JPS59121126A - Mold for molding optical element - Google Patents

Mold for molding optical element

Info

Publication number
JPS59121126A
JPS59121126A JP23142782A JP23142782A JPS59121126A JP S59121126 A JPS59121126 A JP S59121126A JP 23142782 A JP23142782 A JP 23142782A JP 23142782 A JP23142782 A JP 23142782A JP S59121126 A JPS59121126 A JP S59121126A
Authority
JP
Japan
Prior art keywords
mold
optical element
molding
titanium carbide
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23142782A
Other languages
Japanese (ja)
Other versions
JPH0359016B2 (en
Inventor
Kenzo Matsuzaka
健三 松坂
Nobuo Nakamura
宣夫 中村
Seitarou Okano
岡野 誓太朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP23142782A priority Critical patent/JPS59121126A/en
Publication of JPS59121126A publication Critical patent/JPS59121126A/en
Publication of JPH0359016B2 publication Critical patent/JPH0359016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/03Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/05Press-mould die materials
    • C03B2215/07Ceramic or cermets

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:The titled mold capable of forming an optical element having improved surface precision by heating and pressurizing method, consisting of a mixture of titanium carbide and a metal. CONSTITUTION:A mixture of 100pts.wt. titanium carbide and about 20-35pts.wt. metal (e.g., molybdenum, nickel, or cobalt) is molded into a given shape, sintered, densified by hot press procession at constant pressure, and the surface of the mold is polished until the surface roughness reaches <=about 0.05mu, to give a mold for molding an optical glass element. Since the mold has a coefficient of linear expansion almost equal to that of optical glass, it will not cause fastening under heating, has improved hardness and durability, and improved mirror surface properties, so that a prepared optical element can be directly used without polishing it.

Description

【発明の詳細な説明】 本発明は光学素子成形用型に関するものである。[Detailed description of the invention] The present invention relates to a mold for molding an optical element.

レンズ、プリズム、フィルターなどの光学素子は従来、
多くはガラスの研摩処理によって製造されている。しか
し、研摩処理には相当な時間と技能を要するものである
。また、非球面レンズを研摩処理で製造するには一層高
度の研摩技術が必要でまた処理時間も長くならざるを得
な°いものである。とめような研摩処理による光学素子
の製造方法に対して、加熱加圧による成形によって光学
素子を製造する方法がある。この成形方法によれば、短
時間に光学素子を製造することができ、また、非球面レ
ンズも球面レンズと同じように容易且つ短時間に製造す
ることができるものであるが、加熱加圧による成形方法
においてもなお改善されるべき問題点がある。それは、
光学素子として必要な表面精度を有する光学素子を型で
作るのは容易でなかつたことである。即ち、従来、この
型としてはグラファイトから形成されたものが多く使用
されて来たが、グラファイト製型を用いた場合には、良
好な表面精度を有する光学素子を製造することができな
かった。本発明は、型材を選択することによって、良好
匁表面精度を有する光学素子を製造できる型を提供する
ことを主たる目的とする。
Optical elements such as lenses, prisms, and filters are conventionally
Most are manufactured by polishing glass. However, polishing requires considerable time and skill. Furthermore, manufacturing an aspherical lens by polishing requires a more sophisticated polishing technique and requires a longer processing time. In contrast to a method of manufacturing an optical element using a continuous polishing process, there is a method of manufacturing an optical element by molding using heat and pressure. According to this molding method, optical elements can be manufactured in a short time, and aspherical lenses can also be manufactured easily and in a short time in the same way as spherical lenses. There are still problems that need to be improved in the molding method. it is,
It is not easy to mold an optical element with the surface precision necessary for an optical element. That is, conventionally, many molds made of graphite have been used, but when a graphite mold is used, it has not been possible to manufacture an optical element with good surface accuracy. The main object of the present invention is to provide a mold that can produce an optical element with good surface accuracy by selecting a mold material.

本発明による光学素子成形用型は、炭化チタンおよび金
属の混合物から形成されていることを特徴とするもので
ある。即ち本発明は、炭化チタンおよび金属から形成さ
れた型を使用することによって、加熱加圧により高い表
面精度を有する光学素子を製造することができる。前述
のように、光学素子をつくる型として、従来、グラファ
イトから形成されたものが多く使用されているが、グラ
ファイトは多孔性であるために、いかに研摩しても、光
学素子として充分な表面精度をもつ素子をつくるに充分
な表面粗さの内壁表面をもつ型を得ることができなかっ
たが、本発明においては型として炭化チタンおよび金属
から形成されたものを使用することによって、表面粗さ
5/1ooμ以下の内壁表面をもつ型を得ることができ
、且つこのような表面粗さに正確に対応する表面精度を
もつ光学素子をつくることができる。従って、本発明に
よる型の内壁の表面粗さは、通常”/100μ以下、特
には3/1ooμ以下に設定されるのが好適で、このよ
うな高い表面精度を有する型としては、炭化チタンと金
属の焼結体の表面に高い圧力をかけて表面に表面粗さに
支障となるようなボア(巣)がない状態にし、さらに研
摩して製造したものが好適である。型を形成する炭化チ
タンと金属の組成比は適宜設定されるが、一般に5、炭
化チタン100(重量)部に対して、金属は15〜40
部、特には20〜35部の範囲が好適である。また、こ
のような金属としては、モリブデンが特に好ましく、そ
の他にニッケル、コバルトなどが好適である。
The mold for molding an optical element according to the present invention is characterized in that it is formed from a mixture of titanium carbide and metal. That is, in the present invention, by using a mold made of titanium carbide and metal, an optical element having high surface accuracy can be manufactured by heating and pressing. As mentioned above, many molds made of graphite have traditionally been used as molds for making optical elements, but because graphite is porous, no matter how much it is polished, the surface precision is not sufficient for optical elements. However, in the present invention, by using a mold made of titanium carbide and metal, the surface roughness can be improved. It is possible to obtain a mold having an inner wall surface of 5/1 ooμ or less, and to produce an optical element having a surface precision that accurately corresponds to such surface roughness. Therefore, it is preferable that the surface roughness of the inner wall of the mold according to the present invention is normally set to ''/100μ or less, particularly 3/1ooμ or less, and molds with such high surface precision are made of titanium carbide and titanium carbide. It is preferable to manufacture a sintered metal body by applying high pressure to the surface to make the surface free of bores that would impede surface roughness, and then polishing it.Carbonization to form a mold The composition ratio of titanium and metal is set as appropriate, but in general, the proportion of metal is 15 to 40 parts per 100 parts (by weight) of titanium carbide.
parts, particularly in the range from 20 to 35 parts. Further, as such a metal, molybdenum is particularly preferred, and nickel, cobalt, etc. are also preferred.

然して、炭化チタン、ニッケルおよびモリブデンを混合
したものは、線膨退係数が8.3X10’で光学ガラス
(SrI2)の8.2X10’と殆んど同じであり焼き
じめが起らないこと、又ガラスが型にくっつか々いこと
(高製性良)、硬度が高いこと(Hv1850)、耐久
性が優れていること、及び前述した高い鏡面性が得られ
ること、という利点を有している。
However, a mixture of titanium carbide, nickel, and molybdenum has a linear expansion coefficient of 8.3X10', which is almost the same as 8.2X10' for optical glass (SrI2), and no burning occurs. In addition, it has the advantages that the glass does not easily stick to the mold (high quality), has high hardness (Hv1850), is excellent in durability, and can obtain the aforementioned high specularity. .

本発明による型によって加熱加圧により成型きれた光学
素子は後研摩が不要で、そのまま光学素子として用いる
ことができるものである。また成形工程である、加熱加
圧条件は使用する各種ガラスやMgF  * CaF 
 t Ti0z 、Zn8などの結晶材料の2 種類によって適宜設定されるが、ガラスの場合には加圧
の際のガラスの温度は、ガラス転移点以上である。型に
収容する前に予め加熱しておいてもよいし、型に収容後
に型と共に加熱してもよい。
The optical element molded by heating and pressurizing with the mold according to the present invention does not require post-polishing and can be used as an optical element as it is. In addition, the heating and pressing conditions in the molding process vary depending on the various glasses used and MgF * CaF
It is appropriately set depending on the two types of crystal materials such as t Ti0z and Zn8, but in the case of glass, the temperature of the glass during pressurization is equal to or higher than the glass transition point. It may be heated in advance before being placed in the mold, or it may be heated together with the mold after being placed in the mold.

然して、加熱によって酸化を生ずるのを防止するために
、この成形工程は、真空中または窒素ガス、ヘリウム等
の不活性雰囲気中にて行なうのがよい。
However, in order to prevent oxidation from occurring due to heating, this molding step is preferably carried out in a vacuum or in an inert atmosphere such as nitrogen gas or helium.

以下、本発明による型を使用する光学素子の製造の実施
例、および従来のグラファイト族の型を使用する光学素
子の製造に関する比較例について説明する。
Hereinafter, an example of manufacturing an optical element using a mold according to the present invention and a comparative example of manufacturing an optical element using a conventional graphite group mold will be described.

実施例1 炭化チタン100重量部にニッケル12重量部、及びモ
リブデン6重量部を混合し、外径17m厚さ15Wnに
プレス後焼結した素材を熱間静圧プレス法(HIP )
により気体(アルゞン)を圧力媒体として5000 k
g/caの高圧をかけて緻密化した。
Example 1 A material was prepared by mixing 100 parts by weight of titanium carbide, 12 parts by weight of nickel, and 6 parts by weight of molybdenum, pressing the mixture into an outer diameter of 17 m and a thickness of 15 Wn, and then sintering the material using the hot isostatic pressing method (HIP).
5000 k using gas (Arjun) as the pressure medium.
It was densified by applying a high pressure of g/ca.

次にカーブゼネレータ(球面創成機)を使用しレンズの
球面を創成するのと同じ要領で研削し表面粗さを10 
tt程度にした。さらに粒径10μのアルミナ砥粒を使
ってラッピングして1μ程度の表面粗さにしこれを粒径
0.5μのダイヤによって磨き上げて第1図(イ)に示
す様に触針式粗さ測定法によって測定した最大粗さRm
axを0.015μ以下とした。
Next, use a curve generator (spherical surface generator) to grind the surface in the same way as creating the spherical surface of the lens, and reduce the surface roughness to 10.
I made it about tt. Furthermore, the surface was lapped using alumina abrasive grains with a grain size of 10μ to obtain a surface roughness of about 1μ, which was then polished using a diamond with a grain size of 0.5μ, and the roughness was measured using a stylus as shown in Figure 1 (a). Maximum roughness Rm measured by method
ax was set to 0.015μ or less.

レンズの成形装置と加工手順を第2図によって説明する
The lens molding apparatus and processing procedure will be explained with reference to FIG.

第2図中、1は真空槽(ベルシャー)本体、2はその蓋
、3は光学素子を成形するための上型、4はその下型、
5は上型をおさえるための上型おさえ、6は用型、7は
型ホルダ−,8はヒータ、9は下型をつき上げるつき上
げ棒、10は該つき上げ棒を作動するエアシリンダ、1
1は油廻転ポンプ、12,13.14はノ々ルブ、15
は窒素ガス導入パイプ、16はノ々ルブ、17は排出ノ
ぐイブ、18はバルブ、19は温度センサ、20は水冷
ノJ?イゾ、21は真空槽(ペルツヤ−)を載せる台を
示す。
In Figure 2, 1 is the main body of the vacuum chamber (Belscher), 2 is its lid, 3 is an upper mold for molding optical elements, 4 is its lower mold,
5 is an upper mold presser for holding down the upper mold; 6 is a mold; 7 is a mold holder; 8 is a heater; 9 is a lifting rod for lifting up the lower mold; 10 is an air cylinder for operating the lifting rod; 1
1 is an oil rotary pump, 12, 13.14 is a nonolube, 15
is the nitrogen gas introduction pipe, 16 is the nozzle valve, 17 is the discharge nozzle, 18 is the valve, 19 is the temperature sensor, and 20 is the water cooling nozzle. Reference numeral 21 indicates a stand on which a vacuum chamber (Pelzya) is placed.

光学ガラス素子を製造するKあたって、前準備としてフ
リント系ガラス(SrI2)を外径15.8mm厚さ2
閾の円板状にしたものを両面層いておく(これをブラン
クと゛呼ぶ)。真空槽1の蓋2をあけ、ブランク22を
下型4の上にのせ上型3をセットしてから真空槽の蓋2
を閉じ水冷ツクイブに水を流してヒータ8をONにする
。このとき窒素がス用バルブ16および18は閉じ排気
系/?バルブ2゜13.14も閉じている。尚油廻転ポ
ンゾ11は常に廻転している。バルブ12を開は排気を
はじめ、10 ’Torr以下になったらバルブ12を
閉じバルブ16.18を開いて窒素ガスをデンペよ、り
真空槽内に導入する。温度が650℃になったらエアシ
リンダ10を作動させて10−の圧力で成形する。転移
点以下になるまで加圧をつづけこの間は冷却速度を10
 ’C71s位に制御する。その後は20″C/III
以上の速度で冷却を行ない200℃以下に下がったらバ
ルブ16.18を閉じリークバルブ13を開いて真空槽
1内に空気を導入する。それから蓋2を開は上型おさえ
5をはずして成形物を取り出す。
In preparation for manufacturing optical glass elements, flint-based glass (SrI2) was prepared with an outer diameter of 15.8 mm and a thickness of 2.
A disk-shaped threshold is layered on both sides (this is called a blank). Open the lid 2 of the vacuum chamber 1, place the blank 22 on the lower mold 4, set the upper mold 3, and then open the lid 2 of the vacuum chamber.
Close it, let water flow through the water cooling tube, and turn on the heater 8. At this time, the nitrogen gas valves 16 and 18 are closed and the exhaust system/? Valve 2°13.14 is also closed. The oil rotating Ponzo 11 is constantly rotating. The valve 12 is opened to begin evacuation, and when the temperature becomes less than 10'Torr, the valve 12 is closed and the valves 16 and 18 are opened to introduce nitrogen gas into the vacuum chamber. When the temperature reaches 650° C., the air cylinder 10 is activated and molding is performed at a pressure of 10 −. Continue to apply pressure until the temperature drops below the transition point, and during this time reduce the cooling rate to 10
'C71s control. After that, 20″C/III
Cooling is performed at the above rate, and when the temperature drops to below 200° C., valves 16 and 18 are closed, leak valve 13 is opened, and air is introduced into vacuum chamber 1. Then, the lid 2 is opened, the upper mold presser 5 is removed, and the molded product is taken out.

上記のようにして、7リント系光学ガラス、(8F14
)(軟化点5P=586℃、転移点Tg = 485℃
)を使用して、第3図に示す形状および寸法のレンズを
成形した結果、第1図(イ)に示すものとほぼ同じ表面
の粗さのレンズを得ることができた。この時の成形条件
すなわち時間一温度関係図を第4図に示す。
As described above, 7 lint optical glass (8F14
) (Softening point 5P = 586℃, transition point Tg = 485℃
) was used to mold a lens having the shape and dimensions shown in FIG. 3, resulting in a lens with approximately the same surface roughness as that shown in FIG. 1(a). FIG. 4 shows the molding conditions at this time, that is, a time-temperature relationship diagram.

実施例2 実施例1と同様の割合で、炭化チタンとコバルトとモリ
ブデンを混合し、外径17瓢厚さ151II11にプレ
ス後、焼結した素材を熱間静圧プレス法(HIP )に
より気体(アルゴン)を圧力媒体として5000V−の
高圧をかけて緻密化した。
Example 2 Titanium carbide, cobalt, and molybdenum were mixed in the same proportions as in Example 1, and after pressing to an outer diameter of 17 mm and thickness of 151 mm and 11 mm, the sintered material was heated to a gas ( The material was densified by applying a high pressure of 5000 V using argon (argon) as a pressure medium.

この素材によって、実施例1と同様の処理を施して、レ
ンズを成形したところ、実施例1と全く同様の結果を得
ることができた。
When this material was subjected to the same treatment as in Example 1 and a lens was molded, exactly the same results as in Example 1 could be obtained.

且亘且 従来のグラファイト製の型を使用して上記の実施例と同
じレンズを同じ装置によって成形した。
The same lenses as in the above examples were molded on the same equipment using conventional graphite molds.

この場合には、型の表面粗さは第1図(ロ)に示す如く
、Rmax O,3μで、成形されたレンズは第1図(
ハ)に示すようにRmaxQ、gμの表面粗さのものし
か得られなかった。
In this case, the surface roughness of the mold is Rmax O, 3μ, as shown in Figure 1 (B), and the molded lens has a roughness of Rmax O, 3μ, as shown in Figure 1 (B).
As shown in c), only surface roughness of RmaxQ and gμ was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)は本発明による型の表面粗さの例を示す図
、第1図(ロ)(ハ)は従来のグラファイト製の同様の
型の表面粗さおよび成形されたレンズの表面粗さを示す
図、第2図はレンズの成形装置を示す断面図、第3図は
成形されるレンズの一例の形状および寸法を示す図、第
4図は成形の際における時間一温度関係図である。 ・、、、、、−777゜ 本多小平1 j−−ノ 暫 飾 興 1: 第1図(イ) 第1 図(ロ) 縦1目盛004左    横1目盛0.05mRRmに
0.防第1 図(ハ) 第2図 2 第3図 手続補正書 ヨ 1、事件の表示 昭和97年特 許願第23/yλ2号 事件との関係 出 願 人 4、代理人 住 所  東京都千代田区丸の内2丁目6番2号丸め内
へ重洲ビル330) 補    正    書 本願明細書中下記事項を補正いたします。 d己 1、第4頁2行目に 「混合」とあるな 「焼結」と訂正する。 2、第4頁5行目に f(高型性良)」とあるを 「(離型住良)」と訂正する。 3、第6頁2行目に 「真空槽(ベルジ1=−)本体」とあるを「密閉容器」
と訂正する。 4、第6頁11行目に 「真空槽(ベルジP−)」とあるを 「密閉容器」と訂正する。 5、第6頁16行目、18行目、第7頁4〜5行目に 「真空槽」とあるをそれぞれ 「密閉容器」と訂正する。 6、第6頁下かも2行目に 「し−夕8をONにする。」とあるを 「し−夕8に通電する。」と訂正する。 7、第7頁3〜4行目に [パルづ16,184とあるを 「パルづ16」と訂正する。 8、第7頁10〜11行目に 「パルづ16,18を閉じツークバJしづ13を開いて
真空槽1内に」とあるを 「パルづ16を閉じパルづ13を開いて密閉容器1内に
」と訂正する。
Figure 1 (a) shows an example of the surface roughness of a mold according to the present invention, and Figures 1 (b) and (c) show the surface roughness of a similar mold made of conventional graphite and the surface of a molded lens. A diagram showing roughness, Figure 2 is a sectional view showing a lens molding device, Figure 3 is a diagram showing the shape and dimensions of an example of a lens to be molded, and Figure 4 is a time-temperature relationship diagram during molding. It is.・・・・・・−777゜Honda Kodaira 1 J--ノ temporary decoration 1: Figure 1 (a) Figure 1 (b) Vertical 1 scale 004 left Horizontal 1 scale 0.05 mRRm 0. Defense Figure 1 (c) Figure 2 2 Figure 3 Procedural Amendment Yo 1, Indication of the case Relationship to 1989 Patent Application No. 23/yλ2 Case Applicant 4, Agent Address Chiyoda-ku, Tokyo 2-6-2 Marunouchi Shigesu Building 330) Amendment The following matters in the specification of the application are to be amended. On page 4, line 2 of d-1, the word "mixing" is corrected to "sintering." 2. In the 5th line of page 4, the text ``f (high mold quality)'' is corrected to ``(mold release quality)''. 3. On the 2nd line of page 6, replace "vacuum chamber (Berge 1 = -) body" with "closed container"
I am corrected. 4. On page 6, line 11, ``vacuum chamber (Belge P-)'' is corrected to ``closed container.'' 5. On page 6, lines 16 and 18, and on page 7, lines 4-5, the words ``vacuum chamber'' are corrected to ``closed container.'' 6. In the second line at the bottom of page 6, correct the text ``Turn on the power switch 8.'' to ``Turn on the power to the switch 8.'' 7. On page 7, lines 3 and 4, [Palzu 16,184 is corrected to read "Palzu 16." 8, page 7, lines 10-11, it says ``Close paludu 16 and 18, open Tsukuba J-shizu 13, and put it in the vacuum chamber 1.''"Inside," he corrected.

Claims (1)

【特許請求の範囲】[Claims] 炭化チタンおよび金属の混合材料から形成されているこ
とを特徴とする光学素子成形用型。
A mold for molding an optical element, characterized in that it is formed from a mixed material of titanium carbide and metal.
JP23142782A 1982-12-27 1982-12-27 Mold for molding optical element Granted JPS59121126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23142782A JPS59121126A (en) 1982-12-27 1982-12-27 Mold for molding optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23142782A JPS59121126A (en) 1982-12-27 1982-12-27 Mold for molding optical element

Publications (2)

Publication Number Publication Date
JPS59121126A true JPS59121126A (en) 1984-07-13
JPH0359016B2 JPH0359016B2 (en) 1991-09-09

Family

ID=16923401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23142782A Granted JPS59121126A (en) 1982-12-27 1982-12-27 Mold for molding optical element

Country Status (1)

Country Link
JP (1) JPS59121126A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118638A (en) * 1983-11-26 1985-06-26 Hoya Corp Mold for forming glass lens
US5073313A (en) * 1989-07-25 1991-12-17 Mitsubishi Gas Chemical Co., Ltd. Process for producing low-dust-level polycarbonate molded article
US5171348A (en) * 1989-06-20 1992-12-15 Matsushita Electric Industrial Co., Ltd. Die for press-molding optical element
EP0702524A1 (en) * 1993-03-05 1996-03-27 SAHAGEN, Armen, N. Probe for monitoring a fluid medium
US5538528A (en) * 1993-01-07 1996-07-23 Matsushita Electric Industrial Co., Ltd. Glass optical element press-molding die having a tantalum containing alloy surface layer
US5822134A (en) * 1993-05-26 1998-10-13 Canon Kabushiki Kaisha Optical lens and mold for molding the same
KR100446914B1 (en) * 2001-11-14 2004-09-01 주식회사 엘지에스 Method and device of producing DOE Lens
US7867633B2 (en) 2004-06-07 2011-01-11 Colorado School Of Mines Coatings for glass molding dies and forming tools

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118638A (en) * 1983-11-26 1985-06-26 Hoya Corp Mold for forming glass lens
JPS6359971B2 (en) * 1983-11-26 1988-11-22
US5171348A (en) * 1989-06-20 1992-12-15 Matsushita Electric Industrial Co., Ltd. Die for press-molding optical element
US5073313A (en) * 1989-07-25 1991-12-17 Mitsubishi Gas Chemical Co., Ltd. Process for producing low-dust-level polycarbonate molded article
US5538528A (en) * 1993-01-07 1996-07-23 Matsushita Electric Industrial Co., Ltd. Glass optical element press-molding die having a tantalum containing alloy surface layer
EP0702524A1 (en) * 1993-03-05 1996-03-27 SAHAGEN, Armen, N. Probe for monitoring a fluid medium
EP0702524A4 (en) * 1993-03-05 1998-12-30 Armen N Sahagen Probe for monitoring a fluid medium
US5822134A (en) * 1993-05-26 1998-10-13 Canon Kabushiki Kaisha Optical lens and mold for molding the same
KR100446914B1 (en) * 2001-11-14 2004-09-01 주식회사 엘지에스 Method and device of producing DOE Lens
US7867633B2 (en) 2004-06-07 2011-01-11 Colorado School Of Mines Coatings for glass molding dies and forming tools

Also Published As

Publication number Publication date
JPH0359016B2 (en) 1991-09-09

Similar Documents

Publication Publication Date Title
US4168961A (en) Method of molding glass elements
US4139677A (en) Method of molding glass elements and element made
US4072489A (en) Vacuum process for avoiding devitrification damage to transparent slip-cast silica crucibles
US4606750A (en) Mold for direct press molding of optical glass element
JP2620875B2 (en) Manufacturing method of glass molded products for precision optics
JPS59121126A (en) Mold for molding optical element
JPS6067118A (en) Manufacture of optical element
JPH0250059B2 (en)
JPS6251211B2 (en)
JPS59123629A (en) Mold for molding optical element
JPS59123630A (en) Mold for molding optical element
US3954930A (en) Cutting tool blank
JPS59121124A (en) Production of optical glass element
JPH0521854B2 (en)
JPS638050B2 (en)
JPS61291427A (en) Molded lens and production thererof
JPH0688803B2 (en) Mold for optical glass element
EP0146315A2 (en) Mould for direct press moulding of optical glass element
JPH0137965B2 (en)
JPH0769653A (en) Method and apparatus for producing optical glass element
JPS60176928A (en) Mold for press molding glass lens
JPH0375231A (en) Synthetic optical element
JPH0328136A (en) Production of optical element
JPH0572336B2 (en)
JPS63288924A (en) Die member for molding optical element