JPH04175231A - Production of optical element - Google Patents

Production of optical element

Info

Publication number
JPH04175231A
JPH04175231A JP29992490A JP29992490A JPH04175231A JP H04175231 A JPH04175231 A JP H04175231A JP 29992490 A JP29992490 A JP 29992490A JP 29992490 A JP29992490 A JP 29992490A JP H04175231 A JPH04175231 A JP H04175231A
Authority
JP
Japan
Prior art keywords
mold
optical element
glass
valve
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29992490A
Other languages
Japanese (ja)
Inventor
Sunao Miyazaki
直 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29992490A priority Critical patent/JPH04175231A/en
Publication of JPH04175231A publication Critical patent/JPH04175231A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/16Gearing or controlling mechanisms specially adapted for glass presses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould

Abstract

PURPOSE:To prevent the adhesion of an easily volatile component in a glass material to the surface of a mold to provide a cloudless optical element having an excellent surface precision by specifying the atmospheric gas pressure in the mold, when the softened glass material is press-molded to directly prepare the optical element. CONSTITUTION:For example, the spherical blank of optical glass is loaded on a lower mold 4 in a closed container 1, and an upper mold 3 and an upper press 5 are attached. After a lid 2 is closed, water is passed through a water-cooling pipe 20, and an electric current is applied to heaters 8. An oil rotary pump 11 is operated, and a valve 12 is opened to evacuate the container 1. After a desired vacuum degree is obtained, the valve 12 is closed, and valves 16 and 18 are opened to charge the container 1 with nitrogen gas from a bomb. In the process the pressure of the nitrogen gas is controlled to a pressure of >=1.5 atm. The pressure is constantly maintained by the automatic opening of a leak valve attached to the container 1 and by the automatic opening of the valve 16 when temperature is raised and lowered, respectively. The glass is press-molded at a desired temperature and subsequently cooled. The valves 16, 18 are subsequently closed, and a valve 13 is opened to charge the container 1 with air, followed by taking out the molded optical element.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、研削、研磨等による仕上げを必要とせず、軟
化したガラス体をプレス成形することにより直接形成さ
れる光学素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of manufacturing an optical element that is directly formed by press-molding a softened glass body without requiring finishing by grinding, polishing, etc.

[従来の技術] 従来、ガラス光学素子を製造するには、ガラス素材をダ
イヤモンド砥石等によって所定形状に研削した後、酸化
セリウム等によって研削面を研磨する方法が一般的であ
った。しかし非球面レンズのニーズが高まりつつある中
で従来の方法によっては、低コストで大量の光学素子を
製造するには限度があり、新たに加熱軟化したガラス素
材の押圧成形によって、非球面レンズを製造する技術が
実用化されつつある。
[Prior Art] Conventionally, in order to manufacture glass optical elements, it has been common to grind a glass material into a predetermined shape using a diamond grindstone or the like, and then polish the ground surface with cerium oxide or the like. However, as the need for aspherical lenses continues to grow, there is a limit to the ability to manufacture large quantities of optical elements at low cost using conventional methods. The manufacturing technology is being put into practical use.

しかしながら、1組の成形型にて加熱軟化したガラス素
材の多数個を、連続的に押圧成形して製造した場合には
、鉛を主成分とするガラス(フリントガラス)において
はガラス素材中の鉛成分が、鉛を含まないガラスにおい
ても易揮発成分(例えばアルカリ、アルカリ土類、ホウ
素など)が揮発して成形型の表面に付着あるいは融着し
て外見上成形型及び成形後の光学素子の表面に曇りが生
じるする現象が起き、成形後の光学素子の面精度を著し
く低下させている。この対策のために成形用ガラス素材
として種々提案されている。
However, when a large number of heat-softened glass materials are manufactured by continuous pressure molding in one set of molds, lead-based glass (flint glass) contains lead in the glass material. Even in glass that does not contain lead, easily volatile components (e.g. alkali, alkaline earth, boron, etc.) may volatize and adhere or fuse to the surface of the mold, causing visible damage to the mold and the optical element after molding. A phenomenon occurs in which clouding occurs on the surface, which significantly reduces the surface precision of the optical element after molding. To counter this problem, various molding glass materials have been proposed.

例えば特開昭57−4735には、特定の化学処理で容
易に除去し得るガラスまたはプラスチック等の熱可塑性
材料から成る被覆層にて、予め成形用ガラス素材を被覆
しておき、押圧成形後に該被覆層を除去する(例えば硝
酸にて)ことが示されている。
For example, in JP-A No. 57-4735, a glass material for molding is coated in advance with a coating layer made of a thermoplastic material such as glass or plastic that can be easily removed by a specific chemical treatment. Removal of the coating layer (eg with nitric acid) is indicated.

また特開昭62−297225には、内部ガラスよりも
ガラス転移温度が高く、熱膨張係数および屈折率が実質
的に等しいようなガラス表面層で被覆した成形用ガラス
素材を用いることが示されている。
Furthermore, JP-A No. 62-297225 discloses the use of a molding glass material coated with a glass surface layer having a glass transition temperature higher than that of the inner glass and having substantially the same coefficient of thermal expansion and refractive index. There is.

さらに特開昭62−207728にはフッ化水素酸およ
び硝酸に浸漬して表層部の易揮発成分(B、Os 、P
bO等)を減少させた成形用ガラス素材を用いることが
示されている。
Furthermore, in JP-A-62-207728, the easily volatile components (B, Os, P) in the surface layer were immersed in hydrofluoric acid and nitric acid.
It has been shown to use a glass material for molding with reduced bO, etc.).

[発明が解決しようとする課題] しかしながら特開昭57−4735においては、押圧成
形後に被覆層を除去する工程を必要とするので、極めて
長時間を要しコスト高な光学素子となってしまう。また
、酸で処理する際には、光学素子自体の面精度を悪化さ
せることがあり、歩留り低下の原因となる。
[Problems to be Solved by the Invention] However, in JP-A-57-4735, a step of removing the coating layer is required after press molding, resulting in an extremely time-consuming and expensive optical element. Furthermore, when processing with acid, the surface precision of the optical element itself may be deteriorated, causing a decrease in yield.

また特開昭62−297225においては、成形用ガラ
ス素材からの変形量が非常に小さな光学素子に対しては
有効であるが、変形量が大きなものに対しては、成形時
に未軟化状態にある表層部に微小な割れが生じ易い、こ
の割れによって生ずるガラス片が成形型に付着すること
があり、連続して高精度の光学素子を製造することは難
しくなる。
Furthermore, in JP-A-62-297225, it is effective for optical elements in which the amount of deformation from the glass material for molding is very small, but it is effective for optical elements with a large amount of deformation, since the glass material is in an unsoftened state during molding. Microscopic cracks are likely to occur in the surface layer, and glass pieces resulting from these cracks may adhere to the mold, making it difficult to continuously manufacture high-precision optical elements.

さらに特開昭62−207728においては、成形用ガ
ラス素材をフッ化水素酸に浸漬すると鉛等の易揮発成分
と同時に5iO=も分解されてしまうので容積が変化し
、押圧成形された光学素子の寸法精度にバラツキが生ず
るという問題点がある。
Furthermore, in JP-A-62-207728, when a glass material for molding is immersed in hydrofluoric acid, 5iO= is decomposed at the same time as easily volatile components such as lead, so the volume changes and the pressure-molded optical element There is a problem that variations occur in dimensional accuracy.

また、−船釣に、成形用ガラス素材表面に何らかの曇り
防止用コートを付ける場合には、主に蒸着によって付け
るためコスト高であり、しかも成形の際にガラス表面か
らコートを破って中のガラスが出てきてしまうため曇り
防止効果が充分でないという欠点がある。さらにコート
膜厚が厚すぎる場合には型を汚染したりコートのひび割
れを生じることもある。薄すぎる場合には、曇り防止の
効果が充分ではないという欠点がある。また、ガラスと
コート材の熱膨張係数の微かな差によって加熱時に膜が
ひび割れ、加圧時に内部ガラスがはみ出てきて、部分的
な曇りを生じるという欠点がある。
In addition, when applying some type of anti-fogging coating to the surface of glass material for molding for boat fishing, it is mainly applied by vapor deposition, which is expensive, and moreover, the coating is torn from the glass surface during molding and the inner glass is exposed. This has the disadvantage that the anti-fogging effect is not sufficient because of this. Furthermore, if the coating film is too thick, the mold may be contaminated or the coating may crack. If it is too thin, there is a drawback that the anti-fogging effect is not sufficient. Furthermore, due to the slight difference in the coefficient of thermal expansion between the glass and the coating material, the membrane cracks when heated, and when pressurized, the inner glass protrudes, resulting in partial fogging.

従って、本発明の目的は、鉛、アルカリ、アルカリ土類
、ホウ素等の易揮発成分が成形型に付着することがなく
、曇りの無いすなわち面精度に優れた光学素子を、大量
に連続的に歩留りよく成形できる光学素子の製造方法を
提供することにある。
Therefore, an object of the present invention is to continuously produce optical elements in large quantities that do not allow easily volatile components such as lead, alkali, alkaline earth metals, and boron to adhere to the mold, and that are free from clouding, that is, have excellent surface precision. An object of the present invention is to provide a method for manufacturing an optical element that can be molded with high yield.

[課題を解決するための手段及び作用]すなわち、本発
明は、成形用型内に配置された成形可能な状態の光学素
子成形用素材を該成形用型により加圧して光学素子の機
能面を成形する加圧成形法において、少な(とも前記成
形用型の内部の雰囲気ガス圧が、1.5気圧以上である
ことを特徴とする光学素子の製造方法である。
[Means and effects for solving the problem] That is, the present invention presses a moldable optical element molding material placed in a molding mold with the molding mold to improve the functional aspect of the optical element. In the pressure molding method for molding, the method of manufacturing an optical element is characterized in that the atmospheric gas pressure inside the mold is 1.5 atmospheres or more.

本発明においては、成形装置内の少なくとも成形用型の
内部の雰囲気ガス圧を1.5気圧以上、好ましくは1.
5気圧以上3気圧以下とすることにより、ガラスからの
易揮発成分の揮発を抑え、型および成形品の曇りを防止
している。
In the present invention, the atmospheric gas pressure inside at least the mold in the molding apparatus is set to 1.5 atm or more, preferably 1.5 atm or more.
By setting the pressure to 5 atm or more and 3 atm or less, volatilization of easily volatile components from the glass is suppressed and fogging of the mold and molded product is prevented.

[実施例] 以下、本発明の実施例を図面を参照しながら説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図はガラス素材中の易揮発成分の揮発量を調べるた
めに用いる加圧・加熱装置を示す断面図である。同図に
おいて、23はヒーター、24はSUS製リシリング5
は銅製、26は鏡面研磨済の上型、27は同下型、28
はガラス素材(光学素子成形用素材)であり、ガラス素
材28と上型26の間には約50μmの隙間がある。第
1図の装置は不図示のチャンバー内にあり、チャンバー
内の雰囲気ガス圧は任意に設定できるようになっている
。なお、上型及び下型の型材としては超硬合金、ガラス
素材としては■オハラ製SK12(Tg=sso℃)を
用いた。
FIG. 1 is a sectional view showing a pressurizing/heating device used to examine the volatilization amount of easily volatile components in a glass material. In the same figure, 23 is a heater, 24 is an SUS recyling 5
is made of copper, 26 is a mirror-polished upper mold, 27 is the same lower mold, 28
is a glass material (a material for molding an optical element), and there is a gap of about 50 μm between the glass material 28 and the upper mold 26. The apparatus shown in FIG. 1 is located in a chamber (not shown), and the atmospheric gas pressure in the chamber can be set arbitrarily. Note that the mold materials for the upper and lower molds were cemented carbide, and the glass material was SK12 manufactured by OHARA (Tg=sso°C).

以下、本発明の方法を順を追って説明する。Hereinafter, the method of the present invention will be explained step by step.

まず、第1図に示すように型の間にガラス素材を置く。First, as shown in Figure 1, a glass material is placed between the molds.

次いでチャンバー内の排気を開始して圧力が3 x 1
0−2T o r rになったら、雰囲気ガスとして窒
素ガスをチャンバー内に導入する。窒素ガス圧はlXl
0−’Torr、1気圧、1,5気圧、2気圧、3気圧
の5水準とした。
Next, the evacuation of the chamber is started and the pressure reaches 3 x 1.
When the temperature reaches 0-2 Torr, nitrogen gas is introduced into the chamber as an atmospheric gas. Nitrogen gas pressure is lXl
There were five levels: 0-' Torr, 1 atm, 1.5 atm, 2 atm, and 3 atm.

次に、ヒーターに通電して型とガラスを加熱して620
℃まで昇温しな。620℃で30分保持した後通電を停
止した。その後室温まで降温してから、チャンバー内よ
り上型を取り出した。取り出した上型には5K12ガラ
スより揮発した易揮発成分が付着していた。この付着物
の量を上型の曇り具合の変化(反射率の変化)で評価し
た。
Next, the heater is energized to heat the mold and glass to 620
Do not raise the temperature to ℃. After holding the temperature at 620°C for 30 minutes, electricity supply was stopped. After the temperature was lowered to room temperature, the upper mold was taken out from the chamber. Easily volatile components that had evaporated from the 5K12 glass were attached to the upper mold that was taken out. The amount of this deposit was evaluated by the change in cloudiness of the upper mold (change in reflectance).

第2図に反射率の測定結果を示す。反射率の値は、成形
に供する前の上型の反射率を100%とした相対値であ
る。第2図より明らかなように、上型の曇りは窒素ガス
圧が上昇するに従い減少し、1゜5気圧以上では量が通
常の許容限度内(反射率が90%以上)に収まった。
Figure 2 shows the results of reflectance measurements. The reflectance value is a relative value with the reflectance of the upper mold before molding being 100%. As is clear from FIG. 2, the fogging of the upper mold decreased as the nitrogen gas pressure increased, and at 1°5 atm or higher, the amount remained within normal permissible limits (reflectance of 90% or more).

以上の結果から、成形装置内の雰囲気ガス圧を高くする
と、ガラス素材表面からの易揮発成分の揮発を抑えられ
ることが明らかになった。
From the above results, it has become clear that by increasing the atmospheric gas pressure in the molding apparatus, volatilization of easily volatile components from the surface of the glass material can be suppressed.

次に、本発明の方法により光学素子のプレス成形を行な
った例を示す。
Next, an example in which an optical element was press-molded by the method of the present invention will be shown.

第3図はプレス成形に用いた装置を示す断面図である。FIG. 3 is a sectional view showing the apparatus used for press molding.

第3図中、1は密閉容器、2はそのフタ、3は光学素子
を成形する上型、4はその下型、5は上型押え、6は銅
製、7は型ホルダ−,8はヒーター、9は下型突き上げ
棒、10は該突き上げ棒を駆動させるエアーシリンダー
、11は油回転ポンプ、12,13.14はバルブ、1
5は不活性ガス導入パイプ、16はバルブ、17は排出
パイプ、18はバルブ、19は温度センサー、20は水
冷パイプ、21は密閉容器を支持する台を示す。
In Fig. 3, 1 is a sealed container, 2 is a lid thereof, 3 is an upper mold for molding an optical element, 4 is a lower mold, 5 is an upper mold holder, 6 is made of copper, 7 is a mold holder, and 8 is a heater. , 9 is a lower die push-up rod, 10 is an air cylinder that drives the push-up rod, 11 is an oil rotary pump, 12, 13, and 14 are valves, 1
5 is an inert gas introduction pipe, 16 is a valve, 17 is an exhaust pipe, 18 is a valve, 19 is a temperature sensor, 20 is a water cooling pipe, and 21 is a stand that supports the closed container.

まず、クラウン系光学ガラス(■オハラ製5K12、軟
化点5p=672℃、ガラス転移点Tg=550℃)又
はフリント系光学ガラス(■オハラ!!!SF8.軟化
点5p=567℃、ガラス転移点Tg=443℃)を所
定重量の球形状として成形のためのブランクを作成した
First, crown-based optical glass (■ OHARA 5K12, softening point 5p = 672°C, glass transition point Tg = 550°C) or flint-based optical glass (■ OHARA!!! SF8, softening point 5p = 567°C, glass transition point A blank for molding was prepared in the form of a sphere with a predetermined weight (Tg=443°C).

次に、密閉容器1のフタ2を開き、上型3及び上型押え
5を取外して下型4上に上記ブランクを載せて、上型3
及び上型押え5を取付けた。更にフタ2を閉じてから、
水冷パイプ20に水を流し、ヒーター8に通電した。こ
の時、窒素ガス用バルブ16、バルブ18及び排気系バ
ルブ12゜13.14を閉じておいた。次に、油回転ポ
ンプ11を作動させ、バルブ12を開き、容器1内を排
気した。容器1内の真空度が1o−”Torrとなった
後、バルブ12を閉じ、バルブ16.18を開いて窒素
ガスをボンベから密閉容器l内へと導入した。この時の
窒素ガス圧は1.5気圧又は3気圧とした。なお、真空
度が10−”Torrになるのは、型及びガラス素材の
温度が約150℃のときであった。また、昇温時には密
閉容器1に付いたリークバルブ(不図示)が自動的に開
いてリークさせてN2圧を一定に保ち、降温時にはバル
ブ16が自動的に開いてN2圧を一定に保つようになっ
ている。
Next, open the lid 2 of the airtight container 1, remove the upper mold 3 and the upper mold holder 5, place the blank on the lower mold 4, and place the blank on the upper mold 4.
And the upper mold presser foot 5 was attached. After closing the lid 2 again,
Water was flowed through the water cooling pipe 20, and the heater 8 was energized. At this time, the nitrogen gas valves 16, 18, and exhaust system valves 12, 13, and 14 were closed. Next, the oil rotary pump 11 was activated, the valve 12 was opened, and the inside of the container 1 was evacuated. After the degree of vacuum in the container 1 reached 1 o-'' Torr, the valve 12 was closed and the valve 16.18 was opened to introduce nitrogen gas from the cylinder into the closed container 1. At this time, the nitrogen gas pressure was 1 The pressure was set at .5 atm or 3 atm.The degree of vacuum reached 10-'' Torr when the temperature of the mold and glass material was approximately 150°C. In addition, when the temperature rises, a leak valve (not shown) attached to the closed container 1 automatically opens to allow leakage to keep the N2 pressure constant, and when the temperature falls, the valve 16 automatically opens to keep the N2 pressure constant. It has become.

所定温度になった後にエアーシリンダー10を作動させ
て80kg/cm”の圧力で5分間プレス成形を行なっ
た。加圧力を除去し、約り℃/分の速度でガラス転移点
以下になるまで冷却し、その後20℃/分以上の速度で
冷却を行ない、温度が200℃以下に下った後に、バル
ブ16.18を閉じ、リークバルブ13を開いて密封容
器1内に空気を導入した。次に、フタ2を開き、上型3
及び上型押え5を取外して成形済光学素子を取出した。
After the temperature reached a predetermined temperature, the air cylinder 10 was operated and press molding was performed at a pressure of 80 kg/cm for 5 minutes.The applied pressure was removed, and the molding was cooled at a rate of approximately ℃/min until the temperature reached below the glass transition point. After that, cooling was performed at a rate of 20° C./min or more, and after the temperature dropped to 200° C. or less, valves 16 and 18 were closed, and leak valve 13 was opened to introduce air into the sealed container 1.Next, , open the lid 2, and remove the upper mold 3.
Then, the upper mold presser 5 was removed and the molded optical element was taken out.

得られた光学素子の表面の曇りについて目視で調べた結
果を表1に示す。なお、No、5.6は比較例である。
Table 1 shows the results of a visual inspection of the surface of the optical element obtained. Note that No. 5.6 is a comparative example.

表1 *1 使用可能レベル *2 使用不可能レベル 以上のように、本発明の実施例においては、良好な表面
精度(表面粗度)の光学素子が成形できた。
Table 1 *1 Usable level *2 As shown above, in the examples of the present invention, optical elements with good surface precision (surface roughness) could be molded.

上記実施例では、硝材としてフリント系、クラウン系の
ものを用いたが、その他の硝材であっても同様に良好な
精度で成形が可能である。
In the above embodiments, flint-based and crown-based glass materials were used, but other glass materials can be similarly molded with good precision.

加圧のための雰囲気ガスとして窒素ガスを用いたが、非
酸化雰囲気ガスであればよく、例えばアルゴンガスやヘ
リウムガスも用いることができる。もちろん雰囲気ガス
圧は3気圧を越えてもよい。
Although nitrogen gas was used as the atmospheric gas for pressurization, any non-oxidizing atmospheric gas may be used, such as argon gas or helium gas, for example. Of course, the atmospheric gas pressure may exceed 3 atmospheres.

成形される光学素子の形状はどのようなものであっても
さしつかえない。
The optical element to be molded may have any shape.

型材として超硬合金を用いたが、高強度な材料であれば
よく、例えば窒化チタンをコートした型、窒化ケイ素型
、炭化ケイ素型も用いることができる。
Although cemented carbide was used as the mold material, any material with high strength may be used, such as a titanium nitride coated mold, a silicon nitride mold, or a silicon carbide mold.

[発明の効果] 以上の実施例から明らかなように、本発明によりガラス
素材からの易揮発成分の揮発が抑えられるので、多数回
の押圧成形をした場合でも成形用ガラス素材中の易揮発
成分が成形型表面に付着することがなく、曇りの無いす
なわち面精度に優れた光学素子を得ることができる。ま
た、成形用ガラス素材の面精度等を保ちながら、光学素
子を高い歩留りで大量に押圧成形できる。さらに一種類
のガラス素材により成形しているので、非球面度の大き
な形状でもクラック等の欠陥を生ずることなく、連続し
て高精度に成形できる。従って、従来高価になりがちで
あった非球面レンズ等の光学素子を低コストで大量に成
形できるようになった。
[Effects of the Invention] As is clear from the above examples, the present invention suppresses the volatilization of easily volatile components from the glass material, so even when pressure molding is performed multiple times, the easily volatile components in the glass material for molding are suppressed. It is possible to obtain an optical element with no clouding, that is, with excellent surface precision, without adhering to the surface of the mold. Further, optical elements can be press-molded in large quantities at a high yield while maintaining the surface precision of the glass material for molding. Furthermore, since it is molded from one type of glass material, even shapes with a large degree of asphericity can be molded continuously and with high precision without producing defects such as cracks. Therefore, optical elements such as aspherical lenses, which conventionally tended to be expensive, can now be molded in large quantities at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガラス素材中の易揮発成分の揮発量を調べるた
めに用いる加圧・加熱装置の模式断面図である。 第2図はガラス素材中の易揮発成分の揮発量と雰囲気ガ
ス圧との関係を示す図である。 第3図は本発明に用いる光学素子成形装置の一例の模式
断面図である。 1:密閉容器、    2:フタ、 3:上型、      4:下型、  −5:上型押え
、    6:銅製、 7:型ホルダ−、8:ヒーター、 9:下型突き上げ棒、 10:エアーシリンダー、 11:油回転ポンプ、 12.13,14:バルブ、 15:不活性ガス導入パイプ、 16:バルブ、    17:排出パイプ、18:バル
ブ、    19:温度センサー、20:水冷パイプ、
 21:台。 23:ヒーター、   24:リング 25:銅製、    26:上型、 27:下型、    28ニガラス素材。 代理人  弁理士  山 下 穣 平 第1図 第2図 第3図
FIG. 1 is a schematic cross-sectional view of a pressurizing/heating device used to examine the volatilization amount of easily volatile components in a glass material. FIG. 2 is a diagram showing the relationship between the volatilization amount of easily volatile components in the glass material and the atmospheric gas pressure. FIG. 3 is a schematic cross-sectional view of an example of an optical element molding apparatus used in the present invention. 1: Airtight container, 2: Lid, 3: Upper mold, 4: Lower mold, -5: Upper mold holder, 6: Copper, 7: Mold holder, 8: Heater, 9: Lower mold push-up rod, 10: Air Cylinder, 11: Oil rotary pump, 12.13, 14: Valve, 15: Inert gas introduction pipe, 16: Valve, 17: Discharge pipe, 18: Valve, 19: Temperature sensor, 20: Water cooling pipe,
21: Stand. 23: Heater, 24: Ring 25: Copper, 26: Upper mold, 27: Lower mold, 28 Glass material. Agent Patent Attorney Jo Taira Yamashita Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)成形用型内に配置された成形可能な状態の光学素
子成形用素材を該成形用型により加圧して光学素子の機
能面を成形する加圧成形法において、少なくとも前記成
形用型の内部の雰囲気ガス圧が、1.5気圧以上である
ことを特徴とする光学素子の製造方法。
(1) In a pressure molding method in which a moldable optical element molding material placed in a mold is pressurized by the mold to mold the functional surface of the optical element, at least A method for manufacturing an optical element, characterized in that the internal atmospheric gas pressure is 1.5 atmospheres or more.
(2)前記雰囲気ガス圧が1.5気圧以上3気圧以下で
あることを特徴とする請求項1記載の光学素子の製造方
法。
(2) The method for manufacturing an optical element according to claim 1, wherein the atmospheric gas pressure is 1.5 atm or more and 3 atm or less.
JP29992490A 1990-11-07 1990-11-07 Production of optical element Pending JPH04175231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29992490A JPH04175231A (en) 1990-11-07 1990-11-07 Production of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29992490A JPH04175231A (en) 1990-11-07 1990-11-07 Production of optical element

Publications (1)

Publication Number Publication Date
JPH04175231A true JPH04175231A (en) 1992-06-23

Family

ID=17878576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29992490A Pending JPH04175231A (en) 1990-11-07 1990-11-07 Production of optical element

Country Status (1)

Country Link
JP (1) JPH04175231A (en)

Similar Documents

Publication Publication Date Title
JP2620875B2 (en) Manufacturing method of glass molded products for precision optics
EP0078658B1 (en) A process for moulding glass shapes
JP2651266B2 (en) Glass blank for manufacturing optical element and method for manufacturing the same
JPS6067118A (en) Manufacture of optical element
JPH0353260B2 (en)
JPH0250059B2 (en)
JPH1045419A (en) Glass lens having glass coating layer and its production
JPH04175231A (en) Production of optical element
JPS6221733B2 (en)
JPH0359016B2 (en)
JPH0420854B2 (en)
JPH0283221A (en) Mold for forming optical element
JPS61291427A (en) Molded lens and production thererof
JPH04175230A (en) Production of optical element
JPS59123630A (en) Mold for molding optical element
JPS6250413B2 (en)
JPH0328136A (en) Production of optical element
JPS63151628A (en) Mold for forming optical element
JPH0769653A (en) Method and apparatus for producing optical glass element
JPH0477322A (en) Glass blank for producing optical element
JPS63222023A (en) Production of optical element
JPH0521854B2 (en)
JPS59121124A (en) Production of optical glass element
JPS6251211B2 (en)
JPS62256732A (en) Molding tool for glass lens