【発明の詳細な説明】
【産業上の利用分野】
本発明は高精度成形面を有する成形型でガラスを精密或
形し直接、光学レンズ等の光学素子を製造する方法に関
する.
C従来の技術〕
レンズ.プリズム,フィルタ等の光学素子の多くは、従
来ガラス等の光学素子形成用素材の研磨処理を主とした
方法によって形成されてきた.しかしながら、この研磨
処理には相当な時間及び熟練技術が必要とされ、短時間
に大量に製造することは困難であった.そこで、一対の
戊形用型内に光学素子成形用素材を挿入配置し、これを
加圧するだけでレンズ等の光学素子を成形する方法が各
種提案されている,
上記方法で精密成形品を得るためには、精密成形に適し
たガラス材料、ガラス塊の寸法形状および表面状態、ガ
ラス塊内の温度分布、型の材質、型の温度、成形圧力、
時間および雰囲気などについて多くの工夫が必要とされ
ている.
これらの多くの考慮事項のうち、使用するガラス材料は
、その粘性特性や安定性等が各種の成形条件を実質的に
支配する要因となるので、型の寿命や成形の難易、ひい
ては、成形品の成形精度に大きな影響を及ぼす.
このような理由から、この種の精密成形に適したガラス
材料とその使用技術については、これまでに低転移温度
特性を有するガラスを中心に多くの試験研究がなされて
いる.
またプレス成形用のガラスとして、リン酸塩系ガラス(
特開昭55−154343 、同5g−79839、同
60−122749 ) 、フル才ロリン酸塩系ガラス
(同56−59641 ,同56−149343 、同
58−217451 ) ,フツホウ酸塩系ガラス(同
59−146952 、同62− 100449)、ア
ルミノフルオロホウケイ酸鉛系ガラス(同59−839
59 )が知られている。
〔発明が解決しようとする課題1
しかしながらhosやF成分をガラス中に導入すること
により転移温度を低下させたガラスは、転移温度は低下
するもののP20,やF成分が反応性に富むため、ガラ
スと成形型との融着を促進し、結晶粒界を有する通常の
型材を用いると型材の結晶粒界が腐食し表面粗度が劣化
するなどの難点がある.
また通常の鉛を多く含有するフリントガラスは一般的に
プレス成形の際に鉛を揮発する傾向があるため型の劣化
が早く、成形品の表面がくもってしまうという欠点があ
った.
〔課題を解決するための手段J
本発明は高精度成形面を有する成形型で軟化ガラス塊を
加圧成形することにより光学素子を製造する方法におい
て、該ガラス塊の材料として酸化リチウムLi2Oを含
有するフリントガラスを使用することを特徴とする光学
素子の製造方法である.本発明によればLiaOをフリ
ントガラス中に導入したガラスを用いることにより低温
域で成形することができ、ガラスと型面との反応性が格
段に弱いため融着の危険が無く型の劣化の無い成形を可
能としたものである.
また高温にまでガラスを加熱する必要がないためガラス
より揮発する鉛の量は極めて少なくなるため型表面にガ
ラスから揮発した鉛が析出し型表面を劣化させたり成形
品をくもらせてしまうことがない。
〔実施例〕
第1図は本発明によるガラス材を用いたレンズの成形装
置であり、同図において1は真空槽本体、2はそのフタ
、3は光学素子を成形するための上型、4はその下型、
5は上型をおさえるための上型おさえ、6は胴型、7は
型ホルダー、8はヒーター、9は下型をつき上げるつき
上げ棒、l0は該つき上げ棒を作動するエアシリンダ、
1lは油回転ボンブ、12. 13. 14はバルブ、
l5は不活性ガス流入パイプ、l6はバルブ、l7はリ
ークパイプ、l8はバルブ、l9は温度センサ、20は
水冷バイブ、21は真空槽を支持する台を示す.
第2図は型構造を示す。22は型の母材、23は鏡面、
24は硝子ブランクを示す.
第3図は成形時の型を示す。25は戊形されたレンズを
示す.
次に、本発明によるガラスのレンズのプレス成形を行な
った例について詳述する.表1は実験に供した硝材の種
類を示す.
レンズを製作する工程を次に述べる.まず、型の母材(
WC(90%)+GO(10%))を所定の形状に加工
し、レンズ形成面を鏡面研磨する.
次に、表1に示した供試材を所定の量に調整し球状にし
たブランクを型キャビティー内に置き、装置lに配置す
る.
