JPS5939526A - Production of plastic lens - Google Patents
Production of plastic lensInfo
- Publication number
- JPS5939526A JPS5939526A JP57150006A JP15000682A JPS5939526A JP S5939526 A JPS5939526 A JP S5939526A JP 57150006 A JP57150006 A JP 57150006A JP 15000682 A JP15000682 A JP 15000682A JP S5939526 A JPS5939526 A JP S5939526A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- polymerization
- blank
- plastic
- lens blank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00865—Applying coatings; tinting; colouring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C31/00—Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/14—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ophthalmology & Optometry (AREA)
- Mechanical Engineering (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、ビデオカメラレンズなどの比較的大形のレン
ズのプラスチック化に好適なプラスチックレンズの製造
方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of manufacturing a plastic lens suitable for making relatively large lenses such as video camera lenses into plastic.
近年、ビデオカメラの普及とともに、ズームレンズなど
の光学装置の軽量化、低廉化が大いに望まれ、そのため
の一つの解決策として、プラスチックレンズが使用され
るようになってきた。In recent years, with the spread of video cameras, there has been a great desire for optical devices such as zoom lenses to be lighter and less expensive, and plastic lenses have come to be used as one solution to this.
従来、プラスチックレンズは、モノマあ・るいはオリゴ
マなどの流動性プラスチック材料を鋳型内に注入し、熱
、放射線などにより重合する、いわゆる注型成形法、ま
たは、熱可塑性重合体を熱融溶して賦形する射出成形法
、圧縮成形法などにより成形されていた。しかしながら
、これらの成形方法は、次のような欠点を有しており、
特に、大型のプラスチックレンズを成形するには不適当
である。Traditionally, plastic lenses have been manufactured using the so-called cast molding method, in which a fluid plastic material such as a monomer or oligomer is injected into a mold and polymerized using heat, radiation, etc., or by heat-melting a thermoplastic polymer. They were molded using injection molding methods, compression molding methods, etc. However, these molding methods have the following drawbacks:
In particular, it is unsuitable for molding large plastic lenses.
すなわち、注型成形法では、メガネレンズなどの比較的
肉厚変化が少ないレンズを成形する場合には、内部歪み
などの光学欠陥が少ないレンズが得られるが、その反面
重合に時間がかかって生産性が劣り、また、極端な肉厚
差があるパワーの大きなレンズを成形する場合には、重
合による収縮を補償しきれなくて高精度のレンズを得る
ことができなかった。射出成形法は、生産性が高いが、
材料の流動、冷却固化に起因する光学歪みの発生や成形
収縮によるヒケの発生などがあり、良質、高精度のレン
ズが得られなかった。比較的高ネ17度のレンズが形成
できると言われる圧縮成形においても、賦形時に、溶融
または流動温度まで材料を昇温させた後冷却固化させる
ために、冷却時に温度の不均一が生じ、レンズ自体にソ
リが発生したり、熱収縮の不均一が発生して、この結果
、高精度のレンズを形成することができなかった。In other words, the cast molding method can produce lenses with fewer optical defects such as internal distortion when molding lenses with relatively little change in wall thickness, such as eyeglass lenses, but on the other hand, it takes time to polymerize, making production difficult. When molding a lens of high power with poor properties and extreme differences in wall thickness, shrinkage due to polymerization cannot be fully compensated for, making it impossible to obtain a lens with high precision. The injection molding method has high productivity, but
Optical distortion occurred due to material flow and cooling and solidification, and sink marks occurred due to molding shrinkage, making it impossible to obtain high-quality, high-precision lenses. Even in compression molding, which is said to be able to form lenses with a relatively high angle of 17 degrees, temperature non-uniformity occurs during cooling because the material is heated to a melting or flowing temperature and then cooled and solidified during shaping. Warpage or non-uniform thermal contraction occurred in the lens itself, and as a result, it was not possible to form a lens with high precision.
これらの欠点を除くために、たとえば、注型成形法にお
いて、重合反応速度を高めるために、放射線による重合
を取り入れる方法が提案されているが、放射線を利用す
るものであるから、作業の安全性に間項がある。In order to eliminate these drawbacks, for example, methods have been proposed that incorporate radiation polymerization in order to increase the polymerization reaction rate in the cast molding method, but since radiation is used, work safety is a concern. There is an interval in.
本発明の目的は、上記従来技術の欠点を除き、レンズ精
度な高め、光学歪みの発生を防止することができ、生産
性に優れたプラスチックレンズの製造方法を提供するに
ある。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a plastic lens that eliminates the drawbacks of the above-mentioned prior art, improves lens precision, prevents optical distortion, and has excellent productivity.
この目的を÷4成するために、本発明は、光学歪みのな
い概略所望形状のレンズブランクの表面に、該レンズブ
ランクを形成する同じ材料による薄い層を形成し、該層
を重合せしめて所望形状のレンズを成形し、該層の微小
な重合収縮量によりレンズ精度を高め、かつ、重合反応
時間を短縮することができるようにした点を特徴とする
。In order to achieve this objective, the present invention forms a thin layer of the same material that forms the lens blank on the surface of a lens blank having an approximately desired shape without optical distortion, and overlaps the layers to obtain the desired shape. The present invention is characterized in that it is possible to mold a lens of the same shape, improve the lens precision by the minute amount of polymerization shrinkage of the layer, and shorten the polymerization reaction time.
以下、本発明の実施例を図面について説明する。 Embodiments of the present invention will be described below with reference to the drawings.
先づ、ポリメチルメタクリレートのようなレンズ材料に
より概略形状品を射出成形する。前述したように、射出
成形したプラスチックレンズは、高址率に作製できる反
面、重合体の流動に起因した光学歪(複屈折、脈理だと
)が発生しやすい。いわゆる、焼なましくアニール)に
よりこれらの欠陥を除去する。ポリメチルメタクリレー
トの場合、80℃で4時間のアニールを行なう。しかし
、射出成形で賦課された形状は、アニールにより変形す
る。First, a generally shaped article is injection molded from a lens material such as polymethyl methacrylate. As mentioned above, injection-molded plastic lenses can be manufactured with a high die strength, but on the other hand, optical distortion (birefringence, striae) due to the flow of the polymer is likely to occur. These defects are removed by so-called annealing. In the case of polymethyl methacrylate, annealing is performed at 80° C. for 4 hours. However, the shape imposed by injection molding is deformed by annealing.
第1図(a)は射出成形後のレンズを示し、ゲート1近
傍に内部歪みによる光学歪2を有する。第1図(b)は
かかるレンズをアニールした場合を示し、光学歪みは除
去されるが、変形している。変形量A、B、Cはレンズ
の形状、成形条件などにより異なるが、通常、夫々は数
10μm程度である。FIG. 1(a) shows the lens after injection molding, and has optical distortion 2 near the gate 1 due to internal distortion. FIG. 1(b) shows the case where such a lens is annealed, and the optical distortion is removed, but the lens is deformed. The amounts of deformation A, B, and C vary depending on the shape of the lens, molding conditions, etc., but each is usually about several tens of μm.
第2図(a) 、 (b) j (C)は本発明による
プラスチックレンズの製造方法の各工程の概略を説明す
るための概略工程図であって、3はレンズブランク、4
はシロップ、5,5′は鋳型面、6,6′は鋳型、7は
プラスチックレンズ、8はキャビティである。2(a), (b) j (C) are schematic process diagrams for explaining the outline of each step of the method for manufacturing a plastic lens according to the present invention, 3 is a lens blank, 4 is a
is syrup, 5 and 5' are mold surfaces, 6 and 6' are molds, 7 is a plastic lens, and 8 is a cavity.
レンズブランク3は、上述のように、ポリメチルメタク
リレートの材料とし、射出成形、アニールの工程を経て
得られたもので、賦課形状は変形しているが、光学歪み
が除かれている。かかるレンズブランク3の外面に重合
開始剤を配合したメチルメタクリレートのシロップ4を
塗布し、レンズの仕上がり曲率の鋳型面5,5/を有す
る鋳型6゜6′に入れる(第2図(a))。次に、2つ
に分割さ□れた鋳型6,6′を閉じてレンズ形状のキャ
ビティ8を形成し、60°C〜80℃で鋳型6,6′を
加熱するととにより、シロップ4を重合させてレンズブ
ランク3と一体化する(第2図(b))。重合には4〜
10時間保温する。重合が終了すると、鋳型6,6′を
室温まで冷却し、夫々に分離してプラスチックレンズ7
を得る(第2図(C))。As described above, the lens blank 3 is made of polymethyl methacrylate and is obtained through injection molding and annealing processes, and although the imposed shape is deformed, optical distortion is eliminated. A syrup 4 of methyl methacrylate containing a polymerization initiator is applied to the outer surface of the lens blank 3, and the lens blank 3 is placed in a mold 6°6' having a mold surface 5, 5/ of the finished curvature of the lens (FIG. 2(a)). . Next, the molds 6, 6', which have been divided into two, are closed to form a lens-shaped cavity 8, and the molds 6, 6' are heated at 60°C to 80°C, thereby polymerizing the syrup 4. Then, it is integrated with the lens blank 3 (FIG. 2(b)). 4~ for polymerization
Keep warm for 10 hours. When the polymerization is completed, the molds 6 and 6' are cooled to room temperature and separated into plastic lenses 7.
(Figure 2 (C)).
シロップ4としては、過酸化ベンゾイルなどの重合開始
剤を添加したメチルメタクリレートモノマ、メチルメタ
クリレートのオリゴマ、あるいは、メチルメタクリレー
トモノマにポリメチルメタクリレートC重合体)を溶解
したものなどが用いられる。これらのシロップの重合収
縮率は、5〜10容積係であるが、シロップ4の厚みが
10〜100μm程度であれば、収縮量(厚み)は0.
2〜3μm程度であり光学特性上無視し得る量となる。As the syrup 4, a methyl methacrylate monomer to which a polymerization initiator such as benzoyl peroxide is added, a methyl methacrylate oligomer, or a solution of polymethyl methacrylate C polymer) in a methyl methacrylate monomer is used. The polymerization shrinkage rate of these syrups is 5 to 10 by volume, but if the thickness of the syrup 4 is about 10 to 100 μm, the amount of shrinkage (thickness) is 0.
It is about 2 to 3 μm, which is negligible in terms of optical properties.
ところで、加熱によって重合する場合、重合に長時間を
要するばかりでなく、レンズ面に気泡が入ることがあり
、特に重合が進むにつれて、レンズ外周部近傍でシロッ
プの不足(重合収縮によるためと考えられる)による欠
陥が出やすい。また、熱重合法による場合、レンズブラ
ンク自体も重合温度まで昇温するから、シロップの重合
完了後、室温まで降温する際、熱収縮量が小さくなく、
鋳型面5.5′の曲率を転写しきれない傾向がある。By the way, when polymerization is carried out by heating, not only does it take a long time to polymerize, but also bubbles may form on the lens surface, and as the polymerization progresses, there may be a shortage of syrup near the outer periphery of the lens (possibly due to polymerization shrinkage). ) defects are likely to occur. In addition, when using the thermal polymerization method, the temperature of the lens blank itself is raised to the polymerization temperature, so when the temperature is lowered to room temperature after the polymerization of the syrup is completed, the amount of thermal shrinkage is not small.
There is a tendency that the curvature of the mold surface 5.5' cannot be completely transferred.
これらの傾向の大半は、シロップを熱重合ではなく、紫
外線重合することにより解決される。即ち、第2図(a
) 、 (b) 、 (C)において、鋳型6,6/を
、ケイ酸塩ガラスまたはFe2O,の含有量が0.01
重量%以下のソーダ石灰ガラスなどの紫外線透過性ガラ
スで形成し、シロップ4として、ベンゾフェノン。Most of these trends are overcome by UV polymerizing the syrup rather than thermally polymerizing it. That is, Fig. 2 (a
), (b), (C), the mold 6,6/ is made of silicate glass or Fe2O, with a content of 0.01
4% by weight of benzophenone as a syrup formed with a UV-transparent glass such as soda-lime glass.
ベンズアルデヒドなどの増感剤を添加して紫外線重合性
を向上した材料を用い、重合時、鋳型6゜6′の外部よ
り紫外線を照射することにより、1合時間を数10秒〜
数分に、しかも、温度上昇をわずかに抑えることができ
る。しかし、紫外線重合法を用いても、前述したレンズ
面、特に外周部の気泡発生を完全に抑えることは出来な
い。By using a material that has improved UV polymerizability by adding a sensitizer such as benzaldehyde, and irradiating UV rays from outside the mold 6°6' during polymerization, the polymerization time can be increased from several tens of seconds to a few seconds.
It only takes a few minutes, and the temperature rise can be suppressed slightly. However, even if the ultraviolet polymerization method is used, it is not possible to completely suppress the generation of bubbles on the lens surface, especially on the outer periphery.
第3図は本発明によるプラスチックレンズの製造方法の
一実施例を示す重合用鋳型の断面図であって、6a、6
a’は外面、9,9’は架体、 10 、11は連通管
、1σ、 11は流路、 12 、13はバルブ、14
はパーティング面、15はOリングであり、第2図に対
応する部分には同一符号をつけている。FIG. 3 is a cross-sectional view of a polymerization mold showing an embodiment of the method for manufacturing a plastic lens according to the present invention, 6a, 6
a' is the outer surface, 9, 9' are the frame, 10, 11 are the communicating pipes, 1σ, 11 is the flow path, 12, 13 are the valves, 14
1 is a parting surface, 15 is an O-ring, and parts corresponding to those in FIG. 2 are given the same reference numerals.
前記した手法により作製したレンズブランク3を架体9
.ヴに保持され、紫外線透過性ガラスでできたレンズ面
形状を有する鋳型6.6′により形成された最終レンズ
形状のキャビティ8に入れ、脱泡したシロップを入れた
タンク(図示せず)に連通管10を通じて接を、売され
た流路1σの途中に設けられたバルブ12を閉じ、真空
ポンプ(図示せず)に連通管11を通じてキャピテイ8
中の空気を排気する流路IYの途中に設けられたバルブ
13を開き、キャビティ8内を減圧状態にする。その後
、バルブ13を閉じ、バルブ12を開くことにより、シ
ロップ4がキャビティ8内に吸入される。この時、必要
に応じてシロップを入れたタンクを加圧し、加圧注入し
ても良い。キャビティ8内に形成されたレンズブランク
3と鋳型面とのギャップに、シロップ4が完全に充填さ
れたら、バルブ12を閉じ、紫外線透過性鋳型6,6/
の外面6a、6a’側から、水銀灯(図示せず)などに
より、紫外線を照射する。レンズブランク3と鋳型面と
の間に充填されたシロップ40重合が終了したら、鋳型
6,6′を架体9.γと伴にパーティング面14より分
割し、最終レンズを得る。The lens blank 3 produced by the method described above is placed on a frame 9.
.. The final lens-shaped cavity 8 formed by the mold 6.6', which has a lens surface shape made of UV-transparent glass, is held in the mold and communicates with a tank (not shown) containing defoamed syrup. A valve 12 provided in the middle of the flow path 1σ is closed, and a vacuum pump (not shown) is connected to the cavity 8 through a communicating pipe 11.
The valve 13 provided in the middle of the flow path IY for exhausting the air inside is opened to bring the inside of the cavity 8 into a reduced pressure state. Thereafter, the syrup 4 is sucked into the cavity 8 by closing the valve 13 and opening the valve 12. At this time, if necessary, the tank containing the syrup may be pressurized and the syrup may be injected under pressure. When the gap between the lens blank 3 and the mold surface formed in the cavity 8 is completely filled with the syrup 4, the valve 12 is closed and the ultraviolet transparent mold 6, 6/
Ultraviolet rays are irradiated from the outer surfaces 6a and 6a' using a mercury lamp (not shown) or the like. After the polymerization of the syrup 40 filled between the lens blank 3 and the mold surface is completed, the molds 6, 6' are placed on the frame 9. The lens is divided along with γ from the parting surface 14 to obtain the final lens.
この実施例において、鋳型6,6′と架体9,9′相互
間を気密嵌合する必要があり、そのためには、0リング
15を要所に入れる。また、紫外線重合に使用する水銀
灯は、紫外線と共に熱も発生して鋳型6,6′が昇温す
る傾向にあるので、必要に応じて架体9,9′に冷却水
流路を設ける。In this embodiment, it is necessary to provide an airtight fit between the molds 6, 6' and the frames 9, 9', and for this purpose, O-rings 15 are inserted at key points. Further, since the mercury lamp used for ultraviolet polymerization generates heat as well as ultraviolet rays, which tends to raise the temperature of the molds 6 and 6', cooling water passages are provided in the frames 9 and 9' as necessary.
次に、材料について説明する。プラスチックレンズに最
も大量に使用されるポリメチルメタクリレート(共重合
体を含む)を中心に述べる。射出成形用ポリメチルメタ
クリレートは、通常、平均分子量が10〜15万であり
、その屈折率は、20’C。Next, materials will be explained. This article will focus on polymethyl methacrylate (including copolymers), which is used in the largest quantities in plastic lenses. Polymethyl methacrylate for injection molding usually has an average molecular weight of 100,000 to 150,000 and a refractive index of 20'C.
D線での測定値が、1.4913である。一方、増感剤
としてベンゾインを0.1 、0.2および0.3重量
パーセント添加したメチルメタクリレートに中高圧水銀
灯(3kW )を10鋼の距離から照射して重合してな
るポリマは、分子量が70〜100万であるが、屈折率
は、射出成形用との差が0.0004以内であり、本発
明によるプラスチックレンズで光学的に欠陥が発生する
ことはない。シロップとしては、モノマ単独、オリゴマ
、モノマにポリマを溶解したものでも良く、要は、流動
性を維持し、重合終了時にレンズブランクの屈折率と同
一になるものであれば特に規制するものでない。増感剤
としては、ベンゾフェノン、ペンザンスロン、ベンツア
ルデヒド、フェナスラキノンなどが利用できる。プラス
チックレンズとして、フリントグラス的に使用されるポ
リスチレンについても同様である。ただし、市販の試薬
スチレンでは、重合時間が長くかかる。The measured value at line D is 1.4913. On the other hand, polymers obtained by polymerizing methyl methacrylate to which 0.1, 0.2, and 0.3 weight percent of benzoin as a sensitizer has been added are irradiated with a medium-high pressure mercury lamp (3 kW) from a distance of 10 steel, and the molecular weight is 700,000 to 1,000,000, but the difference in refractive index from that for injection molding is within 0.0004, and no optical defects occur in the plastic lens according to the present invention. The syrup may be a monomer alone, an oligomer, or a monomer with a polymer dissolved therein, and there are no particular restrictions as long as it maintains fluidity and has the same refractive index as the lens blank upon completion of polymerization. As the sensitizer, benzophenone, penzanthrone, benzaldehyde, fenathraquinone, etc. can be used. The same applies to polystyrene used as a flint glass as a plastic lens. However, the commercially available reagent styrene takes a long time to polymerize.
これは、重合禁止剤が添加されているためと考えられる
。減圧蒸留したスチレンを使用すれば、そのようなこと
はない。また、紫外線による重合を行なわせるものであ
ろから、熱重合に比べて重合反応速度が高まる。This is thought to be due to the addition of a polymerization inhibitor. If you use styrene that has been distilled under reduced pressure, this will not happen. Furthermore, since the polymerization is carried out using ultraviolet rays, the polymerization reaction rate is higher than that of thermal polymerization.
この実施例では、両凸レンズを示したが、両凹、凹凸な
ど形状はIvFK規制されるものでないことは、言うま
でもない。本発明は、射出成形ではウエルドラインが避
は得ない極端な肉厚変化がある凹レンズにあってもウェ
ルドラインを無くすことができる。In this embodiment, a biconvex lens is shown, but it goes without saying that the shape of the lens, such as biconcave or uneven, is not subject to IvFK regulations. The present invention can eliminate weld lines even in concave lenses with extreme thickness changes that are unavoidable in injection molding.
上記説明したように、本発明によれば、プラスチックレ
ンズを高精度で光学歪みなく成形することができ、生産
性が向上して、従来技術にない優れた機能のプラスチッ
クレンズの製造方法を提供することができる。As explained above, according to the present invention, a plastic lens can be molded with high precision and without optical distortion, productivity is improved, and a method for manufacturing a plastic lens with excellent functions not available in the prior art is provided. be able to.
第1図(a)は射出成形後のレンズの光学歪みを示す説
明図、第1図(b)は射出成形されたレンズのアニール
後の変形を示す説明図、第2図は本発明によるプラスチ
ックレンズの製造方法の各工程の概略を説明するための
概略工程図、第3図は本発明によるプラスチックレンズ
の製造方法の一実施例を示す重合用鋳型の断面である。
3・・・・・・レンズブランク、4・旧・・シロップ、
5゜5′・・・・・・祷型面、 6 、6’・・・・・
・鋳型、18・・・・・・キャビティ。
才1図
((1) ’
(b)す2図FIG. 1(a) is an explanatory diagram showing the optical distortion of the lens after injection molding, FIG. 1(b) is an explanatory diagram showing the deformation of the injection molded lens after annealing, and FIG. 2 is an explanatory diagram showing the deformation of the injection molded lens after annealing. FIG. 3 is a schematic process diagram for explaining the outline of each step of the method for manufacturing a lens, and is a cross section of a polymerization mold showing an embodiment of the method for manufacturing a plastic lens according to the present invention. 3...Lens blank, 4.Old...Syrup,
5゜5'... prayer-shaped surface, 6, 6'...
・Mold, 18...Cavity. Sai 1 figure ((1) '
(b) Figure 2
Claims (1)
ックレンズの製造方法において、光学歪みが除゛かれ概
略所望形状のレンズブランクを該所望形状のギャビティ
に挿入し、該レンズブランクと鋳型によって形成した該
ギャビティの鋳型面との間の空隙に、該レンズブランク
を形成する前記プラスチック材料の流動体層を形成して
紫外線照射し、該流動体層を重合せしめてなることを特
徴とするプラスチックレンズの製造方法。In a method for manufacturing a plastic lens using a plastic material that is polymerized by ultraviolet rays, a lens blank with optical distortion removed and having an approximately desired shape is inserted into a gap of the desired shape, and a mold surface of the gap formed by the lens blank and a mold is inserted. A method for manufacturing a plastic lens, comprising forming a fluid layer of the plastic material forming the lens blank in the gap between the lenses, irradiating the lens blank with ultraviolet rays, and superposing the fluid layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57150006A JPS5939526A (en) | 1982-08-31 | 1982-08-31 | Production of plastic lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57150006A JPS5939526A (en) | 1982-08-31 | 1982-08-31 | Production of plastic lens |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3348396A Division JPH07309B2 (en) | 1991-12-05 | 1991-12-05 | Plastic lens and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5939526A true JPS5939526A (en) | 1984-03-03 |
JPH033570B2 JPH033570B2 (en) | 1991-01-18 |
Family
ID=15487406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57150006A Granted JPS5939526A (en) | 1982-08-31 | 1982-08-31 | Production of plastic lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5939526A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61177215A (en) * | 1985-02-02 | 1986-08-08 | Mitsubishi Electric Corp | Manufacture of fresnel lens |
JPH01171932A (en) * | 1987-12-28 | 1989-07-06 | Pioneer Electron Corp | Manufacture of aspherical lens |
US4919850A (en) * | 1988-05-06 | 1990-04-24 | Blum Ronald D | Method for curing plastic lenses |
WO1991008104A1 (en) * | 1989-12-05 | 1991-06-13 | Vision Science, Inc. | Method for forming plastic optical quality spectacle |
US5219497A (en) * | 1987-10-30 | 1993-06-15 | Innotech, Inc. | Method for manufacturing lenses using thin coatings |
US5470892A (en) * | 1992-05-01 | 1995-11-28 | Innotech, Inc. | Polymerizable resin for forming clear, hard plastics |
-
1982
- 1982-08-31 JP JP57150006A patent/JPS5939526A/en active Granted
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61177215A (en) * | 1985-02-02 | 1986-08-08 | Mitsubishi Electric Corp | Manufacture of fresnel lens |
JPH0338091B2 (en) * | 1985-02-02 | 1991-06-07 | Mitsubishi Electric Corp | |
US5219497A (en) * | 1987-10-30 | 1993-06-15 | Innotech, Inc. | Method for manufacturing lenses using thin coatings |
JPH01171932A (en) * | 1987-12-28 | 1989-07-06 | Pioneer Electron Corp | Manufacture of aspherical lens |
US4919850A (en) * | 1988-05-06 | 1990-04-24 | Blum Ronald D | Method for curing plastic lenses |
WO1991008104A1 (en) * | 1989-12-05 | 1991-06-13 | Vision Science, Inc. | Method for forming plastic optical quality spectacle |
US5470892A (en) * | 1992-05-01 | 1995-11-28 | Innotech, Inc. | Polymerizable resin for forming clear, hard plastics |
Also Published As
Publication number | Publication date |
---|---|
JPH033570B2 (en) | 1991-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
IL103464A0 (en) | Method and apparatus for manufacturing lenses using thin coatings | |
JP2001191365A (en) | Resin thick-walled lens and its molding method | |
US2319014A (en) | Method of molding | |
JP2574360B2 (en) | Plastic lens molding method and apparatus | |
JPS5939526A (en) | Production of plastic lens | |
JPH0331124B2 (en) | ||
JPH07309B2 (en) | Plastic lens and manufacturing method thereof | |
US6390621B1 (en) | Manufacturing of positive power ophthalmic lenses | |
JPS6119409B2 (en) | ||
JPS6362373B2 (en) | ||
JPH0354608B2 (en) | ||
JPH0420854B2 (en) | ||
JPS61100420A (en) | Manufacture of plastic lens | |
US20140150498A1 (en) | Process for the precision moulding of glass manufactured articles with great sizes, in particular lenses | |
JPS59123632A (en) | Manufacture of plastic optical parts | |
JPH04193724A (en) | Manufacture of glass mold for molding plastic lens | |
JPH0139337B2 (en) | ||
JPH0139336B2 (en) | ||
JPS6296328A (en) | Method of molding optical glass element | |
JPS60145920A (en) | Method for forming optical element | |
JPS59124819A (en) | Manufacture of plastic optical part | |
JP3124324B2 (en) | Method for producing thermoplastic resin molded article for optical use | |
JPH03284913A (en) | Manufacture of plastic lens and apparatus therefor | |
CN116040922A (en) | Method for forming lens | |
JPS5849220A (en) | Manufacture of plastic lens |