a lot of things.

〔発明の目的〕[Purpose of the invention]

本発明は、上述従来例の欠点を除去すべく、成形加工時
の金型温度を樹脂の流動温度(=流動停止温度)以下、
ガラス転移点温度以上という比較的狭い範囲内釦設定し
、その状態で樹脂を投入し前記金型が前記樹脂のガラス
転移点温度になるまで、前記樹脂を投入しはじめてから
少なくとも10秒以上かけて前記金型を冷却して樹脂を
冷却固化させ、その後成形品として取り出すことを特徴
とするもので、公差1μm以下という寸法精度の高い、
かつ内部歪の少ない成形品を製造する製造方法を提供す
るものである。
In order to eliminate the drawbacks of the above-mentioned conventional example, the present invention aims to reduce the mold temperature during molding to the resin flow temperature (=flow stop temperature) or lower.
Set the button within a relatively narrow range above the glass transition point temperature, and in that state pour in the resin, taking at least 10 seconds from the time you start pouring the resin until the mold reaches the glass transition point temperature of the resin. The resin is cooled and solidified by cooling the mold, and is then taken out as a molded product, and has high dimensional accuracy with a tolerance of 1 μm or less.
The present invention also provides a manufacturing method for manufacturing a molded product with little internal distortion.

〔発明の構成および作用の説明〕[Description of the structure and operation of the invention]

発明者等は本発明の完成に際し、成形条件と成形品の品
質との相関性について詳細なる試験検討を加えた。
Upon completion of the present invention, the inventors conducted detailed tests and studies on the correlation between molding conditions and the quality of molded products.

すなわち金型投入前の樹脂の温度、金型の温度の状態、
樹脂にかける圧力等、成形条件を変化させ、それに伴う
、寸法精度、内部歪等の成形品の品質との関係を検討し
た結果、金型の温度の状態が、成形品の品質に最も大き
く影響を及ぼすことが確認で蕪た。この金型の温度の状
態、特忙樹脂を投入する時の初期金型温度と寸法精度、
および内部歪との関係を第1図、第2図に示す。これら
の図で明らかな様に成形品の寸法精度は金型の温度が高
くなる程、向上し1、内部歪は低下する様になる。
In other words, the temperature of the resin before injection into the mold, the temperature state of the mold,
As a result of changing the molding conditions, such as the pressure applied to the resin, and examining the relationship with the quality of the molded product, such as dimensional accuracy and internal distortion, we found that the temperature of the mold has the greatest effect on the quality of the molded product. It has been confirmed that it has a negative effect. The temperature condition of this mold, the initial mold temperature and dimensional accuracy when adding special resin,
The relationship between this and internal strain is shown in FIGS. 1 and 2. As is clear from these figures, the dimensional accuracy of the molded product improves as the temperature of the mold increases1, and the internal strain decreases.

金型の温度を上げれば上げる程、成形品の品質は向上す
るのであるが、流動温度(=流動停止温度)以上に金型
温度を上げてもその効果はあまシなく、反面成形サイク
ルが長くなってしまうと同時にパリという問題が生じ、
二次加工が必要になったシして、生産性の点では劣って
しまう結果となる。従って樹脂投入時の金型温度は前記
樹脂のガラス転移点温度以上流動温度(=流動停止温度
)以下と込う比較的狭い範囲内が、高精度の点からも、
生産性の点からも有用であるとbうことを我々は見い出
したのである。特に要求精度がきつい場合には流動温度
(=流動停止温度)ぎりぎりの温度まで上げることが望
ましい。
The higher the mold temperature is raised, the better the quality of the molded product will be, but even if the mold temperature is raised above the flow temperature (= flow stop temperature), the effect will not be as good, and on the other hand, the molding cycle will be longer. At the same time, the problem of Paris arose,
Secondary processing becomes necessary, resulting in inferior productivity. Therefore, from the point of view of high precision, it is recommended that the mold temperature when charging the resin be within a relatively narrow range of above the glass transition point temperature of the resin and below the flow temperature (=flow stop temperature).
We have found that it is also useful from a productivity standpoint. In particular, when the required accuracy is strict, it is desirable to raise the temperature to the very limit of the flow temperature (=flow stop temperature).