硝子ブランクを投入した型を装置内に配置してから真空
槽1のフタ2を閉じ、水冷パイブ20に水を流し、ヒー
ター8をONにする。この時窒素ガス用バルブl6及び
l8は閉じ、排気系バルブ!2. 13.14も閉じて
いる.なお、油回転ポンプIIは常に回転している。
バルブl2を開け排気をはじめ10−”Torr以下に
なったらバルブl2を閉じ、バルブl6を開いて窒素ガ
スをボンベより真空槽内に導入する。所定温度になった
らエアシリンダlOを作動させて 100kg/cm”
の圧力で5分間加圧する。圧力を除去した後、冷却速度
を−5℃/minで転移点以下になるまで冷却し、その
後は−20℃/min以上の速度で冷却を行い、150
℃以下に下がったらバルブ16を閉じ、リークバルブl
3を開いて真空槽1内に空気を導入する。それからフタ
2を開け上型おさえをはずして成形物を取り出す。
上記のようにして、表1に示した光学ガラスを使用して
第3図に示すレンズ25を成形した.成形の結果を表2
に示す。
表2よりわかるように比較例においては、良好な離型性
が得られるものではレンズと型のくもり(型面の劣化に
よる)が発生し、もう1つの比較例では融着が発生した
.しかし本発明の実施例(No. 1〜6)において
は、試験後の型面に劣化が認められずまた離型性も良好
である.なお上記実施例のフリントガラス以外の酸化リ
チウムLiaOを含有するフリントガラスを用いた場合
も同様に良好な結果を得ることができる.
〔発明の効果〕
上述のとおり、本発明にかかる光学素子の製造方法は、
酸化リチウムLiaOを含有するフリントガラスを用い
て光学素子を製造する方法であるので、型面の精度を劣
化させることがなく、しかも、優れた転写性と離型性と
を同時に満たすことができる。したがって、成形型の寿
命を飛躍的に向上させ得るとともに、高精度の製品、す
なわち、カメラレンズやCDビックアップ用等の微小レ
ンズおよびプリズム等の光学素子を歩留りよく取得し得
るので、産業上きわめて有用である。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for directly manufacturing optical elements such as optical lenses by precisely shaping glass using a mold having a high-precision molding surface. C. Conventional technology] Lens. Many optical elements such as prisms and filters have traditionally been formed by methods that mainly involve polishing materials for forming optical elements, such as glass. However, this polishing process requires a considerable amount of time and skill, making it difficult to manufacture in large quantities in a short period of time. Therefore, various methods have been proposed for molding optical elements such as lenses by simply inserting and arranging an optical element molding material into a pair of hollow molds and applying pressure. Precision molded products are obtained using the above method. In order to do this, we need to know the glass material suitable for precision molding, the size and shape of the glass gob, the surface condition, the temperature distribution inside the glass gob, the material of the mold, the temperature of the mold, the molding pressure,
Much thought is needed regarding time and atmosphere. Among these many considerations, the viscosity and stability of the glass material used are factors that substantially control various molding conditions, so they affect the life of the mold, the difficulty of molding, and ultimately the molded product. This has a large effect on the forming accuracy. For these reasons, much research and research has been carried out on glass materials suitable for this type of precision molding and their use techniques, focusing on glasses with low transition temperature characteristics. Phosphate glass (
JP-A-55-154343, JP-A-55-79839, JP-A-JP-A-60-122749), fluorophosphate-based glass (JP-A-56-59641, JP-A-56-149343, JP-A-JP-A-58-217451), fluoroborate-based glass (JP-A-JP-A 1987-59) -146952, 62-100449), lead aluminofluoroborosilicate glass (59-839)
59) is known. [Problem to be Solved by the Invention 1] However, in a glass whose transition temperature is lowered by introducing hos or F components into the glass, although the transition temperature is lowered, the P20 and F components are highly reactive, so the glass If a normal mold material with grain boundaries is used, the grain boundaries of the mold material will corrode and the surface roughness will deteriorate. In addition, flint glass that contains a large amount of lead generally tends to volatilize lead during press molding, resulting in rapid deterioration of the mold and clouding of the surface of the molded product. [Means for Solving the Problems J] The present invention provides a method for manufacturing an optical element by pressure-molding a softened glass gob with a mold having a high-precision molding surface, which includes lithium oxide Li2O as a material of the glass gob. This is a method of manufacturing an optical element characterized by using flint glass. According to the present invention, by using a glass in which LiaO is introduced into the flint glass, molding can be performed in a low temperature range, and since the reactivity between the glass and the mold surface is extremely weak, there is no risk of fusion and mold deterioration. This enables molding without the need for molding. In addition, since there is no need to heat the glass to high temperatures, the amount of lead that volatilizes from the glass is extremely small, so lead volatilized from the glass can precipitate on the mold surface and deteriorate the mold surface or cloud the molded product. do not have. [Example] Fig. 1 shows a lens molding apparatus using a glass material according to the present invention, in which 1 is a vacuum chamber body, 2 is a lid thereof, 3 is an upper mold for molding an optical element, and 4 is a molding apparatus for a lens using a glass material according to the present invention. is its lower mold,
5 is an upper mold presser for holding down the upper mold, 6 is a body mold, 7 is a mold holder, 8 is a heater, 9 is a lifting rod for lifting up the lower mold, 10 is an air cylinder that operates the lifting rod,
1l is an oil rotary bomb, 12. 13. 14 is a valve,
15 is an inert gas inflow pipe, 16 is a valve, 17 is a leak pipe, 18 is a valve, 19 is a temperature sensor, 20 is a water-cooled vibrator, and 21 is a stand that supports the vacuum chamber. Figure 2 shows the mold structure. 22 is the base material of the mold, 23 is the mirror surface,
24 indicates a glass blank. Figure 3 shows the mold during molding. 25 indicates an oval lens. Next, an example of press molding of a glass lens according to the present invention will be described in detail. Table 1 shows the types of glass materials used in the experiment. The process of manufacturing the lens is described below. First, the base material of the mold (
WC (90%) + GO (10%)) is processed into a predetermined shape, and the lens forming surface is mirror polished. Next, a spherical blank prepared by adjusting the sample materials shown in Table 1 to a predetermined amount is placed in the mold cavity, and placed in the apparatus 1. After placing the mold containing the glass blank in the apparatus, the lid 2 of the vacuum chamber 1 is closed, water is allowed to flow through the water cooling pipe 20, and the heater 8 is turned on. At this time, nitrogen gas valves l6 and l8 are closed, and the exhaust system valve is closed! 2. 13.14 are also closed. Note that the oil rotary pump II is constantly rotating. Open valve 12 to begin exhausting, and when the temperature drops below 10-" Torr, close valve 12, and open valve 16 to introduce nitrogen gas from the cylinder into the vacuum chamber. When the temperature reaches a predetermined temperature, operate air cylinder 10 and release 100 kg. /cm”
Apply pressure for 5 minutes. After removing the pressure, cool at a cooling rate of -5°C/min until the temperature drops below the transition point, and then cool at a rate of -20°C/min or higher to 150°C.
When the temperature drops below ℃, close the valve 16 and close the leak valve l.
3 to introduce air into the vacuum chamber 1. Then, open the lid 2, remove the upper mold holder, and take out the molded product. As described above, the lens 25 shown in FIG. 3 was molded using the optical glass shown in Table 1. Table 2 shows the molding results.
Shown below. As can be seen from Table 2, in the comparative examples, clouding of the lens and mold (due to deterioration of the mold surface) occurred in the one with good mold releasability, and in the other comparative example, fusion occurred. However, in Examples (Nos. 1 to 6) of the present invention, no deterioration was observed on the mold surface after the test, and the mold releasability was also good. Note that similar good results can be obtained when a flint glass containing lithium oxide LiaO other than the flint glass of the above example is used. [Effects of the Invention] As described above, the method for manufacturing an optical element according to the present invention includes the following steps:
Since this is a method of manufacturing an optical element using flint glass containing lithium oxide LiaO, the accuracy of the mold surface does not deteriorate, and moreover, it is possible to simultaneously satisfy excellent transferability and mold releasability. Therefore, the life of the mold can be dramatically improved, and high-precision products, such as optical elements such as microlenses and prisms for camera lenses and CD pickups, can be obtained with a high yield, making it extremely useful in industry. Useful.
【図面の簡単な説明】[Brief explanation of drawings]
第1図はレンズの成形装置を示す図、第2図は型の構造
を示す図、第3図は成形された状態を示す図である.
1;真空槽本体 2:フタ
3:上型 4:下型
5:上型おさえ 6:胴型
7:型ホルダー 8=ヒーター
9:つき上げ棒 lO:エアシリンダll:
15:
17=
19=
21=
23:
25:
油回転ボンブ
流人バイブ
流出パイプ
温度センサ
台
鏡面
成形されたレンズ
12, +3, 14 :バルブ
l6:バルブ
l8:バルブ
20:水冷パイプ
22二型の母材
24;硝子ブランク
第1図
?Figure 1 is a diagram showing a lens molding device, Figure 2 is a diagram showing the structure of a mold, and Figure 3 is a diagram showing a molded state. 1: Vacuum chamber body 2: Lid 3: Upper mold 4: Lower mold 5: Upper mold presser 6: Body mold 7: Mold holder 8 = Heater 9: Lifting rod 1O: Air cylinder 11: 15: 17= 19= 21 = 23: 25: Oil rotary bomb Ryujin vibe Outflow pipe Temperature sensor stand Mirror-molded lens 12, +3, 14: Valve l6: Valve l8: Valve 20: Water cooling pipe 22 Type 2 base material 24; Glass blank No. 1 figure?