JPS63222023A - Production of optical element - Google Patents

Production of optical element

Info

Publication number
JPS63222023A
JPS63222023A JP5519287A JP5519287A JPS63222023A JP S63222023 A JPS63222023 A JP S63222023A JP 5519287 A JP5519287 A JP 5519287A JP 5519287 A JP5519287 A JP 5519287A JP S63222023 A JPS63222023 A JP S63222023A
Authority
JP
Japan
Prior art keywords
molding
optical element
mold
thin film
carbon thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5519287A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yamamoto
潔 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5519287A priority Critical patent/JPS63222023A/en
Publication of JPS63222023A publication Critical patent/JPS63222023A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • C03B40/02Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it by lubrication; Use of materials as release or lubricating compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To readily produce an optical element such as lens or prism having concave and convex shape or non-spherical surface at a short time in good productivity, by arranging a raw material for optical element molding coated with carbon thin film into a mold for molding and molding the raw material under pressure. CONSTITUTION:Chemically stable carbon thin film 21 having excellent uniformness and strength and free from melting with a mold for molding is applied to faces 22a and 22b for molding functional face of a glass raw material for optical element molding formed to a prescribed shape by treatment such as grinding, polishing or melt solidification so as to have 1-100nm thickness by spattering, etc. Then the carbon thin film 21-coated raw material 22 is arranged in the mold for molding and heated and molded under pressure and then subjected to annealing treatment in order to burn and remove the carbon thin film to provide the desired optical element (e.g. convex lens) 32.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明ハ凸レンズ、凹レンズ、フレネル、非球面レンズ
、プリズム、フィルター等の光学素子の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing optical elements such as convex lenses, concave lenses, Fresnel lenses, aspheric lenses, prisms, and filters.

〔従来の技術〕[Conventional technology]

レンズ、プリズム、フィルター等の光学素子の多くは、
従来ガラス等の素材の研摩処理を主とした方法によって
成形されてきた。しかしながら、このような研摩処理を
主とした成形法に於いては、相当な時間及び熟練技術が
必要とされ、特に非球面レンズを研摩処理によって成形
するには、一層高度な研摩技術が要求されまた処理時間
も更に長くなり、短時間に大量に製造することは非常に
困難であった。
Many optical elements such as lenses, prisms, and filters are
Conventionally, molding has been done mainly by polishing materials such as glass. However, such a molding method that mainly involves polishing requires a considerable amount of time and skill, and in particular, molding an aspherical lens by polishing requires even more advanced polishing technology. In addition, the processing time becomes even longer, making it extremely difficult to produce in large quantities in a short period of time.

そこで、例えば一対の成形用型内に光学素子成形用素材
を挿入配置し、これを加圧するだけでレンズ等の光学素
子を簡易に生産性良く成形する方法が注目されている。
Therefore, attention is being paid to a method of simply and efficiently molding optical elements such as lenses by simply inserting and arranging an optical element molding material into a pair of molds and pressurizing the material.

代表的な加圧成形法としては、高精度の光学素子を成形
できる方法としてリヒートプレス法が挙げられる。
As a typical pressure molding method, a reheat press method can be mentioned as a method capable of molding a highly accurate optical element.

リヒートプレス法は、予め溶融固化した光学素子成形用
素材としての例えばガラス素材の必要量を計シ取シ、こ
れを所定の温度に加熱して軟化させてから成形用の型内
に投入しこれを加圧して光学素子を成形する方法である
。また、特開昭47−11277には、予め溶融固化し
たガラス素材を成形用型内に投入し、型内を加熱し、ガ
ラス素材が成形可能な状態になったところでこれを加圧
し、成形されたガラスレンズが型内に保持された状態で
これを冷却してガラスレンズを成形する方法が開示され
ている。
The reheat press method involves measuring out the required amount of a glass material, such as a glass material, that has been melted and solidified in advance, heating it to a predetermined temperature to soften it, and then putting it into a mold. This is a method of molding optical elements by applying pressure. In addition, in JP-A-47-11277, a glass material that has been melted and solidified in advance is put into a mold, the inside of the mold is heated, and when the glass material becomes moldable, it is pressurized. A method is disclosed in which a glass lens is molded by cooling the glass lens while it is held in a mold.

このような加圧成形法を適用することによって、従来の
研摩処理を主とした成形法と比べて光学素子を短時間に
容易に成形することが可能となり、特に成形に於ける難
易性の高かった非球面を有する光学素子を容易に成形で
きるようになった。
By applying such a pressure molding method, it is possible to mold optical elements more easily and in a shorter time than with conventional molding methods that mainly rely on polishing, and it is especially suitable for molding that is difficult to mold. It has become possible to easily mold optical elements with aspherical surfaces.

〔発明の解決すべき問題点〕[Problems to be solved by the invention]

ところが、加圧成形法によって光学素子を成形した場合
、成形された光学素子の形状については所定の精度を得
ることができるが、成形された光学素子の機能面のik
シや融着が生じ易く、光学的機能については必ずしも充
分なものを得ることはできなかった。
However, when an optical element is molded using a pressure molding method, it is possible to obtain a predetermined precision in the shape of the molded optical element, but the functional ik of the molded optical element is
It was easy to cause cracks and fusion, and it was not always possible to obtain a sufficient optical function.

この機能面の嚢シは、加圧成形の過程に於いて光学素子
成形用素材とこれを加圧成形する型の面とが高温で比較
的長時間密着した状態で接触するため、微小部分に於い
て前記素材と型の面とが融着し、成形後に型から成形さ
れた光学素子を雛型する際に、素材表面の型との微細融
着部分が型表面に融着したまま残されることによって成
形面に生じるピンホールや微細な凹み等の欠陥によって
形成されるものである。
This functional sac is because during the pressure molding process, the optical element molding material and the surface of the mold that pressure molds it come into close contact at high temperature for a relatively long period of time. The material and the surface of the mold are fused together, and when the optical element molded from the mold is modeled after molding, the minute fused portion of the material surface with the mold remains fused to the mold surface. This is caused by defects such as pinholes and minute dents that occur on the molding surface.

これらの欠陥は型材の種類を問わず光学素子の加圧成形
された面に生じるため、加圧成形法に於いては避けられ
ない問題となっていた。
Since these defects occur on the pressure-molded surface of the optical element regardless of the type of mold material, they have become an unavoidable problem in the pressure-molding method.

本発明はこのような問題に鑑みなされたものであり、そ
の目的は、型と成形された光学素子の融着を防ぎ、所定
の状形及び精度を有し、成形された機能面に曇シのない
光学素子を、光学素子成形用素材を成形用型によって加
圧するだけで簡易に生産性良く成形することのできる光
学素子の製造方法を提供することにある。
The present invention was made in view of these problems, and its purpose is to prevent the fusion of the mold and the molded optical element, to have a predetermined shape and precision, and to create a cloudy pattern on the molded functional surface. An object of the present invention is to provide a method for manufacturing an optical element that can be easily and efficiently molded by simply pressurizing an optical element molding material with a molding die.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明の光学素子の加圧成形法は、予め機能面
が成形される面に炭素薄膜が被膜された成形可能な状態
の光学素子成形用素材を成形用型内に配置し、核型によ
り前記光学素子成形用素材を加圧して光学素子の機能面
を成形する工程を含むことを特徴とする。
That is, in the pressure molding method for optical elements of the present invention, a material for molding an optical element in a moldable state, the surface of which is to be molded with a functional surface coated with a thin carbon film, is placed in a mold, and then the material is molded using a nuclear mold. The method is characterized in that it includes a step of pressurizing the optical element molding material to mold a functional surface of the optical element.

本発明の方法に於いては、光学素子を加圧成形する前の
所望の段階に於いて、予め機能面が成形される光学素子
成形用素材の面に炭素薄膜が被膜される。
In the method of the present invention, at a desired stage before pressure-molding the optical element, a thin carbon film is coated on the surface of the optical element molding material on which the functional surface is previously molded.

以下、図面を参照しつつ本発明の方法をガラス製凸レン
ズの成形をその一例として詳細に説明する。
Hereinafter, the method of the present invention will be explained in detail with reference to the drawings, taking as an example the molding of a convex lens made of glass.

第1図は、本発明の方法に使用することのできる光学素
子の加圧成形装置の一例である。
FIG. 1 is an example of a pressure molding apparatus for optical elements that can be used in the method of the present invention.

1はペルジャ一本体、2は蓋、3は光学素子の第1の機
能面を成形するための面を有する上型、4は光学素子の
第2の機能面を成形するための面を有する下型、5は上
型3を保持し押えるための押え、6は用型、7はホルダ
ー、8は成形装置内を加熱するためのヒーター、9は下
型4を突き上げて加圧するための加圧棒、10は加圧棒
9を作動させるためのエアーシリンダー、11は油廻転
用ポンプ、12.13.14.16.18はバルブ、1
5は不活性ガス流入用パイプ、17は不活性ガス排気用
−4イブ、19は温度センサー、20は装置内を冷やす
ための水冷パイプである。
1 is a Pelger main body, 2 is a lid, 3 is an upper mold having a surface for molding the first functional surface of the optical element, and 4 is a lower mold having a surface for molding the second functional surface of the optical element. A mold, 5 is a presser for holding and pressing the upper mold 3, 6 is a mold, 7 is a holder, 8 is a heater for heating the inside of the molding device, 9 is a pressurizer for pushing up and pressurizing the lower mold 4 Rod, 10 is an air cylinder for operating the pressure rod 9, 11 is an oil diversion pump, 12.13.14.16.18 is a valve, 1
5 is an inert gas inflow pipe, 17 is an inert gas exhaust pipe, 19 is a temperature sensor, and 20 is a water cooling pipe for cooling the inside of the apparatus.

本発明の方法に従って凸レンズを成形するにはまず、第
2図に示すように、研削、研摩あるいは溶融固化等の処
理によシ所定の形状に成形された所定容量の光学ガラス
からなる素材(ガラス素材)22の機能面が成形される
面22m及び22bに炭素薄膜21を被膜する。
To mold a convex lens according to the method of the present invention, first, as shown in FIG. 2, a material (glass The carbon thin film 21 is coated on the surfaces 22m and 22b of the raw material 22 on which the functional surfaces are to be formed.

本発明の方法に於いて被膜される炭素薄膜は、主に成形
工程を通じて光学素子成形用素材の機能面が成形される
面を保護するとともに、該膜の表面が成形用型と高温で
比較的長時間密着した状態で接触しても、前述のガラス
素材等に認られたような成形用型との接触面の微小部分
に於ける融着を起さず、成形された光学素子に型からの
良好な雛型性を付与することを目的として設けられる。
The carbon thin film coated in the method of the present invention mainly protects the surface on which the functional side of the optical element molding material is molded during the molding process, and also protects the surface of the film from being relatively close to the mold at high temperatures. Even if they are in close contact for a long period of time, there will be no fusion in the minute parts of the contact surface with the mold, which was observed with the glass materials mentioned above, and the molded optical element will not come out of the mold. This is provided for the purpose of providing a good template.

従って、本発明の方法に於いて設けられる炭素薄膜は、
光学素子成形用素材上に均一で、保護膜として十分な強
度を有し、化学的にも安定であり、更に、成形用型との
前述したような融着を起さない連続被膜を形成すること
のできる炭素材料から形成される。炭素薄膜は、例えば
成形後のアニール工程等で燃焼させることにより、取り
除くことができる。
Therefore, the carbon thin film provided in the method of the present invention is
Forms a continuous film on the optical element molding material that is uniform, has sufficient strength as a protective film, is chemically stable, and does not cause the aforementioned fusion with the mold. It is formed from a carbon material that can be used. The carbon thin film can be removed, for example, by burning it in an annealing process after molding.

このような薄膜21を素材22の所定の面に被膜するに
は、上記のような薄膜形成用の材料を素材22の材質や
形状等に合せて、例えば真空蒸着、スパッタリング、プ
ラズマCVDなどの蒸着法や炭素粉末の分散液を用いた
含浸法あるいは塗布法等の種々の被膜形成法を適宜使用
して素材22の所定の面に所定の膜厚を積層することが
できる。
In order to coat such a thin film 21 on a predetermined surface of the material 22, the material for forming the thin film as described above is selected according to the material, shape, etc. of the material 22, and vapor deposition such as vacuum evaporation, sputtering, plasma CVD, etc. is performed. A predetermined film thickness can be deposited on a predetermined surface of the material 22 by appropriately using various film forming methods such as a method, an impregnation method using a carbon powder dispersion, or a coating method.

上記炭素薄膜の厚さは、lnm〜1100n程度である
ことが好ましい。
The thickness of the carbon thin film is preferably about 1 nm to 1100 nm.

次に、このようにして薄膜21が設けられた素材22を
ペルジャー1の蓋2をあけて下型4の上に載置し、更に
上型3を配置して蓋2を閉じ、水冷パイプ20に水を流
し、ヒータ8に通電する。
Next, the material 22 provided with the thin film 21 in this manner is placed on the lower mold 4 with the lid 2 of the Pelger 1 placed, the upper mold 3 is placed, the lid 2 is closed, and the water cooling pipe 20 Water is flowed through and the heater 8 is energized.

このとき、不活性ガス用バルブ16.18及び排気バル
ブは閉じておく。なお、油廻転用ポング11は常に作動
させておく。
At this time, the inert gas valves 16 and 18 and the exhaust valve are closed. Note that the oil diversion pump 11 is always operated.

次に、パルf12を開は排気を開始し、ペルジャー1内
の圧力が約1O−2Torr程度以下になったところで
バルブ12を閉じ、パルf16を開いて不活性ガスとし
てのN2ガスをペルジャー1内に導入する。
Next, the valve f12 is opened to start evacuation, and when the pressure inside the Pel jar 1 becomes approximately 1O-2 Torr or less, the valve 12 is closed, and the pallet f16 is opened to supply N2 gas as an inert gas into the Pel jar 1. to be introduced.

ガラス素材22が成形可能な温度にヒーター8によって
加熱されたところで、エアーシリンダー10を作動させ
て、加圧棒9を介して所定の圧力で下型4を押し上げて
がラス素材22を上型3と下型4によって加圧し成形す
る。
When the glass material 22 is heated by the heater 8 to a temperature at which it can be molded, the air cylinder 10 is activated to push up the lower mold 4 with a predetermined pressure via the pressure rod 9, and the glass material 22 is moved to the upper mold 3. Pressure is applied and molded using the lower die 4.

最後にヒーター8を制御しながら、ペルジャー1内を徐
々に冷却し、所定の温度にまで冷却されたところでバル
ブ16を閉じ、バルブ13を開いてペルジャー内に空気
を導入し、蓋2をあけることのできる程度にまで内圧が
上ったら蓋2をあけ、押え5を外して成形された第3図
に示したようなすでに2つの機能面に薄膜が設けられて
いる凸レンズ32を取り出す。その後、凸レンズ32は
、光学特性を確保するため、アニール処理を行なうが、
その際炭素薄膜21は燃焼し、消滅するため、第4図に
示した様な凸レンズ32が得られる。
Finally, while controlling the heater 8, the inside of the Pell Jar 1 is gradually cooled, and when it has cooled to a predetermined temperature, the valve 16 is closed, the valve 13 is opened to introduce air into the Pell Jar, and the lid 2 is opened. When the internal pressure has risen to a level where it is possible to do so, the lid 2 is opened, the presser foot 5 is removed, and the molded convex lens 32 as shown in FIG. 3, which has already been provided with thin films on two functional surfaces, is taken out. Thereafter, the convex lens 32 is annealed to ensure its optical properties.
At this time, the carbon thin film 21 burns and disappears, so that a convex lens 32 as shown in FIG. 4 is obtained.

また、例えば、炭素薄膜21を不織布による仕上研摩の
方法によシ剥離することもできる。得られた凸レンズ3
2の機能面の表面には前述したような従来問題となって
いたピンホールや凹み等の微細欠陥の発生は認められず
、従って機能面には健りがなく、凸レンズ32は所定の
形状及び精度を有している。
Further, for example, the carbon thin film 21 can also be peeled off by a method of finish polishing using a nonwoven fabric. Obtained convex lens 3
On the surface of the functional surface of No. 2, there are no microscopic defects such as pinholes or dents, which have been problems in the past, as described above, and therefore the functional surface is not sound. It has precision.

なお、上記工程においての成形時の加圧の圧力、加圧成
形後の冷却の速度、時間、成形された光学素子の取シ出
し温度等の操作条件は、使用する光学素子成形用素材の
材質、成形しようとする光学素子の精度等に応じて適宜
選択することができる。
In addition, the operating conditions such as the pressure during molding in the above process, the cooling rate and time after pressure molding, and the temperature at which the molded optical element is taken out depend on the material of the optical element molding material used. , can be appropriately selected depending on the precision of the optical element to be molded.

この例に於いては、凸レンズが本発明の方法によシ成形
されたが、成形用上型3及び下型4を所望の形状及び精
度を有する光学素子に対応した上屋及び下型と代えるこ
とにより、凹レンズ、フレネル、非球面レンズ、プリズ
ム、フィルター等の光学素子を成形することができる。
In this example, a convex lens was molded by the method of the present invention, but the upper and lower molds 3 and 4 were replaced with upper and lower molds compatible with an optical element having the desired shape and precision. By this, optical elements such as concave lenses, Fresnel lenses, aspheric lenses, prisms, and filters can be molded.

以上のような本発明の光学素子の製造方法によれば、光
学素子成形用素材の被成形面に予め薄膜を設けたことに
よシ、成形工程を通じて光学素子の機能面が保護され、
かつ従来の加圧成形法に於いて認められたような素材の
被成形面と成形用型との高温密着による微細部分に於け
る融着を防ぐことが可能となり、型からの成形された光
学素子の雛型性が向上した。
According to the method for manufacturing an optical element of the present invention as described above, by providing a thin film in advance on the molded surface of the material for molding an optical element, the functional surface of the optical element is protected throughout the molding process,
In addition, it is possible to prevent fusion in minute parts due to high temperature adhesion between the molding surface of the material and the molding mold, which was observed in conventional pressure molding methods, and it is possible to prevent the molded optical fibers from forming from the mold. The patternability of the element has been improved.

従って、本発明の光学素子の製造方法によって成形され
た光学素子の機能面にはピンホールや凹み等の微細欠陥
の発生は認められず、所定の形状及び精度を有し、t9
のない機能面からなる光学(10〕 素子を得ることができる。
Therefore, the functional surface of the optical element molded by the optical element manufacturing method of the present invention is free from minute defects such as pinholes and dents, has a predetermined shape and precision, and has a t9
It is possible to obtain an optical (10) element consisting of a functional surface free of .

〔実施例〕〔Example〕

以下、実施例を用いて本発明の方法を更に詳細に説明す
る。
Hereinafter, the method of the present invention will be explained in more detail using Examples.

実施例1 まず、第2図に示すように光学素子成形用素材22とし
ての円盤形状に研摩加工されたクラウンガラスの機能面
の成形される面に通常の蒸着法により炭素薄膜(膜厚2
0nm)を形成させた。
Example 1 First, as shown in FIG. 2, a carbon thin film (film thickness 2
0 nm) was formed.

次に、炭素薄膜が被形成面に設けられた素材22を第1
図に示す装置の成形用型のモリブデン製の上型3と下型
4の間に配置し、水冷/ヤイグ20に水を流し、ヒータ
ー8に通電した。
Next, the material 22 with the carbon thin film provided on the surface to be formed is placed in the first
It was placed between the upper mold 3 and the lower mold 4 made of molybdenum of the molding mold of the apparatus shown in the figure, water was flowed through the water cooling/heating 20, and the heater 8 was energized.

このとき、不活性ガス用パルプ16.18及び排気パル
プ12は閉じ、油照転用ボン7°11は常に作動させた
At this time, the inert gas pulps 16 and 18 and the exhaust pulp 12 were closed, and the oil diversion bong 7°11 was always operated.

なお、上型3の光学素子の機能面を形成する面は、外径
17m、曲率半径20IiI、及び面精度、形状に於い
てニュートンリング、ノ母ワー3本以内不規則性1本以
内、中心線平均表面粗さく JIS B0610−19
70 ) 0.02μ以内に凹面状に釧面加工した。下
型4の機能面を形成する面は外径17m1、曲率半径5
5flに、また面精度は上型3と同程度に凹面状に鏡面
加工した。
The surface forming the functional surface of the optical element of the upper mold 3 has an outer diameter of 17 m, a radius of curvature of 20 IiI, and a Newton's ring in terms of surface precision and shape. Line average surface roughness JIS B0610-19
70) The concave surface was processed to within 0.02μ. The surface forming the functional surface of the lower mold 4 has an outer diameter of 17 m1 and a radius of curvature of 5.
The mold was mirror-finished to a concave shape with a size of 5 fl and a surface precision similar to that of the upper mold 3.

次に、パルプ12を開は排気を開始し、ペルジャー1内
の圧力が約10’Torr程度以下になったところでバ
ルブ12を閉じ、バルブ16を開いて不活性ガスとして
のN2ガスをペルジャー1内に導入する。
Next, the pulp 12 is opened to start evacuation, and when the pressure inside the Pel Jar 1 becomes approximately 10 Torr or less, the valve 12 is closed, and the valve 16 is opened to supply N2 gas as an inert gas into the Pel Jar 1. to be introduced.

ガラス素材22が成形可能な温度(600℃)にヒータ
ー8によって加熱されたところで、エアーシリンダー1
0を作動させて、加圧棒9を介して10Kf/n”の圧
力で下型4を押し上げて素材22を上型3と下型4によ
って5分間加圧した。
When the glass material 22 is heated to a moldable temperature (600°C) by the heater 8, the air cylinder 1
0 was activated, the lower die 4 was pushed up with a pressure of 10 Kf/n'' via the pressure rod 9, and the material 22 was pressurized by the upper die 3 and the lower die 4 for 5 minutes.

最後にヒーター8を制御しながら、ペルジャー1内を1
時間にわたり徐々に冷却し、200℃以下に冷却された
ところでパルプ16を閉じ、ノ々ルプ13を開いてペル
ジャー内に空気を導入し、蓋2をあけることのできる程
度にまで内圧が上ったら蓋2をあけ、押え5を外して成
形された第3図に示したようなすでに2つの機能面に薄
膜が設けられている凸レンズ32を取り出した。
Finally, while controlling the heater 8, the inside of the Pelger 1 is
The pulp 16 is gradually cooled over a period of time, and when it has cooled to below 200°C, the pulp 16 is closed, the nozzle 13 is opened to introduce air into the pellet jar, and when the internal pressure rises to the extent that the lid 2 can be opened, the pulp 16 is closed. The lid 2 was opened, the presser foot 5 was removed, and the molded convex lens 32 as shown in FIG. 3, which had already been provided with thin films on two functional surfaces, was taken out.

最後に所定のアニール処理を行なうことによって、炭素
薄膜21を取り除いた。
Finally, the carbon thin film 21 was removed by performing a predetermined annealing process.

得られた凸レンズ32の機能面の表面を3750倍の走
査型電子顕微鏡によって観察したところ、機能面にはピ
ンホールや凹み等の微細欠陥の発生は認められず、従っ
て嚢シがなく、凸レンズ32は所定の成形用型の機能面
を形成する面の形状及び精度に対応した形状及び精度を
有したレンズであった。
When the surface of the functional surface of the obtained convex lens 32 was observed using a scanning electron microscope with a magnification of 3750 times, no minute defects such as pinholes or dents were observed on the functional surface, and therefore there was no cyst, and the convex lens 32 was a lens having a shape and precision corresponding to the shape and precision of a surface forming a functional surface of a predetermined mold.

比較例1 比較のために炭素薄膜を設けない以外は前記実施例と同
様にして凸レンズを加圧成形した。
Comparative Example 1 For comparison, a convex lens was pressure molded in the same manner as in the previous example except that no carbon thin film was provided.

本比較例に於いて得られた凸レンズについても、その形
成された機能面の表面を3750倍の走査型電子顕微鏡
により観察しだところ、機能面表面には微細なピンホー
ルや凹みが表面−面に観察され、このために本比較例に
於いて得られたレンズの機能面は曇りのあるものとなシ
、製品として要求さく13) れる精度及び品質を満足するものとはならなかった。
Regarding the convex lens obtained in this comparative example, when the surface of the formed functional surface was observed using a scanning electron microscope with a magnification of 3750 times, it was found that there were fine pinholes and depressions on the surface of the functional surface. As a result, the functional aspect of the lens obtained in this comparative example was cloudy, and did not satisfy the precision and quality required as a product13).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法に使用される光学素子成形装置の
一例の要部を示した模式図、第2図は、本発明の方法に
使用される光学素子成形用素材の一例の模式的断面図、
第3図は本発明の方法に於いて成形された炭素薄膜を機
能面に有する光学素子の一例の模式的断面図、第4図は
、本発明の方法によって成形された光学素子の一例の模
式的断面図である。 1:ペルジャ一本体、2:蓋、 3:光学素子の第1の機能面を成形するための面を有す
る上型、 4:光学素子の第2の機能面を成形するための面を有す
る下型、 5:上型3を保持し押えるだめの押え、6:用型、  
    7:ホルダー、8:成形装置内を加熱するため
のヒーター、9:下型4を突き上げて加圧するための加
圧棒、10:加圧棒9を作動させるためのエアーシリン
ダー、 11:油照転用ポンプ、 12.13.14.16.18 :バルブ、15:不活
性ガス流入用ノ4イブ、 17:不活性ガス排気用パイグ、 19:温度センサー、 20:装置内を冷やすだめの水冷ノ4イグ、21:炭素
薄膜、 22:光学素子成形用素材、 22a、22b二機能面が成形される面、32:成形さ
れた光学素子。
FIG. 1 is a schematic diagram showing essential parts of an example of an optical element molding apparatus used in the method of the present invention, and FIG. 2 is a schematic diagram of an example of a material for molding optical elements used in the method of the present invention. cross section,
FIG. 3 is a schematic cross-sectional view of an example of an optical element having a carbon thin film on its functional surface formed by the method of the present invention, and FIG. 4 is a schematic cross-sectional view of an example of an optical element formed by the method of the present invention. FIG. 1: Perger body, 2: Lid, 3: Upper mold having a surface for molding the first functional surface of the optical element, 4: Lower mold having a surface for molding the second functional surface of the optical element. Mold, 5: Presser foot for holding and pressing the upper mold 3, 6: Mold,
7: Holder, 8: Heater for heating the inside of the molding device, 9: Pressure rod for pushing up and pressurizing the lower mold 4, 10: Air cylinder for operating the pressure rod 9, 11: Oil lamp Diversion pump, 12.13.14.16.18: Valve, 15: Inert gas inflow nozzle, 17: Inert gas exhaust pipe, 19: Temperature sensor, 20: Water cooling nozzle for cooling the inside of the device 4, 21: Carbon thin film, 22: Optical element molding material, 22a, 22b, surfaces on which bifunctional surfaces are molded, 32: Molded optical element.

Claims (1)

【特許請求の範囲】[Claims] (1)予め機能面が成形される面に炭素薄膜が被膜され
た成形可能な状態の光学素子成形用素材を、成形用型内
に配置し、該型により前記光学素子成形用素材を加圧し
て光学素子の機能面を成形する工程を含むことを特徴と
する光学素子の製造方法。
(1) A moldable optical element molding material whose surface on which the functional surface is to be molded is coated with a carbon thin film in advance is placed in a molding mold, and the optical element molding material is pressurized by the mold. 1. A method of manufacturing an optical element, comprising the step of molding a functional surface of the optical element.
JP5519287A 1987-03-12 1987-03-12 Production of optical element Pending JPS63222023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5519287A JPS63222023A (en) 1987-03-12 1987-03-12 Production of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5519287A JPS63222023A (en) 1987-03-12 1987-03-12 Production of optical element

Publications (1)

Publication Number Publication Date
JPS63222023A true JPS63222023A (en) 1988-09-14

Family

ID=12991827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5519287A Pending JPS63222023A (en) 1987-03-12 1987-03-12 Production of optical element

Country Status (1)

Country Link
JP (1) JPS63222023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984334B2 (en) * 2000-06-08 2006-01-10 Canon Kabushiki Kaisha Method of manufacturing optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984334B2 (en) * 2000-06-08 2006-01-10 Canon Kabushiki Kaisha Method of manufacturing optical element

Similar Documents

Publication Publication Date Title
JP2620875B2 (en) Manufacturing method of glass molded products for precision optics
JP2651266B2 (en) Glass blank for manufacturing optical element and method for manufacturing the same
JPS60210534A (en) Method for forming optical element
JPH0226843A (en) Mold for molding glass
JPS63222023A (en) Production of optical element
JPH0250059B2 (en)
JPS6250413B2 (en)
JPH0420854B2 (en)
JPS6221733B2 (en)
US5762676A (en) Product for molding glass lenses having difficult shapes
JPS61291427A (en) Molded lens and production thererof
JP2002348132A (en) Method for manufacturing molding material of optical element, optical element and its molding method
JP2621956B2 (en) Optical element molding method
JPH0776095B2 (en) Optical element manufacturing method
JPH0372016B2 (en)
KR100204927B1 (en) A method and apparatus for optical glass
JPH04175230A (en) Production of optical element
JPH08277125A (en) Formation of glass lens
JPH04175231A (en) Production of optical element
JPS6251211B2 (en)
JPH09227136A (en) Molding of optical element
JP2000000828A (en) Production of glass mold for glasses
JPS63310735A (en) Method for forming optical element
JPH0521854B2 (en)
JPH0454189Y2 (en)