この様忙流動温度(=流動停止温度)以上に金型を上げ
なくても、ガラス転移点温度以上であれば、キャビテイ
壁面に接した樹脂はマクロ的な流動は起′こらないにせ
よ、樹脂内部ではミクロ的に流動状態であるので、その
温度以上で十分な加工圧力を加えればキャビティ形状を
良く転写し、かつ成形品内部の歪もこの温度以上で十分
に保持すれば、緩和することができるためである。
In this way, even if the mold is not raised above the busy flow temperature (= flow stop temperature), if the temperature is above the glass transition point, the resin in contact with the cavity wall will not flow macroscopically. Since the inside is in a microscopic fluid state, the cavity shape can be well transferred if sufficient processing pressure is applied above that temperature, and the strain inside the molded product can be alleviated if it is sufficiently maintained above this temperature. This is because it is possible.

この様に前述した範囲内の温度に設定された金型内に溶
融された樹脂を投入すると、金型に接した樹脂はただち
に金型温度付近まで下がシ、成形品の内部の温度はまだ
溶融している高い状態にある。しかし金型温度が、樹脂
のガラス転移点温度以上であるのでこの状態で充填後圧
力をかけキャピテイ形状を転写させ、そして金型温度が
樹脂のガラス転移点温度になるまで、金型温度を制御す
ることによって成形品内の樹脂の温度は均一化されてゆ
き゛、その均一になった状態のtま、成形品全体の樹脂
の温度がガラス転移点温度以下になる様に金型を冷却し
ていけば初期の転写精度を保ったまま成形品内の温度分
布ムラによる不均一な収縮が起きずに高精度な成形品が
得られるのである。
When molten resin is poured into a mold set at a temperature within the above-mentioned range, the resin in contact with the mold will immediately drop to around the mold temperature, and the temperature inside the molded product will still remain. It is in a molten high state. However, since the mold temperature is above the glass transition temperature of the resin, pressure is applied after filling in this state to transfer the cavity shape, and the mold temperature is controlled until the mold temperature reaches the glass transition temperature of the resin. By doing this, the temperature of the resin in the molded product becomes uniform, and until this becomes uniform, the mold is cooled so that the temperature of the resin in the entire molded product is below the glass transition temperature. By doing so, a highly accurate molded product can be obtained while maintaining the initial transfer accuracy without causing uneven shrinkage due to uneven temperature distribution within the molded product.

ここで金型温度の樹脂投入時の高い温度からガラス転移
点温度まで下がる冷却時間については成形品の肉厚によ
って規定されるもので、任意に制御させなくてはならな
いが、我々が種々試験検討した結果、第4図に示した様
に公差1μm以下という高い寸法精度を達成するために
はどんなに薄い成形品であっても樹脂を投入しはじめて
から樹脂のガラス転移点温度まで金型を冷却させるのに
少なくとも10秒以上かけなくてはいけないということ
が確認された。なお上記で流動温度とはロッジ・ピーク
ス流れ試験機を用いて1500 psiで2分間にl 
1nch 流れる温度を言い、A8TM: D569−
59に規定されている。またMOLDFLOW PTY
、LTD、  提供ノMo ld f low 80プ
ログラムの中での樹脂データベースではNo−FLOW
温度(流動停止温度)として高ぜん断粘度計を用い、バ
レル中の樹脂に50MPaの圧力をかけ、バレル温度を
10℃ずつ上げてゆき、樹脂が流れ出す直前の温度とい
う様に規定されている。
Here, the cooling time for the mold temperature to drop from the high temperature at the time of resin injection to the glass transition point temperature is determined by the wall thickness of the molded product and must be controlled arbitrarily, but we conducted various tests and studies. As a result, as shown in Figure 4, in order to achieve high dimensional accuracy with a tolerance of 1 μm or less, no matter how thin the molded product is, the mold must be cooled to the resin's glass transition temperature from the moment the resin is introduced. It was confirmed that it is necessary to take at least 10 seconds to Note that the flow temperature in the above refers to 1500 psi for 2 minutes using a Lodge Peaks flow tester.
1nch Flowing temperature is expressed as A8TM: D569-
59. Also MOLDFLOW PTY
, LTD, No-FLOW in the resin database in the provided Mold flow 80 program.
The temperature (flow stop temperature) is determined by applying a pressure of 50 MPa to the resin in the barrel using a high shear viscometer, increasing the barrel temperature by 10° C., and setting the temperature immediately before the resin begins to flow.

以下本発明の具体的な一実施例を示す構成図(第5図)
よシ説明する。
The following is a configuration diagram (Fig. 5) showing a specific embodiment of the present invention.
Let me explain.

第5図は射出成形用レンズ金型の要部を示し、lは固定
側型板13内に設けられた固定側入駒、2け可動側型板
14内に設けられた可動側入駒で、1と2をもってキャ
ピテイ9を形成している。
FIG. 5 shows the main parts of a lens mold for injection molding, where l is a fixed side insert piece provided in the fixed side mold plate 13 and a movable side insert piece provided in the 2-piece movable side mold plate 14. , 1 and 2 form a capacity 9.

7.8はそれぞれ固定側、可動側の入駒を加熱するヒー
ターで温度センサ15を介してヒータ一温度制御器16
で制御される様になっている。またヒータ一温度制御器
にはタイマーも自薦されておシ、そのタイマーでヒータ
ー7.8を制御させることも可能となっている。
7.8 is a heater that heats the input pieces on the fixed side and the movable side, respectively, and the heater-temperature controller 16 is connected via the temperature sensor 15.
It seems to be controlled by. Furthermore, a timer is also provided in the heater temperature controller, and it is also possible to control the heaters 7 and 8 using the timer.

3および4はそれぞれ固定側、可動側入駒を温度調節す
るための加熱および冷却媒体の通路で0−リング5およ
び6でシールされ、電磁弁が内蔵されている媒体温度調
節器17で制御される様になっている。3A、4Aは加
熱−冷却媒体通路3.4と温度調節器17の接続路を示
す。さらにヒータ一温度制御器16と媒体温度調節器1
7は互いに制御信号を出しあってそれぞれの動作を制御
させるととも可能となっている。
3 and 4 are heating and cooling medium passages for adjusting the temperature of the fixed side and movable side input pieces, respectively, and are sealed with O-rings 5 and 6 and controlled by a medium temperature regulator 17 having a built-in solenoid valve. It looks like this. 3A and 4A indicate connection paths between the heating/cooling medium passage 3.4 and the temperature regulator 17. Further, a heater temperature controller 16 and a medium temperature controller 1
7 can be made possible by sending control signals to each other to control their respective operations.

以上の様に構成された射出成形用金型の成形動作および
成形方法について説明する。
The molding operation and molding method of the injection mold configured as above will be explained.

射出成形機(図示せず)のシリンダ(図示せず)内で加
熱溶融された樹脂がこの型内に射出される前に予め型締
めされた状態でヒーター7および8によって駒1および
2が加熱される。
Before the resin heated and melted in the cylinder (not shown) of an injection molding machine (not shown) is injected into the mold, pieces 1 and 2 are heated by heaters 7 and 8 while the mold is clamped in advance. be done.

ヒータ一温度制御器16に内蔵されたタイマーもしくは
、温度センサー15で検出した温度によって所定温度(
11脂の流動温度以下、ガラス転移点温度以上)まで駒
が加熱されるとヒーターでの加熱は中止され先程の加熱
溶融された樹脂が型内に射出され、スプルー10を通り
、キャビティ9内に充填される。その後3および4に設
けられた媒体通路に適温の媒体を流すか、もしくはヒー
ター7および8によって駒1および2の温度を制御させ
ながら駒1および2の温度を樹脂のガラス転移点温度ま
で冷却させる。
The predetermined temperature (
11 When the piece is heated to a temperature below the flow temperature of the resin and above the glass transition point temperature, the heating with the heater is stopped and the melted resin is injected into the mold, passes through the sprue 10, and enters the cavity 9. Filled. Thereafter, a medium at an appropriate temperature is flowed through the medium passages provided in 3 and 4, or the temperature of pieces 1 and 2 is cooled down to the glass transition temperature of the resin while controlling the temperature of pieces 1 and 2 using heaters 7 and 8. .

駒が樹脂のガラス転移点温度まで冷却されたら媒体通路
3および4に冷却媒体を流し駒をさらに冷却させ、ある
温度まで冷却された時点で冷却を中止し、成形品を型か
ら取り出し、型締めを行なったあと、再びヒーター7お
よび8によって駒1および2を加熱する。
When the piece has been cooled to the glass transition point temperature of the resin, cooling medium is poured into the medium passages 3 and 4 to further cool the piece. When the piece has cooled to a certain temperature, cooling is stopped, the molded product is removed from the mold, and the mold is clamped. After this, pieces 1 and 2 are heated again by heaters 7 and 8.

樹脂が射出されたあと金型(駒)が樹脂のガラス転移点
温度まで冷却される時の温度制御は温度センサ15によ
って逐次胴内の温度を検出して行なってもよいし、タイ
マーによって制御させても良い0これは金型(駒)を樹
脂のガラス転移点温度から成形品を取り出す温度まで冷
却していく過程においても同様である。
Temperature control when the mold (piece) is cooled down to the glass transition point temperature of the resin after the resin is injected may be performed by sequentially detecting the temperature inside the cylinder with a temperature sensor 15, or may be controlled by a timer. This also applies to the process of cooling the mold (piece) from the glass transition temperature of the resin to the temperature at which the molded product is taken out.

温度センサ15によって検出した温度で金型(駒)の温
度を逐次制御させる場合、予め冷却温度勾配を設定して
おき、そのカーブに検出温度が沿うよう比較演算させて
加熱および冷却の制御を行表わせる様になシ、その場合
あらたに演算器が必要となる。
When sequentially controlling the temperature of the mold (piece) using the temperature detected by the temperature sensor 15, a cooling temperature gradient is set in advance, and heating and cooling are controlled by performing comparative calculations so that the detected temperature follows the curve. As shown, in that case, a new computing unit is required.

次に具体的な実施例を述べる。Next, a specific example will be described.

(実施例の説明〕 ポリメチルメタクリレート(PMMA)樹脂を用い、直
径43 mm 、中心肉厚9mrnの凸レンズを下記の
成形条件で射出成形した。
(Description of Examples) Using polymethyl methacrylate (PMMA) resin, a convex lens having a diameter of 43 mm and a center wall thickness of 9 mrn was injection molded under the following molding conditions.

射出前の樹脂温度        250℃金型温度 
       130℃ 射出時の  1          80℃射出してか
ら金型温度が樹脂のガラス 転移点温度になるまでの時間         4分ま
たこれに対して金型温度を80℃一定にして他の条件は
上記と同じで従来法により射出成形したレンズも製造し
た。
Resin temperature before injection: 250℃ mold temperature
During injection at 130°C 1 Time from 80°C injection until the mold temperature reaches the resin's glass transition point temperature 4 minutes Also, the mold temperature was kept constant at 80°C and other conditions were the same as above. Lenses were also manufactured by injection molding using conventional methods.

上述した28![のレンズのうち、樹脂射出前の金型温
度を130℃にして成形したものは光学的に優れたレン
ズであったが、金型温度を80℃一定にして成形したも
のはレンズとしての要求品質を満たすことはできなかっ
た。なお、この樹脂の流動温度(=流動停止温度)は1
50℃、ガラス転移点温度は105℃であった。
28 mentioned above! Among the lenses, those molded at a mold temperature of 130°C before resin injection were optically excellent lenses, but those molded at a constant mold temperature of 80°C did not meet the requirements for lenses. The quality could not be met. The flow temperature (=flow stop temperature) of this resin is 1
The temperature was 50°C, and the glass transition temperature was 105°C.

さて金型内に樹脂を投入した後、ただちに金型を冷却し
始めても良いが、肉厚の厚い成形品や要求精度のきつい
成形品などの場合では、樹脂を投入した時点で金型温度
を何秒間か保持し続け、その間に十分な加工圧力を加え
てキャビティ形状を十分に転写させ、かつ成形品の内部
歪も緩和させる操作を行うことが必要である。
Now, it is possible to start cooling the mold immediately after pouring the resin into the mold, but in the case of thick-walled molded products or molded products with strict precision requirements, the temperature of the mold should be adjusted as soon as the resin is poured. It is necessary to hold the mold for several seconds and apply sufficient processing pressure during this time to sufficiently transfer the cavity shape and also to alleviate the internal distortion of the molded product.

この製造方法は射出成形法や射出圧縮成形法など、樹脂
の製造法会てに適用でき、高精度成形品を製造するのに
有益な方法である。
This manufacturing method can be applied to resin manufacturing methods such as injection molding and injection compression molding, and is a useful method for manufacturing high-precision molded products.

〔効果の説明〕[Explanation of effects]

以上説明した様に本発明によれば成形品の精度、内部歪
に最も影響を与える金型温度を前述の様に規定すること
によシ、公差1μm以下という寸法精度の高い、かつ内
部歪の少ない成形品を得ることが出来た。
As explained above, according to the present invention, by specifying the mold temperature, which has the greatest effect on the precision and internal strain of the molded product, as described above, it is possible to achieve high dimensional accuracy with a tolerance of 1 μm or less and to reduce internal strain. We were able to obtain a small number of molded products.

【図面の簡単な説明】 第1図は射出成形における樹脂射出時の金型温度と寸法
精度との関係を示すグラフ図、同じく第2図は樹脂射出
時の金型温度と内部歪の関係を示すグラフ図、第3図は
公差1μm以内という高い寸法精度を出すのに必要な、
成形品肉厚と、樹脂投入時から金型が樹脂のガラス転移
点温度まで下がる冷却時間との関係を示すグラフ図で、
第4図は本発明の具体的な一実施例の金型温度の変化の
様子を示すグラフ図、第5図は同じく本発明の具体的な
一実施例のレンズ成形金型内駒周辺の断面図を含む構成
図である。
[Brief explanation of the drawings] Figure 1 is a graph showing the relationship between mold temperature and dimensional accuracy during resin injection in injection molding, and Figure 2 shows the relationship between mold temperature and internal strain during resin injection. The graph diagram shown in Figure 3 shows the characteristics necessary to achieve high dimensional accuracy with a tolerance of 1 μm or less.
A graph showing the relationship between the thickness of the molded product and the cooling time from when the resin is introduced until the mold cools down to the glass transition temperature of the resin.
FIG. 4 is a graph showing how the mold temperature changes in a specific embodiment of the present invention, and FIG. 5 is a cross section around the inner piece of the lens molding die in a specific embodiment of the present invention. It is a block diagram including a figure.

Claims (2)

【特許請求の範囲】[Claims] (1)加熱溶融した樹脂を前記樹脂の流動温度以下で、
かつ、ガラス転移点温度以上に設定された金型内に投入
した後、金型を冷却して成形品を取り出すことを特徴と
する成形品の製造方法。
(1) Heat and melt the resin at a temperature below the flow temperature of the resin,
A method for manufacturing a molded article, which comprises placing the molded article into a mold set at a temperature equal to or higher than the glass transition temperature, and then cooling the mold and taking out the molded article.
(2)前記樹脂を前記金型内に投入し、前記金型が前記
樹脂のガラス転移点温度になるまで前記樹脂を投入しは
じめてから少なくとも10秒以上かけて前記金型を冷却
することを特徴とする特許請求の範囲第1項記載の成形
品の製造方法。
(2) The resin is poured into the mold, and the mold is cooled for at least 10 seconds after the resin is started to be poured until the mold reaches the glass transition point temperature of the resin. A method for manufacturing a molded article according to claim 1.
JP7591185A 1985-04-09 1985-04-09 Preparation of molded product Granted JPS61233520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7591185A JPS61233520A (en) 1985-04-09 1985-04-09 Preparation of molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7591185A JPS61233520A (en) 1985-04-09 1985-04-09 Preparation of molded product

Publications (2)

Publication Number Publication Date
JPS61233520A true JPS61233520A (en) 1986-10-17
JPH0354608B2 JPH0354608B2 (en) 1991-08-20

Family

ID=13589986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7591185A Granted JPS61233520A (en) 1985-04-09 1985-04-09 Preparation of molded product

Country Status (1)

Country Link
JP (1) JPS61233520A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211619A (en) * 1985-07-09 1987-01-20 Ricoh Co Ltd Process of injection molding
JPS63290718A (en) * 1987-05-22 1988-11-28 Matsushita Electric Ind Co Ltd Molding temperature control method and sequence temperature control device
US5329406A (en) * 1991-07-31 1994-07-12 Canon Kabushiki Kaisha Plastic optical elements and a molding mold therefor
JPH10296733A (en) * 1997-04-30 1998-11-10 Nippon G Ii Plast Kk Molding method for improving sinkmark and mold temperature controlling system
JP2005514224A (en) * 2001-10-26 2005-05-19 アクララ バイオサイエンシーズ, インコーポレイテッド Systems and methods for injection micro-replication of microfluidic substrates
CN108161713A (en) * 2017-12-15 2018-06-15 湖北鼎龙控股股份有限公司 A kind of polishing pad and the method for being used to prepare polishing pad

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574846A (en) * 1978-12-01 1980-06-05 Owens Illinois Inc Method of controlling crystallization of thermal plastic material and device of controlling growth velocity of crystal of thermal plastic material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574846A (en) * 1978-12-01 1980-06-05 Owens Illinois Inc Method of controlling crystallization of thermal plastic material and device of controlling growth velocity of crystal of thermal plastic material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211619A (en) * 1985-07-09 1987-01-20 Ricoh Co Ltd Process of injection molding
JPH0573570B2 (en) * 1985-07-09 1993-10-14 Ricoh Kk
JPS63290718A (en) * 1987-05-22 1988-11-28 Matsushita Electric Ind Co Ltd Molding temperature control method and sequence temperature control device
US5329406A (en) * 1991-07-31 1994-07-12 Canon Kabushiki Kaisha Plastic optical elements and a molding mold therefor
JPH10296733A (en) * 1997-04-30 1998-11-10 Nippon G Ii Plast Kk Molding method for improving sinkmark and mold temperature controlling system
JP2005514224A (en) * 2001-10-26 2005-05-19 アクララ バイオサイエンシーズ, インコーポレイテッド Systems and methods for injection micro-replication of microfluidic substrates
CN108161713A (en) * 2017-12-15 2018-06-15 湖北鼎龙控股股份有限公司 A kind of polishing pad and the method for being used to prepare polishing pad
CN108161713B (en) * 2017-12-15 2020-06-12 湖北鼎龙控股股份有限公司 Polishing pad and method for preparing polishing pad

Also Published As

Publication number Publication date
JPH0354608B2 (en) 1991-08-20

Similar Documents

Publication Publication Date Title
JP3264615B2 (en) Plastic lens injection molding method
JPS6159220B2 (en)
US6284162B1 (en) Molding method for manufacturing thin thermoplastic lenses
CA1124469A (en) Method for molding ophthalmic lenses
JPH0134132B2 (en)
JPS61233520A (en) Preparation of molded product
JPH0331124B2 (en)
EP0955147B1 (en) Method of injection molding plastic lens
JPH0255215B2 (en)
JPS61229520A (en) Injection and compression molding mold device for molding multiple pieces of molded products simultaneously
JP2821093B2 (en) Manufacturing method of plastic molded article and molding die
JP3392023B2 (en) Method and apparatus for predicting finished shape of molded article
JPH0421574B2 (en)
JPH0333494B2 (en)
JPH04163119A (en) Manufacture of plastic molded item
EP1273424B1 (en) Method of injection molding plastic lens
JPH0139337B2 (en)
JP3197981B2 (en) Injection molding method
JPH0139336B2 (en)
JP2510575B2 (en) Molding temperature analysis method for molded products
JPS5849220A (en) Manufacture of plastic lens
JP2002160274A (en) Method for injection-molding plastic eyeglass lens
JPH0651332B2 (en) Injection compression molding method
JPH07323486A (en) Manufacture of plastic molded product
JPH09268021A (en) Injection molding for glass molded product

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term