JPS5849220A - Manufacture of plastic lens - Google Patents

Manufacture of plastic lens

Info

Publication number
JPS5849220A
JPS5849220A JP14852081A JP14852081A JPS5849220A JP S5849220 A JPS5849220 A JP S5849220A JP 14852081 A JP14852081 A JP 14852081A JP 14852081 A JP14852081 A JP 14852081A JP S5849220 A JPS5849220 A JP S5849220A
Authority
JP
Japan
Prior art keywords
mold
lens
molds
plastic
plastic lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14852081A
Other languages
Japanese (ja)
Other versions
JPH0159100B2 (en
Inventor
Akitake Ito
伊藤 彰勇
Shunsuke Matsuda
俊介 松田
Toru Tamura
徹 田村
Yoshinobu Murakami
嘉信 村上
Katsuaki Mitani
勝昭 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14852081A priority Critical patent/JPS5849220A/en
Publication of JPS5849220A publication Critical patent/JPS5849220A/en
Publication of JPH0159100B2 publication Critical patent/JPH0159100B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Abstract

PURPOSE:To obtain the titled lens having a large aperture and thickness deviation, by compression molding a cut plastic lens material, which has been obtained by the casting method, in compression molds when only part of the material adjacent to the surface is melted to be flowable. CONSTITUTION:A monomer, a half polymer or a mixture of the monomer and the half polymer is cast in casting molds, and is bulk-polymerized to obtain the plastic material 2. The plastic material 2 is cut to have the surface roughness of 10-30mum by a lathe and preferably an NC lathe, and is set between cores 6, 7 associated with mold plates 1, 3, with the heated molds open. Then the molds are closed, and after they are left to stand until only part of the material adjacent to the surface is melted to be flowable, the material is compression molded. In this case, the circulation of the temperature controlling medium is stopped, and a cooling medium is passed through mold cooling medium flowing bores 12 thereby the molds are cooled.

Description

【発明の詳細な説明】 本発明はプラスチックレンズの製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a plastic lens.

プラスチックレンズは従来のガラスレンズに比較して軽
量であること、多量生産の可能性があること、コストが
低いことが期待されること等の理由により光学製品に広
く用いられるようになってきている。現在プラスチック
レンズ材料として主に使用されている樹脂は、ジェチ(
/ングリコールビスアリルカーボネート(以下0R−3
9と称する)もしくはポリメチルメタクリレート(以下
PMMムと称する)である。
Plastic lenses are becoming more widely used in optical products because they are lighter than traditional glass lenses, have the potential for mass production, and are expected to be inexpensive. . The resin currently mainly used as a plastic lens material is Jechi (
/ glycol bisallyl carbonate (hereinafter referred to as 0R-3
9) or polymethyl methacrylate (hereinafter referred to as PMM).

CR−39は主に眼鏡用のレンズに、PMMムはサング
ラス用やルーペなどに多く使用されている。これらのレ
ンズは比較的径が・j・さく、PMMムの場合には主と
して射出成形法により、またCR−39Fi注型法によ
りレンズを製造している。
CR-39 is mainly used for eyeglass lenses, and PMM is often used for sunglasses and loupes. These lenses are relatively small in diameter, and in the case of PMM lenses, they are manufactured primarily by injection molding or by CR-39Fi casting.

ところで、比較的径が大きく、しかも肉厚偏差も大きい
レンズをプラスチック化する試みも最近なされてきてい
る。このようなレンズを射出成形法により製造する場合
、形状精度の良いレンズをifうとすると、シリンダー
ノズル−スプルー−ゲート−製品という樹脂の流路に沿
って圧力を付加して製品が充てん不足(ショートショッ
ト)にならないようにする必要があるが、レンズ製品部
のうち特にゲートに近い部分は、そこを通して強い圧力
がキャビティに付加され、残留応力が出やすく結果的に
歪になりゃすい。また、偏肉と呼ばれるレンズ製品部の
厚さの違いによってレンズ厚肉部にヒケが発生しやすい
。このように、高い射出圧を付加すること、偏肉である
ことの故に、高い形状精度や歪の少ないプラスチックレ
ンズを射出成形法により得ることは困難である。
By the way, attempts have recently been made to make lenses with relatively large diameters and large deviations in thickness from plastic. When manufacturing such lenses using the injection molding method, if you try to create a lens with good shape accuracy, pressure is applied along the resin flow path: cylinder nozzle - sprue - gate - product, resulting in insufficient product filling (short). However, strong pressure is applied to the cavity through the part of the lens product, especially near the gate, which tends to generate residual stress and result in distortion. In addition, sink marks are likely to occur in the thick parts of the lens due to differences in the thickness of the lens product part, which is called uneven thickness. As described above, it is difficult to obtain a plastic lens with high shape accuracy and little distortion by injection molding because of the application of high injection pressure and uneven thickness.

本発明は以上の点に鑑み、比較的径が大きく、しかも肉
厚偏差も大きいプラスチックレンズを得る方法を提供す
るものである。すなわち本発明は、注型成形用の型内に
、単量体、半重合物、捷たは単量体と重合体の混合物を
流しこみ、塊状重合さセテ歪のないプラスチックレンズ
素材を作り、これを旋盤のぞましくはIC旋盤により所
定の形状に切削した後、所定の形状をもつ圧縮成形用金
型内に入nルンズ素材の表面近傍(表面層)のみが溶融
し、流動可能になった時点で圧縮成形することにより、
大口径でかつ偏肉のあるプラスチックレンズの製造を可
能としたものである。
In view of the above points, the present invention provides a method for obtaining a plastic lens having a relatively large diameter and a large thickness deviation. That is, the present invention pours a monomer, a semi-polymer, a resin, or a mixture of a monomer and a polymer into a mold for cast molding, and produces a plastic lens material that is bulk-polymerized and has no cete distortion. After cutting this into a predetermined shape using a lathe, preferably an IC lathe, it is placed into a compression molding mold with a predetermined shape, and only the near surface (surface layer) of the lunz material melts, making it flowable. By compression molding when the
This makes it possible to manufacture plastic lenses with large diameters and uneven thickness.

以下、本発明の製造方療について更に詳しく説明する。Hereinafter, the manufacturing method of the present invention will be explained in more detail.

塊状重合によって得られるプラスチックレンズ素材の平
均分子量は、射出成形用材料の平均分子量よりもかなり
大きくすると研削[程が射出成形用材料に比較してやり
やすい。1′こ、塊状重合時において無理な圧力がほと
んど加すらないため、残留応力の発生ということもh 
’: 、 ’6)の出現が射出成形法と比較し極度に少
ない、このプラスチックレンズ素材の形状は、歪のまつ
んくない素材という観点からは等厚の平板が望−71い
が、極端に内厚偏差の大きいプラスチックレンズ1.た
とえば中心厚が40mmで、こげ厚が4111mのよう
な凸レンズを作る。うとする場合には、平板を用いると
切削量が著るしく多くなり経済的でないため、はぼ最終
のレンズ形状に似た形状にしてもよい。また、塊状重合
によってプラスチックレンズ素材を作るのに適する材料
としては、メチルメタクリレート。
If the average molecular weight of the plastic lens material obtained by bulk polymerization is much larger than the average molecular weight of the injection molding material, it will be easier to grind than the injection molding material. 1' Because almost no unreasonable pressure is applied during bulk polymerization, residual stress may occur.
':, '6) is extremely rare compared to the injection molding method.The shape of this plastic lens material is preferably a flat plate of equal thickness from the viewpoint of a material that does not suffer from distortion, but it is extremely Plastic lens with large inner thickness deviation 1. For example, a convex lens with a center thickness of 40 mm and a burnt thickness of 4111 mm is made. If a flat plate is used, the amount of cutting will be significantly increased and it is not economical, so the shape may be made similar to the final lens shape. Also, methyl methacrylate is a material suitable for making plastic lens materials by bulk polymerization.

スチレンなどの透明な単量体もしくはこれらの重合体が
ある。
Transparent monomers such as styrene or polymers thereof are available.

次に、塊状重合によって得られたレンズ素材を切削する
には、超硬バイトも用いうるがダイヤモンドのツールを
用いておこなうのが最適であり、任意の球面形状、非球
面形状を得るためには、数値制御されていることが望ま
しい。レンズ素材はこの段階で表面粗さが10〜3o/
7m程度寸で加工さ扛る。切削加工後、このレンズ累月
を所定の形状をもつ圧縮成形用金型内に入れ、圧縮成形
をおこなう。圧縮成形工程では、プラスチックレンズ素
材全体を溶融するのではなく、レンズ素材の表面近傍の
みを溶融させ流動状態にする。その理由は、レンズ素材
全体を溶融する場合、熱容訃が大きく長時間を要し、し
かも冷却過程でレンズ薄肉部が先に固化するため、レン
ズ厚肉部の固化に伴なってヒケが生じてくるからである
Next, to cut the lens material obtained by bulk polymerization, a carbide tool can be used, but it is best to use a diamond tool. , preferably numerically controlled. The surface roughness of the lens material at this stage is 10~3o/
It is processed to a size of about 7m. After cutting, the lens is placed in a compression mold having a predetermined shape and compression molded. In the compression molding process, the entire plastic lens material is not melted, but only the vicinity of the surface of the lens material is melted into a fluid state. The reason for this is that when the entire lens material is melted, the thermal mass is large and it takes a long time, and the thinner parts of the lens solidify first during the cooling process, which causes sink marks as the thicker parts of the lens solidify. Because it will come.

本発明の圧縮成形では、レンズ形状が偏肉製品であるに
もかかわらず、溶融流動化できる部分の厚さは、はぼ全
体に渡って一定の厚さになっており、あたかも等厚製品
を成形するかのように成形がおこなわれる。また、レン
ズ素材の溶融のための加熱は、成形機外のところであら
かじめおこなっておくこともでき、この場合にはレンズ
素材の表面近傍のみが溶融し、流動可能になった時点で
成形機内に金型を移し、圧縮成形をおこなうなど、一般
の圧縮成形に用いられているプレヒート等をおこなうこ
とは有用である。また、圧縮圧をかけ始めると同時に金
型の冷却を始める。
In the compression molding of the present invention, even though the lens shape is a product with uneven thickness, the thickness of the part that can be melted and fluidized is constant throughout the lens, making it seem like a product with a constant thickness. The molding is done as if it were molded. In addition, the heating for melting the lens material can be done in advance outside the molding machine. In this case, only the near surface of the lens material is melted, and when it becomes flowable, the metal is added inside the molding machine. It is useful to perform preheating, etc. used in general compression molding, such as by transferring the mold and performing compression molding. Also, at the same time as compression pressure starts to be applied, cooling of the mold begins.

以下、上記した圧縮成形工程について図面を用いて更に
詳しく説明する。第1図〜第3図は、圧縮成形工程を3
段階に区分して、その概略を示した図である。すなわち
第1図は前工程で切削したレンズ素材のセットの段階、
第2図は加圧、冷却の段階、第3図は製品取り出しの段
階を説明するための図である。
Hereinafter, the above-described compression molding process will be explained in more detail using the drawings. Figures 1 to 3 show the compression molding process in 3
It is a diagram showing an outline of the process divided into stages. In other words, Figure 1 shows the stage of setting the lens material cut in the previous process.
FIG. 2 is a diagram for explaining the pressurization and cooling stages, and FIG. 3 is a diagram for explaining the product removal stage.

才ず第1図において、前工程でIC旋盤により切削した
レンズ素材2を、金型を開いた状態で型板1および3に
組みこまれたコア6.70間にセノ)する。この場合、
金型は、温度を調整するための金型温調用媒体通り穴1
1に温調用媒体(通常は油)を流すことにより、一定温
度に加熱しておく。
In FIG. 1, the lens material 2 cut by an IC lathe in the previous step is placed between the cores 6 and 70 assembled in the templates 1 and 3 with the mold open. in this case,
The mold has a mold temperature control medium passage hole 1 to adjust the temperature.
Heat it to a constant temperature by flowing a temperature regulating medium (usually oil) through 1.

次に、図示していない装置により第2図に示すように金
型を閉じる。ただし、金型は閉じている7 だけで金型にはほとんど力が加わらないようにする。こ
の状態のit、レンズ素材2の表面近傍のみが溶融し流
動可能になるまで放置する。その後、図示していない装
置により金型に大きな圧力をかけ圧縮成形を行なう。そ
の際、圧縮圧力をかけ始めると同時に金型温調用媒体通
り穴11に流していた温調用媒体の循環を止め、金型冷
却用媒体通り穴12に冷却用媒体(油、水など)を流す
ことにより金型の冷却を始める。
Next, the mold is closed as shown in FIG. 2 using a device not shown. However, since the mold is closed, almost no force should be applied to the mold. It is left in this state until only the vicinity of the surface of the lens material 2 melts and becomes fluid. Thereafter, compression molding is performed by applying a large pressure to the mold using a device (not shown). At that time, at the same time as starting to apply compression pressure, the circulation of the temperature regulating medium that was flowing through the mold temperature regulating medium passage hole 11 is stopped, and the cooling medium (oil, water, etc.) is allowed to flow through the mold cooling medium passage hole 12. This will start cooling the mold.

成形品を取り出せる温度に達した後、第3図に示すよう
に、金型を開き、図示していない装置によりエジェクタ
プレート5.エジェクタスリーブ(またはエジェクタピ
ン)4を作動させて、最終のプラスチックレンズ2′を
取り出す。
After reaching a temperature at which the molded product can be taken out, the mold is opened as shown in FIG. 3, and an ejector plate 5. The ejector sleeve (or ejector pin) 4 is activated to eject the final plastic lens 2'.

以下、本発明の実施例について述べる。Examples of the present invention will be described below.

直径100Mの両凸レンズで、一方の球面の半径が10
0111m s もう一方の球面の半径が200 mm
 %こげ厚が3rr1m、中心厚が22.75 fiの
プラスチックレンズを得るため、1ず等厚平板のレンズ
素材を塊状重合により作成した。その方法は、直径11
01H1の平らなガラス型を2個準備し、この2個の型
の間にこげ厚が2!4mtnに々るようにガスケットを
はさみ、その中にメチルメタクリレートを予備重合させ
た半重合物を流しこみ、60’Cで40時間、その後1
10’Cで5時間塊状重合させ、その後冷却離型して厚
さ24mmの等厚平板のプラスチックレンズ累月を得た
。このレンズ素材を旋盤により切削し、一方の球面の半
径100mm、もう一方の球面の半径200g、こげ厚
3mm5中心厚が22.8fi、直径1 oollll
llの凸レンズ素材を得た。このレンズ素材の球面の表
面粗さは約30μmであった。一方図面に示すような圧
縮成形用金型のコアとして直径100m1ll、球面の
半径100 mmの凹のコアと、直径100 mm、球
面の半径200胴の凹のコアを準備し金型に組みこんだ
後、この金型を150’Cに加熱しておいた。その後、
この金型を開き、切削工程で得られたプラスチックレン
ズ素材をコア面にセットし、次に金型を閉じ、レンズ素
材の表面近傍のみが溶融し流動可能に々る1で20秒間
待った。その後、圧縮圧50kg/crllを10分間
かけた。また圧縮圧をかけ始めると同時に金型の冷却を
始めた。圧縮圧をきった後、金型を開き所望のプラスチ
ックレンズを得た。
A biconvex lens with a diameter of 100M, and the radius of one spherical surface is 10
0111m s The radius of the other sphere is 200 mm
In order to obtain a plastic lens with a percent burnt thickness of 3rr1 m and a center thickness of 22.75 fi, first, uniformly thick flat plate lens materials were prepared by bulk polymerization. The method is to
Prepare two flat glass molds of 01H1, sandwich a gasket between the two molds so that the burnt thickness is 2!4 mtn, and pour the semi-polymerized material prepolymerized with methyl methacrylate into the molds. 40 hours at 60'C, then 1
Bulk polymerization was carried out at 10'C for 5 hours, and then cooled and released from the mold to obtain a flat plate of plastic lenses having a thickness of 24 mm. This lens material is cut using a lathe, and one spherical surface has a radius of 100 mm, the other spherical surface has a radius of 200 g, a scorch thickness of 3 mm, a center thickness of 22.8 fi, and a diameter of 1 oollll.
ll convex lens material was obtained. The spherical surface roughness of this lens material was approximately 30 μm. On the other hand, as shown in the drawing, a concave core with a diameter of 100 ml and a spherical radius of 100 mm and a concave core with a diameter of 100 mm and a spherical radius of 200 mm were prepared and assembled into the mold. Afterwards, this mold was heated to 150'C. after that,
This mold was opened, and the plastic lens material obtained in the cutting process was set on the core surface, then the mold was closed, and only the vicinity of the surface of the lens material was melted and allowed to flow for 20 seconds. Thereafter, a compression pressure of 50 kg/crll was applied for 10 minutes. At the same time as applying compression pressure, cooling of the mold began. After the compression pressure was released, the mold was opened to obtain the desired plastic lens.

得られたプラスチックレンズについて、三次元測定機に
よって形状測定をおこなった結果、球面の半径1oom
m、200mmの両面とも理論値からのバラツキは13
μm以内であった。捷た偏光板によって光学歪を観察し
たところ、はとんど歪は認められなかった。
As a result of measuring the shape of the obtained plastic lens using a coordinate measuring machine, the radius of the spherical surface was 1 oom.
The variation from the theoretical value on both sides of m and 200 mm is 13
It was within μm. When optical distortion was observed using the cut polarizing plate, almost no distortion was observed.

以上述べてきたように、本発明は注型成形用型内にて塊
状重合によりプラスチックレンズ素材ヲ作り、それを所
定の形状に旋盤により切削し、最後に所定の形状をもつ
圧縮成形用金型内に入れ、レンズ素材の表面近傍のみが
溶融し流動可能に々った時点で圧縮成形をおこなうこと
により、従来の方法では得られなかった大口径でかつ偏
肉のあるプラスチックレンズの提供を可能としたもので
あり、その産業上の価値は犬なるものがある。なお、本
発明において圧縮成形の後、表面の硬化のための処理や
反射防止用コーティング等の周知の0 処理を施してもよいことは言う1でもない。
As described above, the present invention involves producing a plastic lens material by bulk polymerization in a casting mold, cutting it into a predetermined shape using a lathe, and finally producing a compression molding mold having a predetermined shape. By compressing and molding the lens material when only the surface near the surface has melted and can flow, it is possible to provide plastic lenses with large diameters and uneven thickness that could not be obtained with conventional methods. It is said that its industrial value is significant. It should be noted that, in the present invention, after compression molding, well-known zero treatments such as surface hardening treatment and anti-reflection coating may be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は本発明における圧縮成形の各
工程を説明するための図である。 1.3・・・・・・型板、2・・・・・・レンズ累月、
2′・・・・・最終のプラスチックレンズ、4・・・・
・エジェクタスリーブ(エジェクタビン)、6・・・・
・エジェクタプレート、6,7・・・・・・コア、11
・・・・・・金型温調用媒体通り穴、12・・・・・・
金型冷却用媒体通り穴。
FIG. 1, FIG. 2, and FIG. 3 are diagrams for explaining each step of compression molding in the present invention. 1.3... template, 2... lens cumulative moon,
2'...Final plastic lens, 4...
・Ejector sleeve (ejector bin), 6...
・Ejector plate, 6, 7... Core, 11
...Mold temperature control medium passage hole, 12...
Mold cooling medium passage hole.

Claims (1)

【特許請求の範囲】[Claims] 注型成形用の型内に、単量体、半重合物または単量体と
重合体の混合物を流しこみ、塊状重合させてプラスチッ
クレンズ素材を作り、これを゛旋盤によシ所定の形状に
切削し、その後、所定の形状をもつ圧縮成形用金型内に
入れ、レンズ素材の表面近傍のみが溶融し流動可能にな
った時点で圧縮成形を行なうことを特徴とするプラスチ
ックレンズの製造方法。
A monomer, a semi-polymer, or a mixture of a monomer and a polymer is poured into a mold for cast molding, polymerized in bulk to create a plastic lens material, and then turned into a predetermined shape using a lathe. A method for manufacturing a plastic lens, which comprises cutting the lens material, placing it in a compression molding mold having a predetermined shape, and performing compression molding when only the vicinity of the surface of the lens material melts and becomes flowable.
JP14852081A 1981-09-18 1981-09-18 Manufacture of plastic lens Granted JPS5849220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14852081A JPS5849220A (en) 1981-09-18 1981-09-18 Manufacture of plastic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14852081A JPS5849220A (en) 1981-09-18 1981-09-18 Manufacture of plastic lens

Publications (2)

Publication Number Publication Date
JPS5849220A true JPS5849220A (en) 1983-03-23
JPH0159100B2 JPH0159100B2 (en) 1989-12-14

Family

ID=15454607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14852081A Granted JPS5849220A (en) 1981-09-18 1981-09-18 Manufacture of plastic lens

Country Status (1)

Country Link
JP (1) JPS5849220A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196855A (en) * 1975-02-20 1976-08-25 PURASUCHITSUKURENZUNO SEIZOHO
JPS5325445A (en) * 1976-07-12 1978-03-09 American Optical Corp Method of producing thermoplastic resin spectacles lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196855A (en) * 1975-02-20 1976-08-25 PURASUCHITSUKURENZUNO SEIZOHO
JPS5325445A (en) * 1976-07-12 1978-03-09 American Optical Corp Method of producing thermoplastic resin spectacles lens

Also Published As

Publication number Publication date
JPH0159100B2 (en) 1989-12-14

Similar Documents

Publication Publication Date Title
KR100883456B1 (en) Plastic glass
IL145042A (en) Compression molding of optical lenses
JP3267073B2 (en) Method of molding optical element and molded optical element
US6440335B1 (en) Process for molding thermoplastic lenses and, steeply curved and/or thin lenses produced thereby
JP2002539985A (en) Casting method for producing thin thermoplastic lenses
US2319014A (en) Method of molding
JP2574360B2 (en) Plastic lens molding method and apparatus
US2409958A (en) Method of molding prisms
JPH0134132B2 (en)
US6390621B1 (en) Manufacturing of positive power ophthalmic lenses
JPH03502908A (en) Disposable optical mold manufacturing method and device
JPS6119409B2 (en)
JPS5849220A (en) Manufacture of plastic lens
JPH0354608B2 (en)
JPS6223723A (en) Process for injection and compression molding
JPH0139337B2 (en)
JPS5939526A (en) Production of plastic lens
JPS5849218A (en) Manufacture of plastic lens
JPS61100420A (en) Manufacture of plastic lens
JPS6119327A (en) Injection compression molding method and device thereof
JPH0218021A (en) Forming core and temperature controlling method thereof
JPS62292636A (en) Molding method for glass lens
JPS60132719A (en) Preparation of plastic lens
JPH0372016B2 (en)
Galic et al. Improved plastic molding technology for ophthalmic lens and contact lens