JPS63288924A - Die member for molding optical element - Google Patents

Die member for molding optical element

Info

Publication number
JPS63288924A
JPS63288924A JP12386887A JP12386887A JPS63288924A JP S63288924 A JPS63288924 A JP S63288924A JP 12386887 A JP12386887 A JP 12386887A JP 12386887 A JP12386887 A JP 12386887A JP S63288924 A JPS63288924 A JP S63288924A
Authority
JP
Japan
Prior art keywords
molding
optical element
mold
boron carbonitride
mold member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12386887A
Other languages
Japanese (ja)
Other versions
JPH0725558B2 (en
Inventor
Sunao Miyazaki
直 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12386887A priority Critical patent/JPH0725558B2/en
Publication of JPS63288924A publication Critical patent/JPS63288924A/en
Publication of JPH0725558B2 publication Critical patent/JPH0725558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/26Mixtures of materials covered by more than one of the groups C03B2215/16 - C03B2215/24, e.g. C-SiC, Cr-Cr2O3, SIALON

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To easily and repeatedly press-mold optical elements such as lenses having directly and accurately molded optical surfaces with superior workability without deteriorating the accuracy for a long period by using the title die members for molding an optical element obtd. by coating at least the molding surfaces of matrixes with boron carbonitride. CONSTITUTION:A matrix material having a coefft. of thermal expansion relatively close to that of boron carbonitride, e.g., a sintered hard alloy consisting of 90% WC and 10% Co or sintered SiC is cut, ground and polished to obtain a matrix 30 having a desired external shape and a molding surface finished to prescribed surface accuracy. A boron carbonitride layer 32 of a desired thickness is then formed on the molding surface by PVD or CVD to obtain a die member for molding an optical element. An optical element having a prescribed shape is press-molded by using upper and lower die members obtd. by the above-mentioned method.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光学素子成形装置に用いられる型部材に関し、
特に容易に高精度を実現でき且つ耐久性良好な光学素子
成形用型部材に関する。この様な光学素子成形用型部材
はたとえば直接光学面を形成する高精度成形のための型
部材として好適に利用される。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a mold member used in an optical element molding device,
In particular, the present invention relates to a mold member for molding optical elements that can easily achieve high precision and has good durability. Such a mold member for molding an optical element is suitably used, for example, as a mold member for high-precision molding to directly form an optical surface.

[従来の技術及びその問題点] 一般に、レンズ、プリズム、ミラー及びフィルタ等の光
学素子は、ガラス等の素材を研削して外形を所望の形状
とした後に、機能面即ち光が透過及び/または反射する
面を研摩して光学面とすることにより製造されている。
[Prior Art and Problems Therewith] Generally, optical elements such as lenses, prisms, mirrors, and filters are manufactured by grinding a material such as glass into a desired shape, and then forming a functional surface, that is, a surface through which light can pass through and/or It is manufactured by polishing the reflective surface to create an optical surface.

しかして、以上の様な光学素子の製造においては、研削
及び研摩により所望の表面精度(即ち表面形状及び表面
粗さ等の精度)を得るためには、熟練した作業者が相当
の時間加工を行なうことが必要であった。また、機部面
が非球面である光学素子を製造する場合には、一層高度
な研削及び研摩の技術が要求され且つ加工時間も長くな
らざるを得なかった。
However, in the production of optical elements such as those described above, in order to obtain the desired surface accuracy (i.e., accuracy of surface shape and surface roughness) through grinding and polishing, skilled workers spend a considerable amount of processing time. It was necessary to do it. Further, when manufacturing an optical element having an aspherical surface, more advanced grinding and polishing techniques are required, and the processing time is inevitably increased.

そこで、最近では、上記の様な伝統的な光学素子製造方
法に代って、所定の表面精度を有する成形用金型内に光
学素子材料を収容して加熱及び加圧することによりプレ
ス成形にて直ちに機能面を含む全体的形状を形成°する
方法が行なわれる様になってきている。これによれば、
機能面が非球面である場合でさえも比較的簡単且つ短時
間で光学素子を製造することができる。この様なプレス
成形法は光学素子の連続製造に適する。
Therefore, in recent years, instead of the traditional optical element manufacturing method as described above, press molding has been developed in which the optical element material is housed in a mold with a predetermined surface accuracy and then heated and pressurized. Methods of immediately forming the overall shape, including the functional aspects, are becoming popular. According to this,
Even when the functional surface is an aspherical surface, the optical element can be manufactured relatively easily and in a short time. Such a press molding method is suitable for continuous production of optical elements.

以上の様なプレス成形において使用される型部材に要求
される性質としては、十分な硬度、良好な耐熱性、良好
な鏡面加工性及び成形時において光学素子材料と融着を
起さないこと等があげられる。
The properties required of mold members used in press molding as described above include sufficient hardness, good heat resistance, good mirror workability, and no fusion with optical element materials during molding. can be given.

そこで、従来、この様なプレス成形用型部材としては金
属、セラミックス、及びこれらに適宜の材料をコーティ
ングした材料等数多くの種類が提案されている。
Therefore, many types of mold members for press molding have been proposed in the past, such as metals, ceramics, and materials coated with appropriate materials.

たとえば、特開昭49−51112号公報には13Cr
=pルチンサイト鋼を用いた型部材が開示されており、
特開昭52−45613号公報には炭化ケイ素(S i
 C)を用いたfJ部材及び窒化ケイ素(Si3N+)
を用いた型部材が開示されており、特開昭53−533
60号公報には炭化タングステン(WC)系超硬合金を
用いた型部材及びアルミナ(A1203)系セラミック
スを用いた型部材が開示されており、特開昭60−24
6230号公報には超硬合金に貴金属をコーティングし
た型部材が開示されている。
For example, in JP-A-49-51112, 13Cr
= A mold member using p-rutinsite steel is disclosed,
JP-A-52-45613 discloses silicon carbide (Si
C) fJ member using silicon nitride (Si3N+)
A mold member using
Publication No. 60 discloses a mold member using tungsten carbide (WC) based cemented carbide and a mold member using alumina (A1203) based ceramics.
Japanese Patent No. 6230 discloses a mold member in which a cemented carbide is coated with a noble metal.

しかして、上記13Crマルテンサイト鋼は酸化しやす
く更に高温のプレス成形時においてFeがガラス材料中
に拡散してガラスが着色する難点がある。また、上記S
iCや513N4は一般的には酸化されにくいのである
が、高温ではある程度の酸化が生じ型部材表面に5i0
2の膜が形成されるためガラスとの融着を生じやすく更
に硬度が高すぎるため加工性が極めて悪いという難点が
ある。更に、超硬合金はバインダーとして使用されるC
oが酸化されやす〈慶返し使用のうちにガラスによって
侵食を受けるという難点がある。そして、アルミナ系セ
ラミックスはもともと酸化物であるためガラスと融着を
起すという難点がある。更に、表面に貴金属をコーティ
ングした材料は硬度が低いために傷付きやすく且つ変形
しやすいという難点がある。
However, the above-mentioned 13Cr martensitic steel is easily oxidized, and furthermore, during press molding at a high temperature, Fe diffuses into the glass material and the glass becomes colored. In addition, the above S
iC and 513N4 are generally not easily oxidized, but at high temperatures some oxidation occurs and 5i0 is formed on the surface of the mold member.
Since the film No. 2 is formed, it is easy to fuse with the glass, and furthermore, the hardness is too high, resulting in extremely poor workability. Furthermore, cemented carbide is used as a binder.
o is easily oxidized (there is a disadvantage that it is eroded by glass during use). Furthermore, since alumina ceramics are originally oxides, they have the disadvantage of causing fusion with glass. Furthermore, materials whose surfaces are coated with precious metals have low hardness and are therefore easily damaged and deformed.

そこで、本発明は、上記従来技術に鑑み、容易に高精度
で製造でき且つプレス成形に際し精度劣化の少ない長寿
命の光学素子成形用型部材を提供することを目的とする
SUMMARY OF THE INVENTION In view of the above-mentioned prior art, it is an object of the present invention to provide a mold member for molding an optical element that can be easily manufactured with high precision and has a long life with little deterioration in precision during press molding.

[問題点を解決するための手段] 本発明によれば、以上の如き目的を達成するものとして
、 光学素子成形用型部材において、型母材の少なくとも成
形面が炭窒化ホウ素で被覆されていることを特徴とする
、光学素子成形用型部材、が提供される。
[Means for Solving the Problems] According to the present invention, in order to achieve the above objects, in a mold member for molding an optical element, at least the molding surface of the mold base material is coated with boron carbonitride. A mold member for molding an optical element is provided.

[実施例] 以下、図面を参照しながら本発明の具体的実施例を説明
する。
[Example] Hereinafter, specific examples of the present invention will be described with reference to the drawings.

第1図は本発明による型部材の一実施例を示す概略断面
図である0本図において、30は型母材を示し、32は
該を母材の成形面に形成された炭窒化ホウ素被覆層を示
す。
FIG. 1 is a schematic sectional view showing an embodiment of a mold member according to the present invention. In this figure, 30 indicates a mold base material, and 32 represents a boron carbonitride coating formed on the molding surface of the base material. Show layers.

本発明においては、を母材30として炭窒化ホウ素と熱
膨張率の比較的近い材料を用いるのが好ましい、この様
な母材材料としては、たとえば超硬合金や焼結SiCを
用いることができる。これら母材材料は切削、研削、研
摩等の加工により所望の外形とし、特に成形面は所望の
表面精度に仕上げておく。
In the present invention, it is preferable to use a material having a coefficient of thermal expansion relatively similar to that of boron carbonitride as the base material 30. As such a base material, for example, cemented carbide or sintered SiC can be used. . These base materials are given a desired external shape by cutting, grinding, polishing, etc., and in particular, the molding surface is finished to a desired surface precision.

上記母材30の表面に炭窒化ホウ素層32を形成するに
は、たとえば物理的気相法(PVD法)や化学的気相法
(cvn法)を用いる9炭窒化ホウ素層32の厚さは製
造条件により適宜設定されるが、使用時の所望の特性に
鑑みて十分な耐久性が得られる様な厚さとすればよい。
In order to form the boron carbonitride layer 32 on the surface of the base material 30, for example, a physical vapor phase method (PVD method) or a chemical vapor phase method (CVN method) is used.9 The thickness of the boron carbonitride layer 32 is The thickness is determined as appropriate depending on the manufacturing conditions, but may be set to a thickness that provides sufficient durability in view of the desired characteristics during use.

炭窒化ホウ素層は高温での耐酸化性も、鴇いのでガラス
との融着性が低く離型性が良好であるので、繰返し使用
しても良好な精度の光学素子を得ることができる。
The boron carbonitride layer also has strong oxidation resistance at high temperatures, so it has low fusion bonding with glass and good mold releasability, so an optical element with good precision can be obtained even if it is repeatedly used.

以下、本発明による型部材の製造及びそれを用いたガラ
ス成形の実施例を示す、尚、同時に、比較のために、従
来の型部材の製造及びそれを用いたガラス成形の例をも
示す。
Hereinafter, examples of manufacturing a mold member according to the present invention and glass molding using the same will be shown. At the same time, for comparison, examples of manufacturing a conventional mold member and glass molding using the same will also be shown.

