JP3149149B2 - Optical element molding die - Google Patents

Optical element molding die

Info

Publication number
JP3149149B2
JP3149149B2 JP18318493A JP18318493A JP3149149B2 JP 3149149 B2 JP3149149 B2 JP 3149149B2 JP 18318493 A JP18318493 A JP 18318493A JP 18318493 A JP18318493 A JP 18318493A JP 3149149 B2 JP3149149 B2 JP 3149149B2
Authority
JP
Japan
Prior art keywords
mold
molding
optical element
film
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18318493A
Other languages
Japanese (ja)
Other versions
JPH0717728A (en
Inventor
靖行 中居
鉄夫 桑原
誠一 新垣
靖 谷口
敬二 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18318493A priority Critical patent/JP3149149B2/en
Publication of JPH0717728A publication Critical patent/JPH0717728A/en
Application granted granted Critical
Publication of JP3149149B2 publication Critical patent/JP3149149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/24Carbon, e.g. diamond, graphite, amorphous carbon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/34Intermediate layers, e.g. graded zone of base/top material of ceramic or cermet material, e.g. diamond-like carbon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/38Mixed or graded material layers or zones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、レンズ・プリズム等の
ガラスよりなる光学素子をガラス素材のプレス成形によ
り製造するのに使用される型に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold used for manufacturing an optical element made of glass such as a lens and a prism by press-molding a glass material.

【0002】[0002]

【従来の技術】研磨工程を必要としないでガラス素材の
プレス成形によってレンズを製造する技術は、従来のレ
ンズの製造において必要とされた複雑な工程をなくし、
簡単かつ安価にレンズを製造することを可能とし、近
年、レンズのみならずプリズムその他のガラスよりなる
光学素子の製造に使用されるようになってきた。
2. Description of the Related Art The technology of manufacturing a lens by press molding a glass material without the need for a polishing step eliminates the complicated steps required in conventional lens manufacturing.
A lens can be manufactured easily and inexpensively, and in recent years, it has been used for manufacturing not only a lens but also an optical element made of a prism or other glass.

【0003】このようなガラスの光学素子のプレス成形
に使用される型材に要求される性質としては、硬さ、耐
熱性、離型性、鏡面加工性等に優れていることが挙げら
れる。従来、この種の型材として、金属、セラミックス
及びそれらをコーティングした材料等、数多くの提案が
されている。いくつかの例を挙げるならば特開昭49−
51112号公報には13Crマルテンサイト鋼が、特
開昭52−45613号公報にはSiC及びSi3 4
が、特開昭60−246230号公報には超硬合金に貴
金属をコーティングした材料が、特開平3−20882
1号公報には、超硬合金に酸窒化物をコーティングした
材料が、又、特開昭61−183134号公報、特開昭
61−281030号公報、特開平1−301864号
公報にはダイヤモンド薄膜又はダイヤモンド状炭素膜を
コーティングした材料が、特開昭64−83529号公
報には硬質炭素膜をコーティングした材料が提案されて
いる。又、特公平2−31012号公報には、レンズも
しくは型のどちらか一方に50〜5000Åの炭素膜を
形成することが提案されている。
The properties required of a mold used for press molding of such glass optical elements include excellent hardness, heat resistance, releasability, mirror workability, and the like. Conventionally, many proposals have been made for this type of mold material, such as metals, ceramics, and materials coated with them. If some examples are given,
No. 51112 discloses 13Cr martensitic steel, and JP-A-52-45613 discloses SiC and Si 3 N 4.
However, Japanese Patent Application Laid-Open No. 60-246230 discloses a material in which a hard metal is coated with a noble metal.
No. 1 discloses a material obtained by coating a cemented carbide with an oxynitride, and Japanese Unexamined Patent Publication Nos. 61-183134, 61-281030 and 1-301864 disclose a diamond thin film. Alternatively, a material coated with a diamond-like carbon film is proposed in JP-A-64-83529, in which a material coated with a hard carbon film is proposed. Japanese Patent Publication No. 2-31012 proposes forming a carbon film of 50 to 5000 ° on either a lens or a mold.

【0004】[0004]

【発明が解決しようとする課題】しかし、13Crマル
テンサイト鋼は酸化し易く、さらに高温でFeが硝子中
に拡散して硝子が着色する欠点をもつ。又、SiC,S
3 4 は一般的に酸化されにくいとされているが、高
温ではやはり酸化が起こり、表面にSiO2 の膜が形成
されるため、硝子と融着を起こし、AlN,SiAlO
N,AlON等の膜も同様にして融着を起こす。さらに
これらの膜は高硬度のため、型自体の加工性が極めて悪
いという欠点を持つ。一方貴金属をコーティングした材
料は融着は起こしにくいが、極めて軟かいため、傷がつ
き易く、又、変形し易い欠点をもつ。又、ダイヤモンド
薄膜、ダイヤモンド状炭素膜(以下DLC膜という)、
水素化アモルファス炭素膜(以下a−C:H膜とい
う)、硬質炭素膜を用いた型は、型とガラスの離型性が
よく、ガラスの融着を起こさないが、成形操作を数百回
以上繰り返して行うと、前記膜が部分的に剥離し、成形
品において十分な成形性能が得られないことがある。
However, 13Cr martensitic steel has the disadvantage that it is easily oxidized, and at high temperatures Fe diffuses into the glass and the glass is colored. Also, SiC, S
Although i 3 N 4 is generally considered to be hardly oxidized, it also oxidizes at a high temperature and a SiO 2 film is formed on the surface, so that the i 3 N 4 fuses with glass to form AlN, SiAlO.
Similarly, films such as N and AlON are fused. Further, these films have a drawback that the workability of the mold itself is extremely poor due to high hardness. On the other hand, a material coated with a noble metal does not easily fuse, but has a disadvantage that it is very soft and easily scratched and easily deformed. A diamond thin film, a diamond-like carbon film (hereinafter referred to as a DLC film),
A mold using a hydrogenated amorphous carbon film (hereinafter referred to as aC: H film) or a hard carbon film has good mold-releasing property and does not cause fusion of the glass, but the molding operation is performed several hundred times. If the above steps are repeated, the film may be partially peeled off, and the molded product may not have sufficient molding performance.

【0005】この原因として以下のことが考えられる。 前述の膜はいずれも非常に大きな圧縮応力を有してお
り、成形プロセスにおける急加熱−急冷却に伴なう応力
解放の結果として剥離、クラック等が生じる。同様に型
母材と膜の熱膨張係数の違いと熱サイクルに起因する熱
応力によっても同様な現象が生じる。型母材によって
は、表面状態により膜が部分的に形成されなかったり、
膜厚が薄いことがある。例えば、WC−CoやSiC,
Si3 4,SiAlON等の焼結体では、粒の欠落や
焼結時のボアが避けられず、成形研磨面に数μm以上の
穴が存在している。こうした型母材と成形面との間に中
間層のない面に膜を形成したとき、これらの穴には膜が
形成されなかったり、極端に膜厚の薄い状態になる。従
って、こうした部分の膜の付着強度や、機械的強度は著
しく低下するため剥離やクラックの発生起点となり易
い。WC−CoのCoに代表される焼結体中の焼結助
材と前述の膜の間で拡散による合金形成が生じる。こう
した部分は成形時にガラスの融着が生じガラス中に含有
される成分と反応し析出物を生じる結果、耐久性の劣化
を招く。以上のように、成形性、耐久性、経済性に優れ
た光学素子成形用型を実現するに至っていない。
The following can be considered as the cause. Each of the above films has a very large compressive stress, and peeling, cracks, etc. occur as a result of stress release accompanying rapid heating and rapid cooling in the molding process. Similarly, a similar phenomenon occurs due to a difference in thermal expansion coefficient between the mold base material and the film and a thermal stress caused by a thermal cycle. Depending on the mold base material, a film may not be formed partially depending on the surface condition,
The film thickness may be small. For example, WC-Co, SiC,
In a sintered body of Si 3 N 4 , SiAlON or the like, a loss of grains and a bore during sintering are inevitable, and a hole of several μm or more is present on the formed polished surface. When a film is formed on a surface having no intermediate layer between such a mold base material and a molding surface, no film is formed in these holes or the film becomes extremely thin. Accordingly, the adhesive strength and mechanical strength of the film in such a portion are significantly reduced, and thus the film tends to be a starting point of peeling or cracking. An alloy is formed by diffusion between the sintering aid in the sintered body represented by Co of WC-Co and the above-mentioned film. Such a portion causes fusion of the glass at the time of molding and reacts with components contained in the glass to produce a precipitate, thereby causing deterioration in durability. As described above, an optical element molding die excellent in moldability, durability, and economy has not been realized.

【0006】又、特公平2−31012号公報では、膜
厚が50Å未満では膜が不均一になるため炭素膜の形成
効果が減少し、5000Åを越えると加圧成形による面
精度が低下するが50Å〜5000Åならば問題は生じ
ないとしている。しかしながら、この発明の実施例にお
ける炭素膜は、基板との付着力が弱く、あるいは大きな
圧縮応力のために成形過程において膜の剥離を生じる。
この結果、剥離部におけるガラスの融着や成形品の外観
不良を引き起こし、耐久性の優れた実用的な型を提供す
るに至っていない。
According to Japanese Patent Publication No. 2-31012, if the film thickness is less than 50 °, the film becomes non-uniform, so that the effect of forming the carbon film is reduced. If the angle is 50 to 5000, no problem occurs. However, the carbon film in the embodiment of the present invention has a weak adhesion to the substrate, or peels off during the molding process due to a large compressive stress.
As a result, fusion of the glass at the peeling portion and poor appearance of the molded product are caused, and a practical mold having excellent durability has not been provided.

【0007】[0007]

【課題を解決するための手段】本発明は、型母材上に酸
窒化膜の中間層を介して、炭素と中間層構成元素の少な
くとも一種類以上とからなるミキシング層を形成した型
により上述の問題を解決したものである。
According to the present invention, there is provided a mold having a mixing base comprising carbon and at least one element constituting an intermediate layer formed on a mold base material through an intermediate layer of an oxynitride film. This is a solution to the problem.

【0008】すなわち、本発明は、ガラスよりなる光学
素子のプレス成形に用いる光学素子成形用型において、
該型母材の少なくとも成形面に酸窒化膜の中間層が形成
されており、該中間層表面が、炭素と中間層構成元素の
少なくとも1種類以上とからなり、かつ炭素原子濃度が
表面に向かって増大し中間層側に向かって減少し、その
他の原子濃度が表面に向かって減少し中間層側に向かっ
て増大しているミキシング層であることを特徴とする光
学素子成形用型である。
That is, the present invention relates to an optical element molding die used for press molding an optical element made of glass.
An intermediate layer of an oxynitride film is formed on at least the molding surface of the mold base material, and the surface of the intermediate layer is composed of carbon and at least one of the elements constituting the intermediate layer, and the carbon atom concentration increases toward the surface. An optical element molding die, characterized in that it is a mixing layer in which the mixing layer increases and decreases toward the intermediate layer side, and the other atomic concentration decreases toward the surface and increases toward the intermediate layer side.

【0009】以下、本発明に関して詳細に説明する。本
発明において型母材として用いられる材料は、WC,S
iC,TiC,TaC,BN,TiN,AlN,Si3
4,SiO2 ,Al2 3 ,ZrO2 ,W,Ta,M
o,サーメット,SiAlON,ムライト,WC−Co
合金等から選ばれる。
Hereinafter, the present invention will be described in detail. The material used as the mold base material in the present invention is WC, S
iC, TiC, TaC, BN, TiN, AlN, Si 3
N 4 , SiO 2 , Al 2 O 3 , ZrO 2 , W, Ta, M
o, Cermet, SiAlON, Mullite, WC-Co
It is selected from alloys and the like.

【0010】しかし、高温高強度の型母材材料はセラミ
ックスや超硬などの焼結体が多く、結晶粒の脱落や焼結
時にできるポアがあり、成形研磨面に数μm以上の穴が
存在してしまう。そこで型母材と成形面の間に光学素子
の性能を維持しうるポアレスの中間層が不可欠となる。
又、この中間層には、光学素子成形時に高温、高圧がか
かるため、耐高温、耐高強度、耐酸化性、高硬度が必要
となってくる。本発明では、この中間層に酸窒化膜を用
いることにより、本問題点を解決している。
However, high-temperature, high-strength mold base materials are often made of sintered bodies such as ceramics and carbides, and have pores formed during the dropping and sintering of crystal grains. Resulting in. Therefore, a poreless intermediate layer that can maintain the performance of the optical element between the mold base material and the molding surface is indispensable.
In addition, since the intermediate layer is subjected to high temperature and high pressure during molding of the optical element, high temperature resistance, high strength, oxidation resistance, and high hardness are required. In the present invention, this problem is solved by using an oxynitride film for the intermediate layer.

【0011】成形表面を酸窒化膜にすることにより、高
耐久の型材を得ることはできるが、現実に光学素子を成
形した場合、型側にガラスが融着してしまう。
Although a highly durable mold material can be obtained by forming an oxynitride film on the molding surface, when an optical element is actually molded, glass is fused to the mold side.

【0012】そこで融着を防ぎ、かつ型表面に光学素子
の面精度を維持しうる、型とガラスの間の密着力と、型
とガラスが離型し易くするために型に離型作用を持たせ
る型表面を実現する必要がある。炭素はガラスに対して
密着力が小さいことから、古くからガラスの成形用型に
用いられてきた。ガラスモールドでは、この炭素とガラ
スの性質を利用して型母材の成形面に前述の硬質で滑ら
かな炭素膜を形成する。
Therefore, the adhesion between the mold and the glass, which can prevent fusion and maintain the surface accuracy of the optical element on the mold surface, and the mold releasing action on the mold to facilitate the mold and glass release. It is necessary to realize a mold surface to be held. Since carbon has low adhesion to glass, carbon has long been used in glass molds. In the glass mold, the above-mentioned hard and smooth carbon film is formed on the molding surface of the mold base material by utilizing the properties of carbon and glass.

【0013】炭素膜としては、ダイヤモンド膜、DLC
膜、a−C:H膜、硬質炭素膜が挙げられるが、ダイヤ
モンド膜は多結晶で表面が粗いために鏡面加工を要する
という問題がある。一方、アモルファスなDLC膜、a
−C:H膜、硬質炭素膜は、内部応力が大きくガラス成
形される高温領域では熱安定性に欠け、成形回数が増え
るに従い、型母材と膜の付着強度が低下するという問題
が発生する。すなわち、ガラスモールドに於ける型表面
材料としての炭素膜の問題は、主に型母材と膜の付着強
度に係わるものである。この点に関して、成形面を炭素
と型母材もしくは型母材表面に形成した中間層を構成す
る少なくとも一種類以上の元素とからなるミキシング層
とすることにより従来の問題を解決することができる。
このミキシング層は、炭素が型母材もしくは型母材上に
形成した酸窒化膜であるところの中間層材料とミキシン
グ(原子混合)されていることから密着性が極めて良好
である。ミキシング層の状態は、炭素原子濃度が表面に
向かって増大し母材側に向かって減少しているのに対
し、炭素以外の原子濃度は表面に向かって減少し母材側
に向かって増大している。この状態を模式的に表したも
のが図1(a)であり、図1(b)はそのイメージ図で
ある。図1(a)中、横軸は表面から型母材に向かう深
さを表しており、深さ0の位置が表面である。一方、縦
軸は原子濃度を表している。
As the carbon film, diamond film, DLC
Although a film, an aC: H film, and a hard carbon film are mentioned, there is a problem that a diamond film requires a mirror finish because it is polycrystalline and has a rough surface. On the other hand, an amorphous DLC film, a
-C: The H film and the hard carbon film have a large internal stress and lack thermal stability in a high-temperature region where glass is formed, and a problem occurs that the adhesion strength between the mold base material and the film decreases as the number of times of forming increases. . That is, the problem of the carbon film as the mold surface material in the glass mold mainly relates to the adhesion strength between the mold base material and the film. In this regard, the conventional problem can be solved by forming the molding surface as a mixing layer composed of carbon and at least one element constituting the intermediate layer formed on the mold base material or the mold base material surface.
This mixing layer has extremely good adhesion since carbon is mixed (atomically mixed) with the mold base material or the intermediate layer material which is an oxynitride film formed on the mold base material. In the state of the mixing layer, the concentration of carbon atoms increases toward the surface and decreases toward the base material, while the concentration of atoms other than carbon decreases toward the surface and increases toward the base material. ing. FIG. 1A schematically shows this state, and FIG. 1B is an image diagram of the state. In FIG. 1A, the horizontal axis represents the depth from the surface toward the mold base material, and the position at the depth of 0 is the surface. On the other hand, the vertical axis represents the atomic concentration.

【0014】又、炭素膜と酸窒化膜のミキシング効果
は、炭素膜のみの良離型性では得られない面転写を得る
ことができる。つまり、密着力の高い酸窒化物と炭素膜
の混合は、優れた面精度が得られる適正な密着力を実現
することができる。
Further, the effect of mixing the carbon film and the oxynitride film can be obtained by a surface transfer which cannot be obtained by the good mold release property of only the carbon film. In other words, the mixture of the oxynitride having a high adhesion and the carbon film can realize an appropriate adhesion that provides excellent surface accuracy.

【0015】すなわち、本発明は上述の炭素と酸窒化膜
のグラジエントなミキシング層を型母材上に設けること
により、ガラス融着を防止し、しかも良離型性かつ高耐
久性の光学素子成形用型を提供するものである。
That is, according to the present invention, by providing a gradient mixing layer of the above-mentioned carbon and oxynitride film on a mold base material, glass fusion is prevented, and a good mold release and high durability optical element molding is performed. It is to provide a mold.

【0016】[0016]

【実施例】【Example】

〔実施例1 (SiAlON,C)ミキシング層,Si
AlON中間層〕図2及び図3は本発明に係わる光学素
子成形用型の一つの実施様態を示すものである。図2は
光学素子のプレス成形前の状態を示し、図3は光学素子
成形後の状態を示す。図2中1は型母材、2はガラス素
材を成形する成形面、3はミキシング層、4は中間層、
5はガラス素材であり、図3中6は光学素子である。図
2に示すように型の間に置かれたガラス素材5をプレス
成形することによってレンズ等の光学素子6が形成され
る。
[Example 1 (SiAlON, C) mixing layer, Si
AlON Intermediate Layer] FIGS. 2 and 3 show one embodiment of the optical element molding die according to the present invention. 2 shows a state before press molding of the optical element, and FIG. 3 shows a state after molding of the optical element. In FIG. 2, 1 is a mold base material, 2 is a molding surface for molding a glass material, 3 is a mixing layer, 4 is an intermediate layer,
5 is a glass material, and 6 in FIG. 3 is an optical element. As shown in FIG. 2, an optical element 6 such as a lens is formed by press-molding a glass material 5 placed between molds.

【0017】次に、本発明の光学素子成形用型について
詳細に説明する。型母材として超硬(WC−Ti)を所
定の形状に加工した後、プラズマCVD法により、成形
表面と型母材の中間層としてSiAlON膜を形成した
後、成形面をRmax=0.02μmに鏡面研磨したも
のを作製した。
Next, the optical element molding die of the present invention will be described in detail. After processing carbide (WC-Ti) as a mold base material into a predetermined shape, a SiAlON film is formed as an intermediate layer between the molding surface and the mold base material by a plasma CVD method, and then the molding surface is Rmax = 0.02 μm. A mirror-polished product was prepared.

【0018】この型を良く洗浄したのち、図4に示すI
BD(Ion Beam Deposition)装置
に設置した。図中15は真空槽、7はイオンビーム装
置、8はイオン化室、9はガス導入口、10はイオンビ
ーム引き出しグリッド、11はイオンビーム、12は型
母材、13は基板ホルダー及びヒーター、14は排気口
を示す。まず、ガス導入口よりArガス35sccmを
イオン化室に導入しイオン化した後、イオンビーム引き
出しグリッドに500Vの電圧を印加してイオンビーム
を引き出し、型母材に5分間照射して成形表面の清浄化
を行った。次に、CH4 :15sccm,H2 :30s
ccmをイオン化室に導入してガス圧3.5×10-4
orrとし、加速電圧10kVでイオンビームを引き出
し成形面に照射して35nmのミキシング層を形成し
た。このときのイオンビーム電流は30mA、電流密度
2mA/cm2 、基板温度を300℃とした。同条件で
作成した分析サンプルのミキシング層をAES(Aug
er Electron Spectroscopy)
により深さ方向分析した結果を図5に示す。図5より明
らかなようにミキシング層の厚さは35nmで、炭素C
の濃度は表面側の100%から型母材側に向かって減少
している。一方、Si原子の濃度は表面側の0%から型
母材側に向かって増加している。すなわち、C,Si濃
度の深さ方向のプロファイルが図5である。ミキシング
層の厚さは、前に定義したように、型母材界面の前後に
おいてC濃度が極大から極小となる変化量の100%の
深さから表面までの厚さである。
After thoroughly cleaning this mold, the I shown in FIG.
It was installed in a BD (Ion Beam Deposition) device. In the figure, 15 is a vacuum chamber, 7 is an ion beam device, 8 is an ionization chamber, 9 is a gas inlet, 10 is an ion beam extraction grid, 11 is an ion beam, 12 is a mold base material, 13 is a substrate holder and a heater, 14 Indicates an exhaust port. First, 35 sccm of Ar gas is introduced into the ionization chamber from the gas inlet and ionized, and then an ion beam is extracted by applying a voltage of 500 V to the ion beam extraction grid, and the mold base material is irradiated for 5 minutes to clean the molding surface. Was done. Then, CH 4: 15sccm, H 2 : 30s
ccm into the ionization chamber and gas pressure 3.5 × 10 -4 T
At orr, an ion beam was irradiated at an acceleration voltage of 10 kV onto the drawing surface to form a 35 nm mixing layer. At this time, the ion beam current was 30 mA, the current density was 2 mA / cm 2 , and the substrate temperature was 300 ° C. The mixing layer of the analysis sample prepared under the same conditions was used for AES (Aug
er Electron Spectroscopy)
FIG. 5 shows the results of the analysis in the depth direction. As is clear from FIG. 5, the thickness of the mixing layer is 35 nm,
Decreases from 100% on the surface side toward the mold base material side. On the other hand, the concentration of Si atoms increases from 0% on the surface side toward the mold base material side. That is, FIG. 5 shows the profile of the C and Si concentrations in the depth direction. The thickness of the mixing layer is, as defined above, the thickness from the depth of 100% of the variation where the C concentration changes from a maximum to a minimum before and after the mold base material interface, from the depth to the surface.

【0019】次に、本発明による光学素子成形用型によ
ってガラスレンズのプレス成形を行った例を示す。図6
中、51は真空槽本体、52はそのフタ、53は光学素
子を成形するための上型、54はその下型、55は上型
を押さえるための上型おさえ、56は胴型、57は型ホ
ルダー、58はヒーター、59は下型を突き上げる突き
上げ棒、60は該突き上げ棒を作動するエアシリンダ、
61は油回転ポンプ、62,63,64はバルブ、65
は不活性ガス流入パイプ、61はバルブ、67はリーク
バルブ、68はバルブ、69は温度センサ、70は水冷
パイプ、71は真空槽を支持する台を示す。
Next, an example in which a glass lens is press-molded by the optical element molding die according to the present invention will be described. FIG.
Inside, 51 is a vacuum chamber main body, 52 is a lid thereof, 53 is an upper die for molding an optical element, 54 is a lower die thereof, 55 is an upper die holder for pressing the upper die, 56 is a trunk die, and 57 is a die. A mold holder, 58 a heater, 59 a push-up bar for pushing up the lower mold, 60 an air cylinder for operating the push-up bar,
61 is an oil rotary pump, 62, 63, 64 are valves, 65
Denotes an inert gas inflow pipe, 61 denotes a valve, 67 denotes a leak valve, 68 denotes a valve, 69 denotes a temperature sensor, 70 denotes a water cooling pipe, and 71 denotes a base supporting a vacuum tank.

【0020】レンズを製作する工程を次に述べる。The steps for fabricating the lens will now be described.

【0021】クラウン系光学ガラス(オハラ製、SK1
2)を所定の量に調整し、球状にしたガラス素材を型の
キャビティー内に置き、これを成形装置内に設置する。
ガラス素材を投入した型を装置内に設置してから真空槽
51の蓋52を閉じ、水冷パイプ70に水を流し、ヒー
ター58に電流を流す。このとき窒素ガス用バルブ66
及び68は閉じ、排気系バルブ62,63,64も閉じ
ている。尚、油回転ポンプ61は常に回転している。バ
ルブ62を開け排気を開始してから10-2Torr以下
になったらバルブ62を閉じ、バルブ66を開いて窒素
ガスをボンベより真空槽内に導入する。所定の温度にな
ったらエアシリンダ60を作動させて150kg/cm
2 の圧力で1分間加圧する。圧力を解除した後、冷却速
度を−5℃/minで転移点以下になるまで冷却し、そ
の後は−20℃/min以上の速度で冷却を行い200
℃以下に下がったらバルブ66を閉じ、リークバルブ6
3を開いて真空槽51内に空気を導入する。それから蓋
52を開け上型おさえを外して成形物を取り出す。上記
のようにして、クラウン系光学ガラスSK12(軟化点
Sp=672、転移点Tg=500)を使用して図3に
示すレンズ6を成形した。
Crown optical glass (SK1 manufactured by OHARA)
2) is adjusted to a predetermined amount, the spherical glass material is placed in a cavity of a mold, and this is placed in a molding apparatus.
After the mold into which the glass material has been put is placed in the apparatus, the lid 52 of the vacuum chamber 51 is closed, water is supplied to the water-cooled pipe 70, and current is supplied to the heater 58. At this time, the nitrogen gas valve 66
And 68 are closed, and the exhaust system valves 62, 63 and 64 are also closed. The oil rotary pump 61 is always rotating. When the pressure becomes 10 -2 Torr or less after opening the valve 62 and starting the evacuation, the valve 62 is closed, the valve 66 is opened, and nitrogen gas is introduced from the cylinder into the vacuum chamber. When the temperature reaches a predetermined temperature, activate the air cylinder 60 to 150 kg / cm
Press for 1 minute at pressure of 2 . After the pressure is released, the cooling rate is -5 ° C./min until the temperature falls below the transition point, and then the cooling rate is -20 ° C./min or more.
When the temperature drops below ℃, the valve 66 is closed and the leak valve 6
3 is opened and air is introduced into the vacuum chamber 51. Then, the lid 52 is opened, the upper mold retainer is removed, and the molded product is taken out. As described above, the lens 6 shown in FIG. 3 was formed using the crown-based optical glass SK12 (softening point Sp = 672, transition point Tg = 500).

【0022】以上のようなプレス行程により3000回
成形した後の型部材の成形面及び成形された光学素子の
表面粗さ、並びに型部材と成形された光学素子との離型
性は良好であった。特に、型部材の成形面について光学
顕微鏡、走査電子顕微鏡(SEM)で観察しても傷やク
ラック等の欠陥やガラス成分の反応折出物、ガラスの融
着は見られなかった。
The molding surface of the mold member and the surface roughness of the molded optical element after molding 3,000 times by the above-described pressing process, and the releasability between the mold member and the molded optical element are good. Was. In particular, when the molding surface of the mold member was observed with an optical microscope or a scanning electron microscope (SEM), no defects such as scratches and cracks, no reaction components of glass components, and no fusion of glass were observed.

【0023】〔実施例2 (Ti−O−N,C)ミキシ
ング層、Ti−O−N中間層〕型母材として超硬(WC
−Ti)を所定の形状に加工した後、イオンプレーティ
ング法により成形表面と型母材の中間層として、Ti−
O−N膜を形成した後、Rmax=0.02μmに鏡面
加工したものを作製した。
Example 2 (Ti--O--N, C) Mixing Layer, Ti--O--N Intermediate Layer!
-Ti) is processed into a predetermined shape, and then, as an intermediate layer between the molding surface and the mold base material by ion plating, Ti-
After forming the ON-N film, a mirror-finished product having an Rmax of 0.02 μm was produced.

【0024】以下実施例1と同様の手法で成形表面Ti
−O−N中間層と炭素膜とのミキシング層を形成した型
を作り、これを用い実施例1と同様の成形実験を行っ
た。
Hereinafter, the molding surface Ti was formed in the same manner as in Example 1.
A mold having a mixing layer of an -ON intermediate layer and a carbon film was formed, and a molding experiment similar to that of Example 1 was performed using the mold.

【0025】その結果、3000回成形した後の型部材
の成形面及び成形された光学素子の表面粗さ、並びに型
部材と成形された光学素子との離型性は良好であった。
特に、型部材の成形面について光学顕微鏡、走査電子顕
微鏡(SEM)で観察しても傷やクラック等の欠陥やガ
ラス成分の反応析出物、ガラスの融着は見られなかっ
た。
As a result, the molding surface of the mold member after molding 3000 times, the surface roughness of the molded optical element, and the releasability between the mold member and the molded optical element were good.
In particular, when the molding surface of the mold member was observed with an optical microscope or a scanning electron microscope (SEM), no defects such as scratches or cracks, reaction precipitates of glass components, and fusion of glass were observed.

【0026】〔実施例3 (Ta−O−N,C)ミキシ
ング層、Ta−O−N中間層〕型母材として超硬(WC
−Ti)を所定の形状に加工した後、イオンプレーティ
ング法により成形表面と型母材の中間層として、Ta−
O−N膜を形成した後、Rmax=0.02μmに鏡面
加工したものを作製した。
Example 3 (Ta-ON, C) Mixing Layer, Ta-ON Middle Layer!
-Ti) is processed into a predetermined shape, and then Ta- is formed as an intermediate layer between the molding surface and the mold base material by an ion plating method.
After forming the ON-N film, a mirror-finished product having an Rmax of 0.02 μm was produced.

【0027】以下実施例1と同様の手法で成形表面Ta
−O−N中間層と炭素膜とのミキシング層を形成した型
を作り、これを用い実施例1と同様の成形実験を行っ
た。
Hereinafter, the molding surface Ta is produced in the same manner as in Example 1.
A mold having a mixing layer of an -ON intermediate layer and a carbon film was formed, and a molding experiment similar to that of Example 1 was performed using the mold.

【0028】その結果、3000回成形した後の型部材
の成形面及び成形された光学素子の表面粗さ、並びに型
部材と成形された光学素子との離型性は良好であった。
特に、型部材の成形面について光学顕微鏡、走査電子顕
微鏡(SEM)で観察しても傷やクラック等の欠陥やガ
ラス成分の反応析出物、ガラスの融着は見られなかっ
た。
As a result, the molding surface of the mold member after molding 3000 times, the surface roughness of the molded optical element, and the releasability between the mold member and the molded optical element were good.
In particular, when the molding surface of the mold member was observed with an optical microscope or a scanning electron microscope (SEM), no defects such as scratches or cracks, reaction precipitates of glass components, and fusion of glass were observed.

【0029】〔実施例4 (Al−O−N,C)ミキシ
ング層、Al−O−N中間層〕型母材として超硬(WC
−Ti)を所定の形状に加工した後、プラズマCVD法
により成形表面と型母材の中間層として、Al−O−N
膜を形成した後、Rmax=0.02μmに鏡面加工し
たものを作製した。
Example 4 (Al--O--N, C) Mixing Layer, Al--O--N Intermediate Layer
-Ti) is processed into a predetermined shape, and then Al-O-N is formed as an intermediate layer between the molding surface and the mold base material by a plasma CVD method.
After forming the film, a mirror-finished product with Rmax = 0.02 μm was produced.

【0030】以下実施例1と同様の手法で成形表面Al
−O−N中間層と炭素膜とのミキシング層を形成した型
を作り、これを用い実施例1と同様の成形実験を行っ
た。
Hereinafter, the molding surface Al was formed in the same manner as in Example 1.
A mold having a mixing layer of an -ON intermediate layer and a carbon film was formed, and a molding experiment similar to that of Example 1 was performed using the mold.

【0031】その結果、3000回成形した後の型部材
の成形面及び成形された光学素子の表面粗さ、並びに型
部材と成形された光学素子との離型性は良好であった。
特に、型部材の成形面について光学顕微鏡、走査電子顕
微鏡(SEM)で観察しても傷やクラック等の欠陥やガ
ラス成分の反応析出物、ガラスの融着は見られなかっ
た。
As a result, the molding surface of the mold member after 3,000 moldings, the surface roughness of the molded optical element, and the releasability between the mold member and the molded optical element were good.
In particular, when the molding surface of the mold member was observed with an optical microscope or a scanning electron microscope (SEM), no defects such as scratches or cracks, reaction precipitates of glass components, and fusion of glass were observed.

【0032】[0032]

【発明の効果】以上説明したように、本発明の光学素子
成形用型によれば、型母材と成形面の中間に酸窒化膜を
介し、かつ、成形表面が炭素と酸窒化膜でできた中間層
を構成する少なくとも一種類以上の元素とからなるミキ
シング層とすることにより、ガラスの成形に於て膜の剥
離やクラックが発生しない表面欠陥の少ない鏡面を有す
る型が得られる。この型を用いガラス光学素子を成形す
るとガラスと型の離型性が極めて良好であり、表面粗
さ、面精度、透過率、形状精度の良好な成形品が得られ
る。更に、この型を用いてプレス成形を長時間繰返して
も膜剥離やクラック、傷の発生という欠陥を生じない極
めて耐久性の高い光学素子成形用型が得られる。
As described above, according to the mold for molding an optical element of the present invention, an oxynitride film is interposed between the mold base material and the molding surface, and the molding surface is made of carbon and oxynitride film. By forming a mixing layer comprising at least one or more types of elements constituting the intermediate layer, a mold having a mirror surface with few surface defects that does not cause peeling or cracking of the film during glass molding can be obtained. When a glass optical element is molded using this mold, the mold releasability between the glass and the mold is extremely good, and a molded article having good surface roughness, surface accuracy, transmittance, and shape accuracy can be obtained. Furthermore, an extremely durable optical element molding die which does not cause defects such as film peeling, cracking and scratching even when press molding is repeated for a long time using this mold can be obtained.

【0033】又、本発明により得られた光学素子成形用
型を用いることにより、生産性の向上とコストダウンを
実現することが可能となった。
Further, by using the mold for molding an optical element obtained by the present invention, it has become possible to realize an improvement in productivity and a reduction in cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる光学素子成形用型の成形表面に
形成したミキシング層の原子混合状態を示す模式図であ
る。
FIG. 1 is a schematic diagram showing the state of atomic mixing of a mixing layer formed on a molding surface of an optical element molding die according to the present invention.

【図2】本発明に係わる光学素子成形用型の一例を示す
断面図で、プレス成形前の状態を示す。
FIG. 2 is a cross-sectional view showing an example of an optical element molding die according to the present invention, showing a state before press molding.

【図3】本発明に係わる光学素子成形用型の一例を示す
断面図で、プレス成形後の状態を示す。
FIG. 3 is a cross-sectional view showing an example of an optical element molding die according to the present invention, showing a state after press molding.

【図4】本発明の実施例で用いるイオンビーム・ミキシ
ング装置を示す概略図である。
FIG. 4 is a schematic view showing an ion beam mixing apparatus used in an embodiment of the present invention.

【図5】本発明の実施例におけるミキシング層のAES
によるデプス・プロファイルを示す図である。
FIG. 5 shows AES of a mixing layer in an embodiment of the present invention.
FIG. 3 is a diagram showing a depth profile according to the present invention.

【図6】本発明に係わる光学素子成形用型を使用するレ
ンズの成形装置を示す断面図で非連続成形タイプであ
る。
FIG. 6 is a cross-sectional view showing a lens molding apparatus using the optical element molding die according to the present invention, which is a discontinuous molding type.

【符号の説明】 1 型母材 2 成形面 3 ミキシング層 4 酸窒化膜(中間層) 5 ガラス素材 6 成形されたレンズ 7 イオンビーム装置 8 イオン化室 9 ガス導入口 10 イオンビーム引出しグリッド 11 イオンビーム 12 型母材 13 基板ホルダー及びヒーター 14 排気口 15 真空槽 51 真空槽 52 真空槽の蓋 53 上型 54 下型 55 上型押え 56 胴型 57 型ホルダー 58 ヒーター 59 下型を突き上げる突き上げ棒 60 エアシリンダ 61 油回転ポンプ 62,63,64 バルブ 65 不活性ガス導入バルブ 66 バルブ 67 リークパイプ 68 バルブ 69 温度センサ 70 水冷パイプ 71 真空槽を支持する台[Description of Signs] 1 mold base material 2 molding surface 3 mixing layer 4 oxynitride film (intermediate layer) 5 glass material 6 molded lens 7 ion beam device 8 ionization chamber 9 gas inlet 10 ion beam extraction grid 11 ion beam 12 mold base material 13 substrate holder and heater 14 exhaust port 15 vacuum tank 51 vacuum tank 52 vacuum tank lid 53 upper mold 54 lower mold 55 upper mold holder 56 trunk mold 57 mold holder 58 heater 59 push-up rod pushing up lower mold 60 air Cylinder 61 Oil rotary pump 62, 63, 64 Valve 65 Inert gas introduction valve 66 Valve 67 Leak pipe 68 Valve 69 Temperature sensor 70 Water cooling pipe 71 Vacuum tank support

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷口 靖 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 平林 敬二 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 平6−72728(JP,A) 特開 平7−10565(JP,A) 特開 平5−124825(JP,A) 特開 平3−208821(JP,A) 特開 昭64−83529(JP,A) 特開 平1−301864(JP,A) 特開 昭61−281030(JP,A) 特開 昭61−183134(JP,A) 特開 昭60−246230(JP,A) 特開 昭52−45613(JP,A) 特開 昭49−51112(JP,A) 特公 平2−31012(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C03B 11/00 C03B 11/08 C03B 40/02 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasushi Taniguchi 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (72) Inventor Keiji Hirabayashi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon (56) References JP-A-6-72728 (JP, A) JP-A-7-10565 (JP, A) JP-A-5-124825 (JP, A) JP-A-3-208821 (JP, A) A) JP-A-64-83529 (JP, A) JP-A-1-301864 (JP, A) JP-A-61-281030 (JP, A) JP-A-61-183134 (JP, A) JP-A-61-183134 JP-A-246230 (JP, A) JP-A-52-45613 (JP, A) JP-A-49-51112 (JP, A) JP-B-2-31012 (JP, B2) (58) Fields investigated (Int. . 7, DB name) C03B 11/00 C03B 11/08 C03B 40/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガラスよりなる光学素子のプレス成形に
用いる光学素子成形用型において、該型母材の少なくと
も成形面に酸窒化膜の中間層が形成されており、該中間
層表面が、炭素と中間層構成元素の少なくとも1種類以
上とからなり、かつ炭素原子濃度が表面に向かって増大
し中間層側に向かって減少し、その他の原子濃度が表面
に向かって減少し中間層側に向かって増大しているミキ
シング層であることを特徴とする光学素子成形用型。
1. An optical element molding die used for press molding of an optical element made of glass, wherein an intermediate layer of an oxynitride film is formed on at least a molding surface of the mold base material, and the surface of the intermediate layer is formed of carbon. And at least one or more of the constituent elements of the intermediate layer, and the carbon atom concentration increases toward the surface and decreases toward the intermediate layer, and the other atomic concentrations decrease toward the surface and decreases toward the intermediate layer. A mold for forming an optical element, characterized in that the mixing layer is increasing.
JP18318493A 1993-06-30 1993-06-30 Optical element molding die Expired - Fee Related JP3149149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18318493A JP3149149B2 (en) 1993-06-30 1993-06-30 Optical element molding die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18318493A JP3149149B2 (en) 1993-06-30 1993-06-30 Optical element molding die

Publications (2)

Publication Number Publication Date
JPH0717728A JPH0717728A (en) 1995-01-20
JP3149149B2 true JP3149149B2 (en) 2001-03-26

Family

ID=16131246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18318493A Expired - Fee Related JP3149149B2 (en) 1993-06-30 1993-06-30 Optical element molding die

Country Status (1)

Country Link
JP (1) JP3149149B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200495225Y1 (en) 2020-04-29 2022-04-04 더인터맥스(주) A Placket Having an Inserted Wire for Varying a Neck Line

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9625213B2 (en) 2011-08-31 2017-04-18 3M Innovative Properties Company Silicon-nitride-containing separating layer having high hardness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200495225Y1 (en) 2020-04-29 2022-04-04 더인터맥스(주) A Placket Having an Inserted Wire for Varying a Neck Line

Also Published As

Publication number Publication date
JPH0717728A (en) 1995-01-20

Similar Documents

Publication Publication Date Title
US5662999A (en) Mold and method of manufacturing the same
JP3149149B2 (en) Optical element molding die
JPH04154634A (en) Mold for optical element formation and its production
JP3847805B2 (en) Mold for optical element molding
JPH0729786B2 (en) Mold for optical element molding
JP3011574B2 (en) Mold for molding optical elements
JP2830969B2 (en) Optical element molding die and method of manufacturing the same
JP2785903B2 (en) Mold for optical element molding
JP3144608B2 (en) Optical element molding die and method of manufacturing the same
JP3625295B2 (en) Optical element molding die and manufacturing method thereof
JP2785888B2 (en) Mold for optical element molding
JP2531819B2 (en) Mold for optical element molding
JP2571290B2 (en) Mold for optical element molding
JPH04154633A (en) Mold for optical element formation and its production
JPH06320636A (en) Production of mold for molding optical element
JPS63151628A (en) Mold for forming optical element
JP2612621B2 (en) Mold for optical element molding
JP2505897B2 (en) Mold for optical element molding
JP2501633B2 (en) Mold for optical element molding
JPH0925130A (en) Die for forming optical element and its production
JPH04154635A (en) Optical element forming mold
JPS63151631A (en) Mold for forming optical element
JP2000072452A (en) Optical element molding die
JPH01119664A (en) Sputtering device
JPH03137032A (en) Optical element forming die

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees