JPH0420854B2 - - Google Patents

Info

Publication number
JPH0420854B2
JPH0420854B2 JP58119176A JP11917683A JPH0420854B2 JP H0420854 B2 JPH0420854 B2 JP H0420854B2 JP 58119176 A JP58119176 A JP 58119176A JP 11917683 A JP11917683 A JP 11917683A JP H0420854 B2 JPH0420854 B2 JP H0420854B2
Authority
JP
Japan
Prior art keywords
mold
molding
optical
lens
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58119176A
Other languages
Japanese (ja)
Other versions
JPS609716A (en
Inventor
Kenzo Matsuzaka
Seitaro Okano
Nobuo Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11917683A priority Critical patent/JPS609716A/en
Publication of JPS609716A publication Critical patent/JPS609716A/en
Publication of JPH0420854B2 publication Critical patent/JPH0420854B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はレンズやプリズム等の光学素子の加圧
成形方法に関するものでさらに詳しく言えば、所
望の光学素子に対応する形状で高い面精度をもつ
型面を備えた一対の型の間に所定容量の光学素子
素材を置き該素材を加熱し、前記一対の型で加圧
成形し、レンズ・プリズム等の光学素子を得る方
法に関するものである。 従来、レンズやプリズムを生産するには素材を
ダイヤモンド砥石等によつて研削した後酸化セリ
ウム等によつて研磨する方法が採用されていた。
しかしこの方法では研削研磨に多大な労力と費用
がかかりまたその表面精度を保つ為に高度な熟練
技術が必要であつた。特に非球面レンズを製造す
ることはより一層の高度な技術が必要で、安価に
大量のレンズを生産することは非常に困難であつ
た。これらの問題を解決する為多くの研究が従来
行なわれて来たがその一つとして米国特許第
3833347号等では高精度の光学素子(例えばパワ
ーがニユートンリング6本以内不規則性が3本以
内)を成形する方法が開示されている。しかし、
従来その成形素材の形態についてはあまり注意が
はらわれておらず、成形時の“おれこみ”とよば
れる欠点を除く為素材の鋭角部をバレル研磨等で
落とし全体として丸味をおびたものに仕上げる程
度であつた。この為素材の表面に凹凸がある場
合、加圧成形された光学素子の表面にも微細な凹
凸部を生じる為、後加工なしにそのまま光学素子
として使用することは不可能であつた。 本発明は、光学素子素材を加圧成形するだけで
レンズ、プリズム等の光学素子として使用可能で
あり、表面欠陥がなく、光学的に満足な成形品を
得る方法を提供しようとするもので、その特徴と
する所は、 成形用型内に光学材料を挿入し、前記光学材料へ
の加熱・加圧作用によつて光学表面を成形する光
学素子の製造方法において、 前記光学素子の表面粗さをRnax0.02μm以下の
精度を得るために、 光学材料をあらかじめ加工した予備成形品の表
面を少なくともRnax0.01μm以下の表面粗さに保
ち、前記成形用型の表面粗さをRnax0.02μm以下
の精度に加工し、 前記予備成形品を前記成形用型内に挿入し加
熱・加圧作用による成形加工を行なうことを特徴
とする光学素子の製造方法にある。 更に本発明の他の目的はカメラ等の凸レンズ・
凹レンズ・球面レンズ・非球面レンズ等複数の形
状のレンズを数多く組み合わせてレンズ系を構成
する光学機器における前述各種レンズを同一精度
を保つて大量に生産可能な製造方法を提供するこ
とにある。更に本発明の他の目的は加熱・加圧作
用により成形加工したレンズの例えば歪除去等の
後処理加工を要することのない製造方法を提供す
る。従来の公知の加圧成形技術によれば、光学ガ
ラス材料を所定容積重量型内に挿入し、その後加
熱・加圧作用にて型内の前記材料が型表面に成形
されるのであるが、型内に挿入した光学材料の形
状形態が定まらず凸・凹・突出部、針状鋭角突起
等があると、加熱・加圧作用の過程でこれらの突
出部が材料の内側に押し下げられ、仕上げられた
レンズには境界面(層)を生じ、歪の発生や光の
透過率・レンズの屈折率等光学特性に影響を生じ
るものであるが、前述の目的はこれらの問題点を
排除することにある。 素材の表面欠陥を除去する一つの方法として
は、従来広く知られている様に、素材を研削・研
磨工程を経て表面欠陥を除去する。この際従来は
その表面精度(パワー・不規則性)も光学特性を
満足する様に考えられて来たが、本発明において
は表面精度について完成されたレンズ表面の仕上
精度ほどには考慮する必要はなく、ただ表面のキ
ズ・ヒビ割れ・突起・窪み等の表面欠陥のみを除
去すれば良い。 また別の方法として、素材を溶融し、例えばス
ズの様な溶融金属塩中に流し出し、冷却、固化さ
せ表面欠陥を除去する方法もある。 この様にして予め予備成形された素材を加圧成
形して光学素子を製造する。本発明の一実施例を
図によつて詳述する。 第1図は本発明による光学材料を予備成形した
予備成形材料を最終目標の凸レンズ・凹レンズ・
フレネル・非球面レンズ等に加熱・加圧成形する
成形装置の概略図を示す。 第2図A,Bは前記第1図に示した装置の型
(上型3,下型4)と予備成形材21を示し、第
2図Aは型3,4の間にキズ・ヒビ割れ・突起・
窪みを除去し所定の表面仕上精度(例えば前述し
たようにカメラ用レンズの場合には表面粗さ1/10
0μ以下の精度)に予備加工した予備成形材を挿
入した図(第2図A)と、第2図Aの状態から、
型4に圧力を加えて予備成形材21を最終目標の
レンズに成形する図(第2図B)である。 1は気密容器、2はそのふた、3は光学素子を
成形するための上型でその表面3aは光学素子の
機能面と同程度に仕上げられている。4はその下
型でその表面4aも同様に仕上げられている。8
はヒーター、9は加圧棒、10は加圧用シリンダ
ー、11は排気用油回転ポンプ、12,13,1
4,16,18はバルブを示す。 光学素子を成形する際、本発明が言う所の所定
容量の予め表面欠陥を除去した予備成形材21を
下型4の上に置き、上型3、上型おさえ5をセツ
トし、気密容器1のふた2を閉じ、水冷パイプ2
0に水を通して、ヒーター8に通電する。この時
バルブはすべて閉じている。尚、排気用油回転ポ
ンプは常に作動している。バルブ12を開け気密
容器内を排気し、真空度が10-2Torr以下になつ
たらバルブ12を閉じ、バルブ16を開いて、容
器内に不活性ガス(例えばN2ガス)を導入する。
これは高精度に仕上げられた型の表面の酸化を防
ぐ為である。光学素子が成形可能な温度に加熱さ
れたらシリンダー10を作動させ加圧棒9にて下
型4を押し、予備成形材21に圧力を加え加圧成
形を行なう。尚、図中下型4は胴型6と同質材料
で作られ精度良く嵌合して上下する。前記予備成
形材が所定形状に整形されたら温度を徐々に下げ
る。十分に冷却したら成形品を装置から取出し、
操作を終了する。 本発明における予備成形された素材の形状は第
2図Aに示した様に素材の表面21a、および2
1bの表面欠陥を除去した円板でも良いし、第3
図Aに示した様に素材の表面21aおよび21b
を予め成形される光学素子の形状に近似の曲率に
球面成形しておいても良い。特に第3図の様に厚
肉のレンズに対しては近似の曲率に仕上げておく
ことは成形品の精度を良くする為に有効である。 第3図のように予備成形材21Aを最終目標形
状のレンズ22Aに近い曲率に仕上げておくこと
は、該予備成形材21Aを型内に挿入し前述第1
図のシリンダ10・加圧棒9・下型4によつて予
備成形材21Aに圧力を加える際に、該予備成形
材21Aが型3,4の圧力で最終目標形状のレン
ズ22Aに変形する過程において、予備成形材2
1Aの変形時に特定表面例えば曲率の特に大きな
点に大きな圧力が作用しその点又は近辺に応力が
集中する応力集中原疾や、歪の発生を抑えること
に役立つものである。 この応力集中、歪の発生を抑えることにより従
来必要とされていた歪を除去する作業(アニーリ
ング作業)が不必要となり、更に、第3図の例の
場合には従来の加熱・加圧によるガラス材料成形
技術では中級機用レンズ・レンズ口径10φ〜20φ
ばかりでなく、一眼レフカメラ用の大口径レン
ズ・レンズ口径60φ前後の製作にも適用可能とな
つた点は本発明の大きな成果であつた。更に又、
前述したように予備成形材21Aを加熱加圧成形
後歪除去作業を必要としないことは、従来歪除去
作業のため加熱加圧成形後数時間乃至数10時間の
歪除去時間を要して製作工程にその分の配置工
程、工程作業時間の調整等により素材−加熱加圧
−成形−歪除去−完成の工程に多くの時間を費や
していたのが、第3図のように予備成形材の外表
面形状を最終目標形状のレンズ形状に近い曲率に
仕上げておくことにより成形工程後に歪除去工程
を経ることなく次の工程例えばレンズ鏡筒への組
み込み工程に送ることができ、材料からレンズ鏡
筒の完成までの組立−完成品工程までを大巾に短
縮することができ、その結果として、所謂、流れ
作業工程の自動化により不良品の除去、生産能率
の向上、生産工程の効率化等々合理化に多大の貢
献をなし得るものである。 本発明の効果をより明らかにする為に素材とし
て各種の表面欠陥を有する材料を本発明を実施す
る装置で成形し、予め表面欠陥を除去した素材を
使用した成形品と比較した。その結果を第1表お
よび第4図に示す。 本発明の実施に用いた光学素子素材は通称
SF14の光学ガラスを用いその形状は外径16.5mm、
中心厚2.5mmの平面板である。 上型3の表面3aを曲率20.5mmに光学加工した
又下型4の表面4aを曲率55.5mmに同様に光学加
工した。成形条件は570℃にて10Kg/cm2の圧力を
3分間加えた。 第1表において#1200・#600.#250等は日本
工業標準規格(JIS R 6001.JISによる微粉の粒
度分布による)による仕上精度を示し、RMAX
は最大表面粗さを示す。尚、第1表・第4図のブ
ランクとは前述の予備成形材を指称する。第1表
と第4図の対応は第1表のブランクでの表面粗
さの測定結果が第4図の左図のグラフを示し、
研磨品のブランクによる最終目標レンズ(曲率半
径20.5mm及び55.5mmのレンズ)の表面粗さの測定
グラフを第4図右図に示す。第4図の各グラフの
右端に示すようにブランクの仕上度合(RMAX)
によつて測定粗さのグラフ目盛のとり方が0.02μ
mから2μmに大きく異なつている。このことは、
ブランクの表面粗さをRMAX0.01μm以下にした
場合とRMAX7μm以下にした場合とでは成形品
の表面粗さの大きさの度合が全く異なることを意
味している。即ち、ブランクの表面粗さを
RMAX0.01μm以下にすると成形品の表面粗さは
RMAX0.02μm程度となり、この成形品のレンズ
はレンズ表面フレア・光量透過率等の各種の光学
特性因子の合格基準をパスすることができた。成
形品の表面粗さRMAX0.02μmは成形の型の仕上
粗さと同じ値であり、このことはブランクの表面
粗さをRMAX0.01μm以下にすると成形の型の表
面粗さが成形レンズの表面に忠実に再生されるこ
とを意味する。 仕上粒度#1200〜#250によるブランクの場合
には第1表及び第4図に示したように成形品のレ
ンズの表面粗さが0.11μm〜2μm以上となり、特
に第4図に示すようにA1〜A4,B1〜B3,C1〜C4
にて示す突起状の突出点を発生し、この突出点に
より光学特性例えば光量透過率が大きく低下し、
カメラ用レンズとして適さないものであつた。
尚、本実施例の場合の加圧力は前述の形状、外径
16.5mm・中心厚2.5mm・曲率半径20.5mm・55.5mmの
レンズを得るための前述シリンダーへの圧力が約
10Kg/cm2程度であつた。本実施例の場合型の表面
粗さは0.02μm、加圧力10Kgであつたが、レンズ
の光学特性の条件、レンズ形状の大小、曲率の大
小の条件に応じて前記設定条件は変えることはも
とより可能である。 前記実施例において型の仕上組さを更に高く
し、加圧力を大きくすれば成形品の仕上面はブラ
ンクの表面粗さを0.01μmに仕上げても成形後の
レンズはその表面粗さが0.01μm以下の高い精度
に成形されることは以上の結果から理解される。 以上のように本発明は成形用型内に光学材を挿
入し、前記光学材の加熱・加圧成形加工により前
記成形用型の型表面を型どつた光学表面を形成す
る光学素子成形方法において前記光学材を予備成
形加工して平板形状にし、その表面のキズ・ヒビ
割れ等の表面上の欠陥を除去し、その表面粗さを
ある程度まで予備加工した予備成形材とし、この
予備成形材を前記成形用型内に挿入して加熱・加
圧成形加工することを特徴とするものであり、本
発明による成形方法は成形用型にて成形後の後処
理・後加工工程を必要とせず、所望の光学的仕上
精度(表面粗さ)を得ることができ、更に本発明
は最終目標の仕上曲率、仕上粗さに仕上げられた
成形用型を用いるので、材料選定・加熱条件・加
圧条件を同一にすれば同一精度のレンズを生産効
率よく作ることができる。 更に実施例第3図に示したように予備成形材の
表面を最終目標形状に近い曲率に予備加工するこ
とにより、前述したように歪発生を抑えることが
でき、生産の合理化を遂行し得る効果を有してい
る。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure molding method for optical elements such as lenses and prisms. More specifically, the present invention relates to a method for pressure molding optical elements such as lenses and prisms. This invention relates to a method for obtaining optical elements such as lenses and prisms by placing a predetermined volume of optical element material between the molds, heating the material, and press-molding the material using the pair of molds. Conventionally, in order to produce lenses and prisms, a method has been adopted in which the material is ground with a diamond grindstone or the like, and then polished with cerium oxide or the like.
However, this method requires a great deal of labor and expense for grinding and polishing, and requires highly skilled techniques to maintain the surface precision. In particular, manufacturing aspherical lenses requires even more advanced technology, and it has been extremely difficult to produce large quantities of lenses at low cost. Many studies have been conducted to solve these problems, one of which is the U.S. Patent No.
No. 3,833,347 and the like disclose a method for molding a highly accurate optical element (for example, power is within 6 Newton rings and irregularity is within 3). but,
Traditionally, not much attention has been paid to the form of the molded material, and in order to eliminate the defect called "indentation" during molding, the sharp edges of the material are removed by barrel polishing, etc., resulting in a rounded overall shape. It was moderately hot. For this reason, if the surface of the material has irregularities, minute irregularities also occur on the surface of the pressure-molded optical element, making it impossible to use it as an optical element without post-processing. The present invention aims to provide a method for obtaining an optically satisfactory molded product that can be used as an optical element such as a lens or prism simply by press-molding an optical element material, and has no surface defects. Its characteristics are as follows: A method for manufacturing an optical element in which an optical material is inserted into a mold and an optical surface is formed by applying heat and pressure to the optical material, and the surface roughness of the optical element is In order to obtain an accuracy of R nax 0.02 μm or less, the surface of the preformed optical material processed in advance must have a surface roughness of at least R nax 0.01 μm or less, and the surface roughness of the mold should be R nax 0.02. The method of manufacturing an optical element is characterized in that the preform is processed to an accuracy of μm or less, and the preform is inserted into the mold and molded by heating and pressurizing. Furthermore, another object of the present invention is to provide a convex lens for cameras, etc.
It is an object of the present invention to provide a manufacturing method capable of mass producing various lenses while maintaining the same accuracy in an optical device in which a lens system is constructed by combining many lenses of a plurality of shapes such as concave lenses, spherical lenses, and aspheric lenses. Still another object of the present invention is to provide a manufacturing method that does not require post-processing such as distortion removal for lenses formed by heating and pressurizing. According to the conventional known pressure molding technology, an optical glass material is inserted into a mold with a predetermined volume and weight, and then the material in the mold is molded onto the mold surface by heating and pressurizing. If the shape of the optical material inserted inside is not determined and there are convexes, concave parts, protrusions, needle-like acute angle protrusions, etc., these protrusions will be pushed down inside the material during the heating and pressurizing process, and the finish will deteriorate. Boundary surfaces (layers) are created in lenses that have been modified, which can cause distortion and affect optical properties such as light transmittance and refractive index of the lens.The above-mentioned purpose is to eliminate these problems. be. One method of removing surface defects from a material is to remove surface defects by subjecting the material to a grinding and polishing process, as is widely known in the art. In this case, conventionally, the surface accuracy (power/irregularity) has been considered to satisfy the optical characteristics, but in the present invention, it is necessary to consider the surface accuracy as much as the finishing accuracy of the completed lens surface. Instead, you only need to remove surface defects such as scratches, cracks, protrusions, and depressions. Another method is to melt the material and pour it into a molten metal salt, such as tin, which is then cooled and solidified to remove surface defects. An optical element is manufactured by pressure-molding the preformed material in this way. An embodiment of the present invention will be described in detail with reference to the drawings. Figure 1 shows the final target convex lens, concave lens,
A schematic diagram of a molding device for heating and pressure molding Fresnel lenses, aspherical lenses, etc. is shown. Figures 2A and 2B show the molds (upper mold 3, lower mold 4) and preformed material 21 of the apparatus shown in Figure 1, and Figure 2A shows scratches and cracks between the molds 3 and 4. ·protrusion·
Removal of dents to achieve a specified surface finish accuracy (for example, as mentioned above, in the case of a camera lens, the surface roughness is 1/10)
From the diagram (Fig. 2 A) in which the preformed material preprocessed to an accuracy of 0μ or less is inserted, and the state of Fig. 2 A,
FIG. 2B is a diagram (FIG. 2B) in which the preformed material 21 is molded into the final target lens by applying pressure to the mold 4. 1 is an airtight container, 2 is a lid thereof, and 3 is an upper mold for molding an optical element, the surface 3a of which is finished to the same level as the functional surface of the optical element. 4 is the lower mold, and its surface 4a is similarly finished. 8
is a heater, 9 is a pressurizing rod, 10 is a pressurizing cylinder, 11 is an exhaust oil rotary pump, 12, 13, 1
4, 16, and 18 indicate valves. When molding an optical element, a preformed material 21 having a predetermined volume from which surface defects have been removed in advance as referred to in the present invention is placed on the lower mold 4, the upper mold 3 and the upper mold presser 5 are set, and the airtight container 1 is placed. Close the lid 2 and remove the water cooling pipe 2.
0 and energize the heater 8. At this time, all valves are closed. Note that the exhaust oil rotary pump is always in operation. The valve 12 is opened to evacuate the airtight container, and when the degree of vacuum becomes 10 -2 Torr or less, the valve 12 is closed and the valve 16 is opened to introduce an inert gas (for example, N 2 gas) into the container.
This is to prevent oxidation of the highly precisely finished surface of the mold. When the optical element is heated to a temperature at which it can be molded, the cylinder 10 is activated and the pressure rod 9 presses the lower mold 4 to apply pressure to the preformed material 21 to perform pressure molding. Note that the lower die 4 in the figure is made of the same material as the body die 6 and moves up and down while fitting with precision. Once the preformed material has been shaped into a predetermined shape, the temperature is gradually lowered. Once cooled sufficiently, remove the molded product from the equipment,
Finish the operation. The shape of the preformed material in the present invention is as shown in FIG. 2A.
It may be a disk with the surface defects of 1b removed, or a disk with the surface defects of 1b removed.
As shown in Figure A, the surfaces 21a and 21b of the material
may be formed into a spherical surface with a curvature approximating the shape of the optical element to be formed in advance. Particularly for thick lenses as shown in FIG. 3, it is effective to finish the lens to an approximate curvature in order to improve the precision of the molded product. As shown in FIG. 3, finishing the preformed material 21A with a curvature close to the final target shape of the lens 22A is achieved by inserting the preformed material 21A into the mold and
When pressure is applied to the preformed material 21A by the cylinder 10, pressure rod 9, and lower mold 4 shown in the figure, the process in which the preformed material 21A is transformed into the lens 22A having the final target shape by the pressure of the molds 3 and 4. In, preform material 2
When deforming 1A, a large pressure acts on a specific surface, for example, a point with a particularly large curvature, and this is useful for suppressing the stress concentration cause where stress is concentrated at or near that point, and the occurrence of distortion. By suppressing this stress concentration and the occurrence of strain, the work (annealing work) that was previously required to remove strain becomes unnecessary. In material molding technology, lenses for intermediate models/lens apertures of 10φ to 20φ
In addition, it is a great achievement of the present invention that it can be applied to the production of large-diameter lenses for single-lens reflex cameras, with lens apertures of around 60φ. Furthermore,
As mentioned above, the fact that the preformed material 21A does not require strain removal work after hot-pressing forming is because conventionally it takes several hours to several tens of hours to remove strain after hot-pressing forming. As shown in Figure 3, a lot of time was wasted in the process of material - heating and pressing - forming - distortion removal - completion due to placement steps and adjustment of process work time. By finishing the outer surface shape with a curvature close to the final target lens shape, it is possible to send it to the next process, for example, the process of assembling it into a lens barrel, without going through the distortion removal process after the molding process. It is possible to significantly shorten the assembly process from the completion of the tube to the finished product process, and as a result, automation of the so-called assembly line process eliminates defective products, improves production efficiency, streamlines the production process, etc. It can make a significant contribution to the In order to further clarify the effects of the present invention, materials having various surface defects were molded using an apparatus implementing the present invention, and compared with molded products using materials from which surface defects had been removed in advance. The results are shown in Table 1 and Figure 4. The optical element material used to carry out the present invention is commonly known as
Using SF14 optical glass, its shape is 16.5mm in outer diameter.
It is a flat plate with a center thickness of 2.5mm. The surface 3a of the upper mold 3 was optically processed to have a curvature of 20.5 mm, and the surface 4a of the lower mold 4 was similarly optically processed to have a curvature of 55.5 mm. The molding conditions were to apply a pressure of 10 kg/cm 2 for 3 minutes at 570°C. In Table 1, #1200, #600, #250, etc. indicate finishing accuracy according to Japanese Industrial Standards (JIS R 6001. Based on particle size distribution of fine powder according to JIS), and RMAX
indicates the maximum surface roughness. Incidentally, the blank in Table 1 and FIG. 4 refers to the above-mentioned preformed material. The correspondence between Table 1 and Figure 4 is that the surface roughness measurement results for the blank in Table 1 show the graph on the left in Figure 4, and
The measurement graph of the surface roughness of the final target lenses (lenses with curvature radii of 20.5 mm and 55.5 mm) using the polished blank is shown in the right figure of Figure 4. As shown on the right end of each graph in Figure 4, the degree of finishing of the blank (RMAX)
The graph scale of measured roughness is 0.02μ.
There is a large difference from m to 2 μm. This means that
This means that the degree of surface roughness of the molded product is completely different when the surface roughness of the blank is set to RMAX 0.01 μm or less and when it is set to RMAX 7 μm or less. In other words, the surface roughness of the blank is
If RMAX is set to 0.01μm or less, the surface roughness of the molded product will be
The RMAX was approximately 0.02 μm, and this molded lens was able to pass the acceptance criteria for various optical characteristic factors such as lens surface flare and light transmittance. The surface roughness of the molded product, RMAX 0.02μm, is the same value as the finish roughness of the molding die, and this means that if the surface roughness of the blank is RMAX0.01μm or less, the surface roughness of the molding mold will become the surface roughness of the molded lens. It means to be faithfully reproduced. In the case of a blank with a finishing grain size of #1200 to #250, the surface roughness of the lens of the molded product is 0.11 μm to 2 μm or more, as shown in Table 1 and Figure 4, and in particular, as shown in Figure 4, A 1 ~ A 4 , B 1 ~ B 3 , C 1 ~ C 4
A protruding point shown in is generated, and this protruding point greatly reduces optical properties such as light transmittance.
It was not suitable as a camera lens.
In addition, the pressing force in this example is based on the aforementioned shape and outer diameter.
The pressure on the cylinder mentioned above to obtain a lens of 16.5 mm, center thickness 2.5 mm, radius of curvature 20.5 mm, and 55.5 mm is approximately
It was about 10Kg/cm2. In this example, the surface roughness of the mold was 0.02 μm and the pressing force was 10 kg, but the above setting conditions can of course be changed depending on the optical characteristics of the lens, the size of the lens shape, and the size of the curvature. It is possible. In the above example, if the finishing roughness of the mold is further increased and the pressing force is increased, the finished surface of the molded product will have a surface roughness of 0.01 μm even if the surface roughness of the blank is 0.01 μm. It is understood from the above results that molding can be performed with the following high precision. As described above, the present invention provides an optical element molding method in which an optical material is inserted into a mold, and an optical surface is formed by molding the surface of the mold by heating and pressurizing the optical material. The optical material is preformed into a flat plate shape, surface defects such as scratches and cracks are removed, and the surface roughness is preprocessed to a certain degree to obtain a preformed material, and this preformed material is The molding method according to the present invention is characterized in that it is inserted into the mold and subjected to heating and pressure molding, and the molding method according to the present invention does not require post-processing or post-processing steps after molding in the mold, The desired optical finishing accuracy (surface roughness) can be obtained, and since the present invention uses a mold that has been finished to the final target curvature and roughness, material selection, heating conditions, and pressurizing conditions can be controlled. By making them the same, lenses with the same precision can be produced efficiently. Furthermore, by pre-processing the surface of the preformed material to a curvature close to the final target shape as shown in FIG. have. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するのに使用される
装置の一例を示す図、第2図A,Bは一対の型お
よび素材、成形品を示す断面図、第3図A,Bは
本発明の他の実施例を示す断面図である。第4図
は素材の表面粗さと成形品の表面粗さの測定結果
である。 3,4……成形用型、21,22……予備成形
材。
Figure 1 is a diagram showing an example of the apparatus used to carry out the method of the present invention, Figures 2A and B are sectional views showing a pair of molds, materials, and molded products, and Figures 3A and B are sectional views of the book. FIG. 7 is a sectional view showing another embodiment of the invention. Figure 4 shows the measurement results of the surface roughness of the raw material and the surface roughness of the molded product. 3, 4... Molding mold, 21, 22... Preforming material.

Claims (1)

【特許請求の範囲】 1 成形用型内に光学材料を挿入し、前記光学材
料への加熱・加圧作用によつて表面粗さをRnax
0.02以下の精度の光学素子を成形するための製造
方法において、 光学材料を前記光学素子の形状に近似の曲率に
加工し、該曲率表面を少なくともRnax0.01μm以
下の表面粗さに保ち、 前記成形用型の表面粗さをRnax0.02μm以下の
精度に加工し、 近似の曲率に加工した光学材料を前記成形用型
内に挿入し、加熱・加圧作用による成形加工を行
なうことを特徴とする光学素子を成形するための
製造方法。
[Claims] 1. An optical material is inserted into a mold, and the surface roughness is reduced by applying heat and pressure to the optical material.
In a manufacturing method for molding an optical element with an accuracy of 0.02 or less, an optical material is processed to have a curvature that approximates the shape of the optical element, and the curvature surface is maintained at a surface roughness of at least R nax 0.01 μm or less, The surface roughness of the mold is processed to an accuracy of R nax 0.02 μm or less, and an optical material processed to an approximate curvature is inserted into the mold and molded by heating and pressure. A manufacturing method for molding an optical element.
JP11917683A 1983-06-29 1983-06-29 Manufacture of optical element Granted JPS609716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11917683A JPS609716A (en) 1983-06-29 1983-06-29 Manufacture of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11917683A JPS609716A (en) 1983-06-29 1983-06-29 Manufacture of optical element

Publications (2)

Publication Number Publication Date
JPS609716A JPS609716A (en) 1985-01-18
JPH0420854B2 true JPH0420854B2 (en) 1992-04-07

Family

ID=14754788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11917683A Granted JPS609716A (en) 1983-06-29 1983-06-29 Manufacture of optical element

Country Status (1)

Country Link
JP (1) JPS609716A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261225A (en) * 1985-05-16 1986-11-19 Canon Inc Production of optical element
JP2615886B2 (en) * 1988-07-28 1997-06-04 松下電器産業株式会社 Glass material for optical component, method for manufacturing optical component, and optical component
JPH08169721A (en) * 1995-08-01 1996-07-02 Canon Inc Glass blank for forming optical element
JP5161525B2 (en) * 2007-09-26 2013-03-13 オリンパス株式会社 Optical element molding method
JP5430092B2 (en) * 2008-07-11 2014-02-26 キヤノン株式会社 Optical element molding method
CN103660115A (en) * 2013-12-13 2014-03-26 李清意 Fully automatic bottle cap pressing machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884135A (en) * 1981-10-29 1983-05-20 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Glass product high precision manufacture and device
JPS59116137A (en) * 1982-12-20 1984-07-04 Canon Inc Manufacture of optical element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884135A (en) * 1981-10-29 1983-05-20 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Glass product high precision manufacture and device
JPS59116137A (en) * 1982-12-20 1984-07-04 Canon Inc Manufacture of optical element

Also Published As

Publication number Publication date
JPS609716A (en) 1985-01-18

Similar Documents

Publication Publication Date Title
US3833347A (en) Method for molding glass lenses
KR860001491B1 (en) Process for molding glass shapes of high precision
US3900328A (en) Method and apparatus for molding glass lenses
US4139677A (en) Method of molding glass elements and element made
US4168961A (en) Method of molding glass elements
US4738703A (en) Method of molding optical lenses
US5346523A (en) Method of molding chalcogenide glass lenses
JPS6067118A (en) Manufacture of optical element
JPH0420854B2 (en)
US4018587A (en) Method for producing a curved glass die having an aspherical polished concave face
JP4951166B2 (en) Lens blank and lens manufacturing method
JPH0250059B2 (en)
JPS60210534A (en) Method for forming optical element
JPS61291427A (en) Molded lens and production thererof
JPS6296328A (en) Method of molding optical glass element
JPH09249424A (en) Molding of optical element
JP2621956B2 (en) Optical element molding method
JPH02267129A (en) Apparatus and method for molding
JPH0692654A (en) Method for molding glass lens
JP2920172B2 (en) Lens molding method
JPH0741327A (en) Optical element forming method
JP4426740B2 (en) Glass molded product manufacturing method, optical component manufacturing method, press molding apparatus
JPS63307129A (en) Production of optical element
JPS63222023A (en) Production of optical element
JPS61146723A (en) Molding method of nonspherical surface lens