製造及び成形の実施例: 超硬合金[WC(90%)+Co (10%)]及び焼
結SiCを母材材料として型母材を作り、該母材の成形
面に炭窒化ホウ素層を形成して、以下の通り本発明によ
る型部材を製造した。また、比較のために、上記型母材
の成形面に倉被覆を行なわない型部材及び該成形面にS
IC層を形成した型部材を製造した。製造した型部材の
一覧表を第1表に示す、尚、81表において、No、1
及びN082は本発明実施例であり、No、3゜No、
4及びNo、5は比較例である。
Manufacturing and molding example: A mold base material is made using cemented carbide [WC (90%) + Co (10%)] and sintered SiC as base material, and a boron carbonitride layer is formed on the molding surface of the base material. A mold member according to the present invention was manufactured as follows. In addition, for comparison, a mold member in which the molding surface of the mold base material is not coated and a mold member in which the molding surface is coated with S
A mold member on which an IC layer was formed was manufactured. A list of manufactured mold members is shown in Table 1. In Table 81, No. 1
and N082 are examples of the present invention, No, 3°No,
4 and No. 5 are comparative examples.

第1表 先ず、型母材材料を切削加工し、次いで成形光学素子の
機能面(光学面)に対応する成形面を所望の表面精度に
加工した。型母材の成形面は凹面であり、先ずダイヤモ
ンド砥石による研削で所望の曲率に加工し1次いで粒径
IJLmのダイヤモンドパウダーを用いた研摩を行ない
、ニュートンリング1本捏度の表面形状精度及びRma
xo 、024℃程度の表面粗さ精度に仕上げた。
Table 1 First, the mold base material was cut, and then the molding surface corresponding to the functional surface (optical surface) of the molded optical element was processed to a desired surface precision. The molding surface of the mold base material is a concave surface, and it is first processed into the desired curvature by grinding with a diamond grindstone, and then polished using diamond powder with a particle size of IJLm to obtain the surface shape accuracy of one Newton ring kneading degree and Rma.
It was finished with a surface roughness accuracy of about 0.024°C.

次に、上記No、1及びN062については、第2図に
示される装置を用いて活性化反応蒸着法と呼ばれる方法
によりを母材の成形面上に炭窒化ホウ素層を形成した。
Next, for No. 1 and No. 062, a boron carbonitride layer was formed on the forming surface of the base material by a method called activated reaction vapor deposition using the apparatus shown in FIG.

第2図において、40は蒸着装置の気密室である。該気
密室には排気口42が接続されており、該排気口は不図
示の減圧源に接続されている。気密室40内の上部には
ヒータ44が配置されており、該ヒータの下方に型母材
支持体46が配置されている。該支持体には成形面を下
向きにして型母材48が支持される。上記気密室40内
の下部には水冷ハース50が配置されており、該ハース
内にはホウ素52が収容される。54.58はいずれも
電子銃であり、該電子銃54を経てアルゴンガスが気密
室40内に導入され、電子銃56を経て窒素ガス及びメ
タンガスが気密室40内に導入される。
In FIG. 2, 40 is an airtight chamber of the vapor deposition apparatus. An exhaust port 42 is connected to the airtight chamber, and the exhaust port is connected to a decompression source (not shown). A heater 44 is arranged in the upper part of the airtight chamber 40, and a mold base material support 46 is arranged below the heater. A mold base material 48 is supported on the support body with the molding surface facing downward. A water-cooled hearth 50 is arranged in the lower part of the airtight chamber 40, and boron 52 is accommodated in the hearth. 54 and 58 are electron guns, and argon gas is introduced into the airtight chamber 40 through the electron gun 54, and nitrogen gas and methane gas are introduced into the airtight chamber 40 through the electron gun 56.

炭窒化ホウ素層の形成時には、上記の様にして得られた
型母材48をアセトンで洗浄し、支持体46により支持
した0次に、気密室40内を約6×1O−3Torrま
で減圧し、電子銃54から導入したアルゴンイオンで型
母材48の表面を衝撃して約30分間クリーニングを行
なった。そして、水冷ハース50上のホウ素52を低電
圧高電流(30V、40A)の電子ビームにより加熱蒸
発させた。同時に窒素ガス及びメタンガスを気密室40
内に電子銃56から導入して型母材48の表面に炭窒化
ホウ素層を形成した。このときの型母材48の温度は5
00℃であり。
When forming the boron carbonitride layer, the mold base material 48 obtained as described above was washed with acetone, and the pressure inside the airtight chamber 40 was reduced to about 6 x 1 O-3 Torr while it was supported by the support 46. The surface of the mold base material 48 was bombarded with argon ions introduced from the electron gun 54 to perform cleaning for about 30 minutes. Then, the boron 52 on the water-cooled hearth 50 was heated and evaporated by a low voltage, high current (30 V, 40 A) electron beam. At the same time, nitrogen gas and methane gas are introduced into the airtight chamber 40.
A boron carbonitride layer was introduced into the mold base material 48 from an electron gun 56 to form a boron carbonitride layer on the surface of the mold base material 48. At this time, the temperature of the mold base material 48 is 5
It is 00℃.

窒素ガスとメタンガスの圧力は6XIO−4Torrで
あった。得られた炭窒化ホウ素層の厚ざは約IILmで
あった・ 上記No、5については、第2図に示される装置を用い
て同様にして型母材の成形面上に炭化ケイ素層を形成し
た。この際に、窒素ガスの導入を行なわず且つ水冷ハー
ス50上にホウ素のかわりにケイ素を収容した。炭化シ
リコン層の厚さは約1#Lmであった。
The pressure of nitrogen gas and methane gas was 6XIO-4 Torr. The thickness of the obtained boron carbonitride layer was about IILm. For No. 5 above, a silicon carbide layer was similarly formed on the molding surface of the mold base material using the apparatus shown in FIG. did. At this time, nitrogen gas was not introduced and silicon was accommodated on the water-cooled hearth 50 instead of boron. The thickness of the silicon carbide layer was about 1 #Lm.

次に、以上の様にして製造された型部材を用いて、光学
ガラスのプレス成形を行なった。
Next, optical glass was press-molded using the mold member manufactured as described above.

第3図はプレス成形に用いた装置を示す断面図である。FIG. 3 is a sectional view showing the apparatus used for press molding.

第3図において、1は密閉容器であり、2はその蓋であ
り、3.4は光学素子(両凸レンズ)を成形するための
上記型部材であり、3は上型部材であり、4は下型部材
である。5は上型押えであり、6は調型部材であり、7
は型ホルダーであり、8はヒーターであり、9は下型突
き上げ棒であり、10は鎖線を駆動させるエアーシリン
ダーである。11は油回転ポンプであり、12,13.
14はバルブであり、15は窒素ガス導入パイプであり
、16はバルブであり、17は排出パイプであり、18
はバルブであり、19は温度センサーであり、20は水
冷パイプであり、21は密閉容器1の台である。
In FIG. 3, 1 is a closed container, 2 is its lid, 3.4 is the mold member for molding an optical element (biconvex lens), 3 is an upper mold member, and 4 is a lid. This is the lower mold member. 5 is an upper mold presser, 6 is a mold adjusting member, and 7
is a mold holder, 8 is a heater, 9 is a lower mold push-up rod, and 10 is an air cylinder that drives the chain line. 11 is an oil rotary pump; 12, 13.
14 is a valve, 15 is a nitrogen gas introduction pipe, 16 is a valve, 17 is an exhaust pipe, 18
is a valve, 19 is a temperature sensor, 20 is a water cooling pipe, and 21 is a stand of the closed container 1.

フリント系光学ガラス(S F 14、軟化点5p=5
86℃、ガラス転移点Tg=485℃)を所定重量の球
形状として成形のためのブランクを作成した。
Flint optical glass (SF 14, softening point 5p=5
A blank for molding was prepared in a spherical shape with a predetermined weight and a temperature of 86°C (glass transition point Tg=485°C).

密閉容器lの蓋2を開き、上型部材3及び上型押え5を
取外して下型部材4上に上記ブランクを載せて、上型部
材3及び上型押え5を取付けた。
The lid 2 of the closed container 1 was opened, the upper die member 3 and the upper die holder 5 were removed, the blank was placed on the lower die member 4, and the upper die member 3 and the upper die holder 5 were attached.

更にM2を閉じてから、水冷パイプ20に水を流し、ヒ
ーター8に通電した。この時、窒素ガス用バルブ16、
バルブ18及び排気系バルブ12゜13.14を閉じて
おいた0次に、油回転ポンプ11を作動させ、バルブ1
2を開き、容器1内を排気した。容器1内の真空度が1
O−2Torrとなった後に、バルブ12を閉じ、バル
ブ16゜18を開いて窒素ガスをボンベから密閉容器1
内へと導入した。所定温度になった後にエアーシリンダ
ー10を作動させて10Kg/cm2の圧力で5分間プ
レス成形を行なった。加圧力を除去し、約り℃/分の速
度でガラス転移点以下になるまで冷却し、その後20℃
/分以上の速度で冷却を行ない、温度が200℃以下に
下った後に、バルブ16.18を閉じ、リークバルブ1
3を開いて密閉容器l内に空気を導入した0次に、蓋2
を開き、上型部材3及び上型押え5を取外して成形済光
学素子を取出した。
Furthermore, after closing M2, water was allowed to flow through the water cooling pipe 20, and the heater 8 was energized. At this time, the nitrogen gas valve 16,
After the valve 18 and the exhaust system valve 12, 13, and 14 are closed, the oil rotary pump 11 is operated, and the valve 1 is closed.
2 was opened, and the inside of the container 1 was evacuated. The degree of vacuum inside container 1 is 1
After the pressure reaches O-2 Torr, close the valve 12 and open the valve 16°18 to supply nitrogen gas from the cylinder to the closed container 1.
introduced inside. After reaching a predetermined temperature, the air cylinder 10 was operated and press molding was performed for 5 minutes at a pressure of 10 kg/cm2. Remove the pressure and cool at a rate of approximately 1°C/min until below the glass transition point, then cool to 20°C.
Cooling is performed at a rate of 1/min or more, and after the temperature has fallen below 200°C, valves 16 and 18 are closed, and leak valve 1 is closed.
Open the lid 2 to introduce air into the sealed container.
was opened, the upper mold member 3 and the upper mold holder 5 were removed, and the molded optical element was taken out.

第4rI!Jはプレス成形時のガラスの温度変化を示す
図である。
4th rI! J is a diagram showing the temperature change of glass during press molding.

以上の様なプレス成形の前後における型部材3.4の成
形面の表面粗さ及び成形された光学素子の光学面の表面
粗さ、ならびに成形光学素子と型部材3.4との離型性
について第2表に示す。
The surface roughness of the molding surface of the mold member 3.4 before and after press molding as described above, the surface roughness of the optical surface of the molded optical element, and the mold releasability between the molded optical element and the mold member 3.4. The details are shown in Table 2.

第  2  表 次に、融着発生のないN001、No、2及びN013
について、同一型部材を用いて連続100回のプレス成
形を行なった後における型部材3.4の成形面の表面粗
さ及び成形された光学素子の光学面の表面粗さについて
第3表に示す。
Table 2 Next, No. 001, No. 2, and No. 013 with no fusion occurrence.
Table 3 shows the surface roughness of the molding surface of mold member 3.4 and the surface roughness of the optical surface of the molded optical element after 100 consecutive press moldings using the same mold member. .

第  3  表 以上の様に、本発明実施例においては、繰返しプレス成
形に使用しても良好な表面精度をト分に維持でき、良好
な表面精度の光学素子が成形できた。
As shown in Table 3, in the examples of the present invention, even when used repeatedly in press molding, good surface precision could be maintained, and optical elements with good surface precision could be molded.

上記実施例では成形される光学ガラスとしてフリント系
のものが用いられているが、その他のクラウン系等のガ
ラスについても同様に良好な精度での成形が可能である
In the above embodiments, a flint-based optical glass is used as the optical glass to be molded, but other glasses such as crown-based glasses can also be molded with good precision.

[発明の効果] 以上の様な本発明によれば、型母材の成形面を炭窒化ホ
ウ素で被覆することにより、繰返しプレス成形に際し精
度劣化が少なく寿命が長い光学素子成形用型部材が提供
される。また、本発明型部材は、を母材として加工性の
良好なものを選択することができるので、製造が容易で
ある。
[Effects of the Invention] According to the present invention as described above, by coating the molding surface of the mold base material with boron carbonitride, it is possible to provide a mold member for molding optical elements that has a long life and less accuracy deterioration during repeated press molding. be done. Further, the mold member of the present invention is easy to manufacture because a material with good workability can be selected as the base material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による型部材の一実施例を示す概略断面
図である。 第2図は本発明による型部材の製造において炭窒化ホウ
素層の形成に使用される装置を示す図である。 第3図は光学素子のプレス成形装置の断面図である。 第4図はプレス成形時のガラスの温度変化を示す図であ
る。 3.4:型部材、  30:型母材、 32:炭窒化ホウ素層、 48:型母材。 代理人  弁理士  山 下 積 平 第1図 第2図 ↑ N2.C)(4
FIG. 1 is a schematic sectional view showing an embodiment of a mold member according to the present invention. FIG. 2 shows an apparatus used for forming a boron carbonitride layer in the production of a mold member according to the invention. FIG. 3 is a sectional view of a press molding apparatus for optical elements. FIG. 4 is a diagram showing the temperature change of glass during press molding. 3.4: Mold member, 30: Mold base material, 32: Boron carbonitride layer, 48: Mold base material. Agent Patent Attorney Seki Taira Yamashita Figure 1 Figure 2 ↑ N2. C) (4

Claims (1)

【特許請求の範囲】[Claims] (1)光学素子成形用型部材において、型母材の少なく
とも成形面が炭窒化ホウ素で被覆されていることを特徴
とする、光学素子成形用型部材。
(1) A mold member for molding an optical element, characterized in that at least the molding surface of the mold base material is coated with boron carbonitride.
JP12386887A 1987-05-22 1987-05-22 Mold for optical element molding Expired - Fee Related JPH0725558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12386887A JPH0725558B2 (en) 1987-05-22 1987-05-22 Mold for optical element molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12386887A JPH0725558B2 (en) 1987-05-22 1987-05-22 Mold for optical element molding

Publications (2)

Publication Number Publication Date
JPS63288924A true JPS63288924A (en) 1988-11-25
JPH0725558B2 JPH0725558B2 (en) 1995-03-22

Family

ID=14871367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12386887A Expired - Fee Related JPH0725558B2 (en) 1987-05-22 1987-05-22 Mold for optical element molding

Country Status (1)

Country Link
JP (1) JPH0725558B2 (en)

Also Published As

Publication number Publication date
JPH0725558B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
US4139677A (en) Method of molding glass elements and element made
JPS63288924A (en) Die member for molding optical element
JPH0359016B2 (en)
JPS6221733B2 (en)
JP2785888B2 (en) Mold for optical element molding
JP3011574B2 (en) Mold for molding optical elements
JP2505897B2 (en) Mold for optical element molding
JP2571290B2 (en) Mold for optical element molding
JPH0451495B2 (en)
JP3149149B2 (en) Optical element molding die
JPS63151628A (en) Mold for forming optical element
JPH01172542A (en) Mold member for molding of optical element
JPH0372018B2 (en)
JP2612627B2 (en) Mold for optical element molding
JP2612621B2 (en) Mold for optical element molding
JPH0372579B2 (en)
JPH09286624A (en) Die for forming optical element
JPH0372580B2 (en)
JPS63185834A (en) Mold member for forming optical element
JPH01215734A (en) Mold member for forming optical element
JPS63151630A (en) Mold for forming optical element
JPS6251211B2 (en)
JPS63151631A (en) Mold for forming optical element
JPH04175230A (en) Production of optical element
JPH04154635A (en) Optical element forming mold

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees