JP3847805B2 - Mold for optical element molding - Google Patents

Mold for optical element molding Download PDF

Info

Publication number
JP3847805B2
JP3847805B2 JP28991794A JP28991794A JP3847805B2 JP 3847805 B2 JP3847805 B2 JP 3847805B2 JP 28991794 A JP28991794 A JP 28991794A JP 28991794 A JP28991794 A JP 28991794A JP 3847805 B2 JP3847805 B2 JP 3847805B2
Authority
JP
Japan
Prior art keywords
mold
molding
optical element
film
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28991794A
Other languages
Japanese (ja)
Other versions
JPH08151217A (en
Inventor
靖行 中居
鉄夫 桑原
直 宮崎
正樹 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP28991794A priority Critical patent/JP3847805B2/en
Publication of JPH08151217A publication Critical patent/JPH08151217A/en
Application granted granted Critical
Publication of JP3847805B2 publication Critical patent/JP3847805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/11Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/24Carbon, e.g. diamond, graphite, amorphous carbon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/34Intermediate layers, e.g. graded zone of base/top material of ceramic or cermet material, e.g. diamond-like carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、レンズ、プリズム等のガラスよりなる光学素子をガラス素材のプレス成形により製造するのに使用される型に関する。
【0002】
【従来の技術】
研磨工程を必要としないでガラス素材のプレス成形によってレンズを製造する技術は、従来のレンズの製造において必要とされた複雑な工程をなくし、簡単かつ安価にレンズを製造することを可能とし、近来レンズのみならずプリズム、その他のガラスよりなる光学素子の製造に使用されるようになってきた。
【0003】
このようなガラスの光学素子のプレス成形に使用される型材に要求される性質としては、硬さ、耐熱性、離型性、鏡面加工性等に優れていることが挙げられる。従来、この種の型材として、金属、セラミックス及びそれらをコーティングした材料等数多くの提案がされている。いくつかの例を挙げるならば、特開昭49−51112号公報には13Crマルテンサイト鋼が、特開昭52−45613号公報にはSiC及びSi34 が、特開昭60−246230号公報には超硬合金に貴金属をコーティングした材料が、また特開昭61−183134号公報、特開昭61−281030号公報、特開平1−301864号公報にはダイヤモンド薄膜またはダイヤモンド状炭素膜をコーティングした材料が、特開昭64−83529号公報には硬質炭素膜をコーティングした材料が提案されている。
【0004】
【発明が解決しようとする課題】
しかし、13Crマルテンサイト鋼は酸化し易く、更に高温下でFeがガラス中に拡散してガラスが着色するという欠点を持つ。また、SiC,Si34 は一般的に酸化されにくいとされるが、高温下ではやはり酸化が起こり、表面にSiO2 の膜が形成されるためガラスと融着を起こす。一方、貴金属をコーティングした材料は融着は起こしにくいが、極めて柔らかいため傷がつき易くまた変形し易い欠点を持つ。また、CH3 ,CH2 を含む炭化水素膜や黒鉛を蒸着したカーボン膜を超硬合金やセラミックス製の型母材上に成膜した型を成形に用いた場合、数ショット程度で膜が消耗してしまう。一方、硬質炭素膜は離型性に優れ、ガラスとの融着を起こさず、かつ高硬度で耐消耗性があり、型材としては良好なものの一つであるが、硬質炭素膜でも離型し難い場合がある。
【0005】
第1の例として、プレス成形開始時から20ショット程度までは硬質炭素膜が強い結合状態を維持し、グラファイトライクな部分がほとんどないため、離型し難い状態が続くという問題がある。
【0006】
第2の例として、凸レンズ形状の場合には容易に離型する温度であっても、ある形状のメニスカスレンズでは離型しない。このような現象は次のような理由で起こると考えられる。型とレンズの離型現象は、それぞれ型、ガラスの熱膨張率差が起因していると考えられる。つまり、ガラスレンズのプレス成形後プロセス条件に従い徐冷する際、型、ガラスそれぞれの熱膨張率により収縮量が異るため型−ガラス界面に大きな剪断応力が働き、離型すると考えられる。しかし、レンズ形状が異なると型−ガラス界面に働く剪断応力が温度により大きく異なるため、ものによっては成形温度より300℃以上低くしなければ離型しない場合がある。このように離型性が悪い、つまり離型温度が低いほど成形の1サイクルに時間がかかり、単位時間に作製できるレンズ数が制限され、コストアップにつながる。
【0007】
【課題を解決するための手段及び作用】
本発明は、従来の離型膜の一つである硬質炭素膜上に、更に、離型性の良い炭化水素膜を被覆することにより、上述の問題を解決するものである。
【0008】
すなわち、本発明は、ガラスよりなる光学素子のプレス成形に用いる成形用型において、型母材上に水素濃度が5〜30atomic%の硬質炭素膜、及び膜厚が5nm以上50nm未満で水素濃度が40〜70atomic%の炭化水素膜からなる成形表面をこの順に有することを特徴とする光学素子成形用型である。
【0009】
以下にその作用を示す。
【0010】
上記課題を解決するひとつの手段として、成形時の型とガラスの密着性を下げることが考えられる。従来の離型膜の一つである硬質炭素膜は結合性が高く、高温に長時間晒された場合に徐々に炭化し始めるのに対し、炭化水素膜は硬質炭素膜と比べ結合性が低く、高温になると炭化がすぐに促進され、カーボン特有の離型効果をもたらす。このように離型性の良い炭化水素膜を成形面に成膜することにより、上記に示したようなメニスカスレンズのようななかなか離型しない形状であっても離型が容易となる。また、硬質炭素膜が形成表面に成膜された型は、成形開始時にはまだ硬質炭素膜の炭化が始まっていないため、離型温度が低くなり成形の1サイクル当りにかかる時間が長くなる。しかし、炭化水素膜を被覆した型の場合、第1ショット目から高温での離型が可能となる。
【0011】
【実施例】
[実施例1](TiN/i−Cミキシング層、CVD炭素膜)
図1及び図2は本発明に係る光学素子成形用型の一つの実施態様を示すものである。図1中1は超硬合金を用いた型母材、2はTiNを用いた硬質物質からなる中間層、3は硬質炭素膜、4は炭化水素膜からなるガラス素材を成形する成形表面であり、5はガラス素材である。図2に示すように型の間に置かれたガラス素材5をプレス成形することによってレンズ等の光学素子6が形成される。
【0012】
次に、本発明の光学素子成形用型について詳細に説明する。型母材としてWC−Ti系超硬合金を所定の形状に加工した後、イオンプレーティングによりTiN膜を形成した後、成形面をRmax.=0.02μmに鏡面研磨したものを用いた。この型を良く洗浄したのち、図3に示すIBD(Ion Beam Deposition)装置に設置した。図3中7は真空槽、8はイオンビーム装置、9はイオン化室、10はガス導入口、11はイオンビーム引き出しグリット、12はイオンビーム、13は型母材、14は基板ホルダー及びヒーター、15は排気口を示す。まず、ガス導入口10よりアルゴンガス35sccmをイオン化室に導入しイオン化した後、イオンビーム引き出しグリットに500Vの電圧を印加してイオンビームを引き出し、型母材に5分間照射して成形表面の清浄化を行った。次に、CH4 :15sccm,H2 :30sccmをイオン化室に導入してガス圧3.5×10-2Paとし、加速電圧10kVでイオンビームを引き出し、成形面に照射して35nmのミキシング層を形成した。同条件で作製した分析サンプルのミキシング層をXPS(Xray Photoelectron
spectroscopy)により深さ方向分析した結果を図4に示す。図4により明らかなようにミキシング層の厚さは35nmで、炭素Cの濃度は表面側から型母材側に向かって減少している。一方、Ti及びN原子の濃度は表面側から型母材側に向かって増加している。以上の方法によりミキシング層を持つ硬質炭素膜を形成した。
【0013】
次に、硬質炭素膜層上の炭化水素膜の形成方法について述べる。図5は炭化水素膜を成膜する薄膜堆積装置の概略構成を示す模式図である。図5中16は真空槽、17は排気口、18はガス導入口、19は型母材を保持するためのドーム状ホルダー、20は型母材を加熱するためのヒーター、21は被覆膜厚を測定するための水晶モニタ、22は高周波印加用アンテナである。なお、23は上記ホルダーに保持されている型母材である。
【0014】
良く洗浄された硬質炭素膜及びTiNを成膜した型母材をドーム状ホルダーに取り付け、ヒーター20で300℃に加熱し、排気口17より排気を行い真空槽16内を1×10-3Pa以下になるまで減圧した後に、ガス導入口18からアルゴンガスを5×10-2Paとなるまで導入し、高周波印加用アンテナ22に300Wの高周波を印加して高周波放電を行い型母材23のプラズマクリーニングを行った。その後、アルゴンガスの導入を停止し1×10-3Paの真空度に戻してガス導入口18からCH4 ガスを1×10-1Paになるまで導入した。そして、高周波印加用アンテナ22に500Wの高周波を印加して高周波放電を行い、約30nm厚の被覆膜を形成した。なお、本発明による離型効果が現れるためには膜厚が最低5nm必要であり、また50nm以上では光学素子の外観に不良が発生する場合があった。
【0015】
ここで形成された炭化水素膜の赤外吸収分光分析(IR)の結果を図6に示す。図6に示すように該炭化水素膜はCH3 ,CH2 の吸収が見られるのに対し、図8に示す硬質炭素膜のIRの結果から、図6の炭化水素膜に見られるCH3 、CH2 の吸収がほとんど確認できなかった。また、該炭化水素膜の水素濃度は40〜70atomic%であったことからも、炭化水素膜の水素の多くはCH3 CH2 等の基の状態で結合していると考えられる。一方、硬質炭素膜の水素濃度は5〜30atomic%であるが、上記のようにCH3 ,CH2 の吸収が少ないことから、膜中水素はダングリングボンドの端に結合していると考えられる。
【0016】
次に、本発明による光学素子成形用型によってプレス成形を行った例を示す。図7は成形装置であり、図中51は真空槽本体、52はそのフタ、53は光学素子を成形するための上型、54はその下型、55は上型を押えるための上型押え、56は胴型、57は型ホルダー、58はヒーター、59は下型を突き上げる突き上げ棒、60は該突き上げ棒を作動するエアシリンダ、61は油回転ポンプ、62、63、64はバルブ、65は不活性ガス流入パイプ、66はバルブ、67はリークバルブ、68はバルブ、69は温度センサ70は水冷パイプ、71は真空槽を支持する台を示す。レンズを製作する工程を次に述べる。クラウン系光学ガラス(SK12)を所定の両に調整したゴブを型のキャビティー内に置き、これを装置内に設置する。そしてガラス素材を投入した型を装置内に設置してから真空槽51のフタ52を閉じ、水冷パイプ70に水を流し、ヒーター58に電流を流す。このとき窒素ガス用バルブ66及び68は閉じ、排気系バルブ62、63、64も閉じている。なお、油回転ポンプ61は常に回転している。バルブ62を開け排気を開始してから1Pa以下になったらバルブ62を閉じ、バルブ66を開いて窒素ガスをボンベより真空槽内に導入する。所定の温度になったらエアシリンダ60を作動させて1.5Paの圧力で1分間加圧する。圧力を解除した後、冷却速度−5℃/minで転移点以下になるまで冷却し、その後は−20℃/min以上の速度で冷却を行い200℃以下に下がったらバルブ66を閉じ、リークバルブ63を開いて真空槽51内に空気を導入する。それからフタ52を開け上型押えをはずして成形物を取り出す。上記のようにしてクラウン光学ガラス(軟化点Sp=672℃、転移点Tg=550℃)を使用して図4に示すレンズを用いた。
【0017】
本発明による光学素子成形用型を用いることによりプレス成形の第1ショット目の離型温度(プレス成形後の徐冷時に、光学素子が型から剥れる温度)が従来の硬質炭素膜が成形表面である型と比較して70℃上昇した(本発明による型の離型温度:530℃)。プレス成形第1ショットの離型温度の上昇が本発明により可能となったため、成形のタクト短縮が可能となった。
【0018】
以上のようなプレス行程により3000回成形した後の型部材の成形面及び成形された光学素子の表面粗さ、並びに型部材と成形された光学素子との離型性は良好であった。特に、型部材の成形面について光学顕微鏡、走査電子顕微鏡(SEM)で観察しても傷やクラック等の欠陥やガラス成分の反応析出物、ガラスの融着はなかった。
【0019】
また、光学素子形状が両凹レンズ、凸メニスカスレンズ、凹メニスカスレンズとなる各光学素子成形用型を上記と同等の方法で作製した結果、従来の硬質炭素膜より離型性の良いことが確認された。特に図9に示すような凸メニスカスレンズの場合、従来の硬質炭素膜の場合、350℃まで型から光学素子が離型しない場合があったが、本発明の光学素子成形用型を使用した場合、安定して500℃以上での離型が可能となった。上記各種形状の連続成形も実施例1前半に記した両凸レンズ同様、3000回成形を行っても全く問題はなかった。
【0020】
また、本発明型でランタン系ガラス(LaK12)やSF系ガラス(SF8)を成形したがクラウン系ガラス(SK12)と同様3000回成形を行っても全く問題はなく、優れた離型効果が確認された。
【0021】
[実施例2](TiN/i−Cミキシング層、イオンビーム炭素膜)
本発明では型母材、中間層であるTiN,硬質炭素膜は上記実施例1と同等の方法で作製したので、成形表面である炭化水素膜の作製方法について詳細に述べる。実施例1では高周波を用い、CH4 プラズマを発生させ炭化水素膜の成膜を行ったが、本発明ではイオンビームを用い炭化水素膜を型母材状に形成したものである。成膜装置は実施例1に示した硬質炭素膜を形成したIBD装置を用いることができる。そのため本発明では硬質炭素膜形成と炭化水素膜形成が連続してできる。実施例1と同様にWC−Ti系超硬合金状にTiN及び硬質炭素膜を成膜した後、図3に示す硬質炭素膜を成膜した装置中で連続して炭化水素膜を成膜した。
【0022】
以下に炭化水素の成膜方法について述べる。まず、CH4 :20sccmをイオン化室に導入してガス圧4.0×10-2Paとし、CH4 ガスをイオン化した後、イオンビーム引き出しグリットに200Vの電圧を印加し、イオンビームを引き出し、基板ホルダーに−100Vのバイアス電圧をかけ硬質炭素膜上に炭化水素膜を約30nm成膜した。次に、本発明による光学素子成形用型によってプレス成形を実施例1と同様に行った。その結果、本発明による光学素子成形用型を用いることによりプレス成形の第1ショット目の離型温度が従来の硬質炭素膜が成形表面である型と比較して50℃上昇した。(本発明による型の離型温度:520℃)プレス成形第1ショット目の離型温度の上昇が本発明により可能となったため、成形のタクト短縮が可能となった。また、3000回成形した後の型部材の成形面及び成形された光学素子の表面粗さ、並びに型部材と成形された光学素子との離型性は良好であった。特に、型部材の成形面について光学顕微鏡、走査電子顕微鏡(SEM)で観察しても傷やクラック等の欠陥やガラス成分の反応析出物、ガラスの融着はなかった。
【0023】
また、光学素子形状が両凹レンズ、凸メニスカスレンズ、凹メニスカスレンズとなる各光学素子成形用型を上記と同等の方法で作製した結果、従来の硬質炭素膜より離型性の良いことが確認された。特に図9に示すような凸メニスカスレンズの場合、従来の硬質炭素膜の場合、350℃まで型から光学素子が離型しない場合があったが、本発明の光学素子成形用型を使用した場合、安定して500℃以上での離型が可能となった。上記各種形状の連続成形も実施例1前半に記した両凸レンズ同様、3000回成形を行っても全く問題はなかった。
【0024】
また、本発明型でランタン系ガラス(LaK12)やSF系ガラス(SF8)を成形したがクラウン系ガラス(SK12)と同様3000回成形を行っても全く問題はなく、優れた離型効果が確認された。
【0025】
[実施例3](CVDSiC/i−Cミキシング層、CVD炭素膜)
本発明では型母材として常圧焼結SiCを用い、これを所定の形状に加工した後、硬質物質からなる中間層形成、及び表面の緻密化のため型母材SiC上にCVDによるSiC膜を成膜し、成形面をRmax.=0.02に鏡面研磨したものを用いた。この型を良く洗浄した後、実施例1と同様図3に示すIBD装置に設置し、硬質炭素膜を実施例1と同条件でミキシング層35nmとなるように成膜を行った。次に、炭化水素膜を実施例1と同装置、同条件で30nmの膜厚で成膜を行った。
【0026】
次に、本発明による光学素子成形用型によってプレス成形を実施例1と同様に行った。その結果、本発明による光学素子成形用型を用いることによりプレス成形の第1ショット目の離型温度が従来の硬質炭素膜が成形表面である型と比較して60℃上昇した。(本発明による型の離型温度:530℃)プレス成形第1ショット目の離型温度の上昇が本発明により可能となったため、成形のタクト短縮が可能となった。また、3000回成形した後の成形面及び成形された光学素子の表面粗さ、並びに型部材と成形された光学素子との離型性は良好であった。特に、型部材の成形面について光学顕微鏡、走査電子顕微鏡(SEM)で観察しても傷やクラック等の欠陥やガラス成分の反応析出物、ガラスの融着はなかった。
【0027】
また、光学素子形状が両凹レンズ、凸メニスカスレンズ、凹メニスカスレンズとなる各光学素子成形用型を上記と同等の方法で作製した結果、従来の硬質炭素膜より離型性の良いことが確認された。特に図9に示すような凸メニスカスレンズの場合、従来の硬質炭素膜の場合、350℃まで型から光学素子が離型しない場合があったが、本発明の光学素子成形用型を使用した場合、安定して500℃以上での離型が可能となった。上記各種形状の連続成形も実施例1前半に記した両凸レンズ同様、3000回成形を行っても全く問題はなかった。
【0028】
また、本発明型でランタン系ガラス(LaK12)やSF系ガラス(SF8)を成形したがクラウン系ガラス(SK12)と同様3000回成形を行っても全く問題はなく、優れた離型効果が確認された。
【0029】
[実施例4](ダイヤモンド/i−Cミキシング層、CVD炭素膜)
型母材としてWC−Ti系超硬合金を所定の形状に加工した後、プラズマCVDによりダイヤモンド膜を成膜した後、成形面をRmax.=0.02μmに鏡面研磨したものを用いた。この型を良く洗浄した後、実施例1と同様図3に示すIBD装置に設置し、硬質炭素膜を実施例1と同条件でミキシング層35nmとなるように成膜を行った。次に、炭化水素膜を実施例1と同装置、同条件で30nmの膜厚で成膜を行った。
【0030】
次に、本発明による光学素子成形用型によってプレス成形を実施例1と同様に行った。その結果、本発明による光学素子成形用型を用いることによりプレス成形の第1ショット目の離型温度が従来の硬質炭素膜が成形表面である型と比較して60℃上昇した。(本発明による型の離型温度:500℃)プレス成形第1ショット目の離型温度の上昇が本発明により可能となったため、成形のタクト短縮が可能となった。また、3000回成形した後の型部材の成形面及び成形された光学素子の表面粗さ、並びに型部材と成形された光学素子との離型性は良好であった。特に、型部材の成形面について光学顕微鏡、走査電子顕微鏡(SEM)で観察しても傷やクラック等の欠陥やガラス成分の反応析出物、ガラスの融着はなかった。
【0031】
また、光学素子形状が両凹レンズ、凸メニスカスレンズ、凹メニスカスレンズとなる各光学素子成形用型を上記と同等の方法で作製した結果、従来の硬質炭素膜より離型性の良いことが確認された。特に図9に示すような凸メニスカスレンズの場合、従来の硬質炭素膜の場合、350℃まで型から光学素子が離型しない場合があったが、本発明の光学素子成形用型を使用した場合、安定して500℃以上での離型が可能となった。上記各種形状の連続成形も実施例1前半に記した両凸レンズ同様、3000回成形を行っても全く問題はなかった。
【0032】
また、本発明型でランタン系ガラス(LaK12)やSF系ガラス(SF8)を成形したがクラウン系ガラス(SK12)と同様3000回成形を行っても全く問題はなく、優れた離型効果が確認された。
【0033】
[実施例5](CVDSiN/i−Cミキシング層、CVD炭素膜)
型母材としてSi34 セラミックスを所定の形状に加工した後、プラズマCVDによりダイヤモンド膜を成膜した後、成形面をRmax.=0.02に鏡面研磨したものを用いた。この型を良く洗浄したのち、実施例1と同様図3に示すIBD装置に設置し、硬質炭素膜を実施例1と同条件でミキシング層35nmとなるように成膜を行った。次に、炭化水素膜を実施例1と同装置、同条件で30nmの膜厚で成膜を行った。
【0034】
次に、この光学素子成形用型によってプレス成形を実施例1と同様に行った。その結果、本発明による光学素子成形用型を用いることによりプレス成形の第1ショット目の離型温度が従来の硬質炭素膜が成形表面である型と比較して60℃上昇した。(本発明による型の離型温度:510℃)プレス成形第1ショット目の離型温度の上昇が本発明により可能となったため、成形のタクト短縮が可能となった。また、3000回成形した後の型部材の成形面及び成形された光学素子の表面粗さ、並びに型部材と成形された光学素子との離型性は良好であった。特に、型部材の成形面について光学顕微鏡、走査電子顕微鏡(SEM)で観察しても傷やクラック等の欠陥やガラス成分の反応析出物、ガラスの融着はなかった。
【0035】
また、光学素子形状が両凹レンズ、凸メニスカスレンズ、凹メニスカスレンズとなる各光学素子成形用型を上記と同等の方法で作製した結果、従来の硬質炭素膜より離型性の良いことが確認された。特に図9に示すような凸メニスカスレンズの場合、従来の硬質炭素膜の場合、350℃まで型から光学素子が離型しない場合があったが、本発明の光学素子成形用型を使用した場合、安定して500℃以上での離型が可能となった。上記各種形状の連続成形も実施例1前半に記した両凸レンズ同様、3000回成形を行っても全く問題はなかった。
【0036】
また、本発明型でランタン系ガラス(LaK12)やSF系ガラス(SF8)を成形したがクラウン系ガラス(SK12)と同様3000回成形を行っても全く問題はなく、良離型効果が確認された。
【0037】
以下実施例6〜79については実施例1〜5を含め表1〜4にまとめる。
【0038】
なお、中間層材料であるTaN、ZrN,HfN、TiC、TaC、ZrC、HfC、TiCN、TaCN、ZrCN及びHfCNの膜は、イオンプレーティング及びスパッタリングにより成膜した。
【0039】
また、型母材材料であるサーメットはTiN−TiC系のものを、ステンレスは高膨張鋼材である日立金属製YHD50FM(α=17×10-6)等を用いた。
【0040】
【表1】

Figure 0003847805
【0041】
【表2】
Figure 0003847805
【0042】
【表3】
Figure 0003847805
【0043】
【表4】
Figure 0003847805
【0044】
【発明の効果】
以上説明したように本発明の光学素子成形用型によれば、型母材上に成膜した硬質炭素膜上に炭化水素膜を設けたことにより、以下の諸問題の解決に成功した。
【0045】
第一に光学素子成形初期ショットから約20ショットまでの間に生じる離型性が悪い状態を、成形初期ショットから良好な離型状態にすることができた。これにより成形サイクルタイムを従来より大幅に短くすることができ、時間当りの生産数を向上でき、また離型性が悪い状態に発生する型の破損を極力押えることが可能となった。
【0046】
第二に従来の硬質炭素膜でも離型し難い凸メニスカスレンズ形状であっても、本発明による光学素子成形用型を用いることにより、離型性が向上した。これにより従来プレス成形終了後300℃まで冷却が必要であって形状でも、530℃での離型が可能となり成形サイクルタイムの飛躍的な短縮を可能にした。
【0047】
本発明により得られた光学素子成形用型を用いることにより、生産性の向上とコストダウンを実現することが可能となった。
【図面の簡単な説明】
【図1】本発明に係る光学素子成形用型の一例を示す断面図で、プレス成形前の状態を示す。
【図2】本発明に係る光学素子成形用型の一例を示す断面図で、プレス成形後の状態を示す。
【図3】本発明の実施例で用いるイオンビーム成膜装置を示す概略図である。
【図4】本発明に係る光学素子成形用型の中間層と硬質炭素膜の間に生成したミキシング層の光電分光分析(XPS)によるデプスプロファイルを示す図である。
【図5】本発明の実施例で用いる高周波放電タイプ成膜装置を示す概略図である。
【図6】本発明に係る成膜表面に高周波放電方式で成膜した炭化水素膜の赤外分光分析(FT−IR)の結果を示すグラフである。
【図7】本発明に係る光学素子成形用型を使用するレンズの成形装置を示す断面図で非連続である。
【図8】本発明に係る成形表面にイオンビーム成膜装置で成膜した硬質炭素膜の赤外分光分析(FT−IR)の結果を示すグラフである。
【図9】本発明に係る光学素子成形用型の一例を示す断面図で、プレス成形前の状態を示す。
【符号の説明】
1 型母材
2 中間層
3 硬質炭素膜
4 炭化水素膜
5 ガラス素材
6 光学素子
7 真空層
8 イオンビーム装置
9 イオン化室
10 ガス導入口
11 イオンビーム引き出しグリット
12 イオンビーム
13 型母材
14 基板ホルダー及びヒーター
15 排気口
16 真空槽
17 排気口
18 ガス導入口
19 ドーム状ホルダー
20 ヒーター
21 水晶モニタ
22 高周波印加用アンテナ
23 型母材
51 真空槽
52 真空槽のフタ
53 上型
54 下型
55 上型押え
56 胴型
57 型ホルダー
58 ヒーター
59 下型を突き上げる突き上げ棒
60 エアシリンダー
61 油回転ポンプ
62、63、64 バルブ
65 不活性ガス導入バルブ
66 バルブ
67 リークパイプ
68 バルブ
69 温度センサ
70 水冷パイプ
71 真空槽を支持する台[0001]
[Industrial application fields]
The present invention relates to a mold used for manufacturing an optical element made of glass such as a lens and a prism by press molding a glass material.
[0002]
[Prior art]
The technology for manufacturing lenses by press molding of glass materials without the need for polishing processes eliminates the complicated processes required in conventional lens manufacturing, making it possible to manufacture lenses easily and inexpensively. Not only lenses but also prisms and other optical elements made of glass have come to be used.
[0003]
Properties required for a mold material used for press molding of such a glass optical element include excellent hardness, heat resistance, releasability, and mirror surface workability. Conventionally, as this type of mold material, many proposals such as metals, ceramics and materials coated with them have been made. Some examples include 13Cr martensitic steel in JP-A-49-51112, SiC and Si 3 N 4 in JP-A-52-45613, and JP-A-60-246230. Japanese Laid-Open Patent Publication No. 6-183134, Japanese Laid-Open Patent Publication No. 61-281030, and Japanese Laid-Open Patent Publication No. 1-301864 disclose a diamond thin film or a diamond-like carbon film. JP-A 64-83529 proposes a material coated with a hard carbon film.
[0004]
[Problems to be solved by the invention]
However, 13Cr martensitic steel is easy to oxidize, and further has the disadvantage that Fe diffuses into the glass at a high temperature and the glass is colored. In addition, SiC and Si 3 N 4 are generally considered to be hardly oxidized, but oxidation also occurs at a high temperature, and a SiO 2 film is formed on the surface, which causes fusion with glass. On the other hand, a material coated with a noble metal is difficult to cause fusion, but has a drawback that it is very soft and easily damaged and easily deformed. In addition, when a mold in which a hydrocarbon film containing CH 3 or CH 2 or a carbon film deposited with graphite is deposited on a cemented carbide or ceramic mold base material is used for molding, the film will be consumed in several shots. Resulting in. On the other hand, a hard carbon film is excellent in releasability, does not cause fusion with glass, has high hardness and wear resistance, and is a good mold material. It may be difficult.
[0005]
As a first example, there is a problem that the hard carbon film maintains a strong bonding state from the start of press molding to about 20 shots, and there is almost no graphite-like portion, so that it remains difficult to release.
[0006]
As a second example, in the case of a convex lens shape, even if the temperature is easily released, a meniscus lens having a certain shape does not release. Such a phenomenon is considered to occur for the following reason. It is considered that the mold and lens release phenomenon is caused by the difference in thermal expansion coefficient between the mold and glass. That is, when the glass lens is slowly cooled according to the post-press molding process conditions, the amount of shrinkage varies depending on the coefficient of thermal expansion of each of the mold and the glass, so that a large shearing stress acts on the mold-glass interface and the mold is released. However, if the lens shape is different, the shear stress acting on the mold-glass interface varies greatly depending on the temperature. Therefore, depending on the object, the mold may not be released unless the temperature is lowered by 300 ° C. or more. Thus, the lower the mold release property, that is, the lower the mold release temperature, the longer one cycle of molding takes, and the number of lenses that can be manufactured per unit time is limited, leading to an increase in cost.
[0007]
[Means and Actions for Solving the Problems]
The present invention solves the above-mentioned problems by coating a hard carbon film, which is one of conventional mold release films, with a hydrocarbon film having a good mold release property.
[0008]
That is, the present invention provides a mold for use in press molding of the optical element made of glass, the mold base material on the hydrogen concentration 5~30Atomic% of the hard carbon film, and the film thickness is the hydrogen concentration of less than 50nm or 5nm An optical element molding die having a molding surface made of a hydrocarbon film of 40 to 70 atomic% in this order.
[0009]
The action is shown below.
[0010]
As one means for solving the above problems, it is conceivable to lower the adhesion between the mold and the glass during molding. A hard carbon film, which is one of the conventional release films, has high bonding properties, and gradually begins to carbonize when exposed to high temperatures for a long time, whereas hydrocarbon films have lower bonding properties than hard carbon films. When the temperature is high, carbonization is immediately promoted, resulting in a release effect peculiar to carbon. By forming a hydrocarbon film having good releasability on the molding surface in this way, it is easy to release even a shape that does not release easily such as the meniscus lens described above. Also, in the mold in which the hard carbon film is formed on the forming surface, the carbonization of the hard carbon film has not yet started at the start of molding, so that the mold release temperature is lowered and the time required for one molding cycle is increased. However, in the case of a mold coated with a hydrocarbon film, the mold can be released at a high temperature from the first shot.
[0011]
【Example】
[Example 1] (TiN / i-C mixing layer, CVD carbon film)
1 and 2 show an embodiment of an optical element molding die according to the present invention. In FIG. 1, 1 is a mold base material using cemented carbide, 2 is an intermediate layer made of a hard material using TiN, 3 is a hard carbon film, and 4 is a molding surface for molding a glass material made of a hydrocarbon film. Reference numeral 5 denotes a glass material. As shown in FIG. 2, an optical element 6 such as a lens is formed by press-molding a glass material 5 placed between molds.
[0012]
Next, the optical element molding die of the present invention will be described in detail. After processing a WC-Ti cemented carbide as a mold base material into a predetermined shape, a TiN film is formed by ion plating, and then the molding surface is Rmax. = 0.02 μm mirror-polished was used. After this mold was washed well, it was placed in an IBD (Ion Beam Deposition) apparatus shown in FIG. In FIG. 3, 7 is a vacuum chamber, 8 is an ion beam apparatus, 9 is an ionization chamber, 10 is a gas inlet, 11 is an ion beam extraction grid, 12 is an ion beam, 13 is a mold base material, 14 is a substrate holder and heater, Reference numeral 15 denotes an exhaust port. First, after argon gas 35 sccm is introduced into the ionization chamber from the gas inlet 10 and ionized, a voltage of 500 V is applied to the ion beam extraction grit to extract the ion beam, and the mold base material is irradiated for 5 minutes to clean the molding surface. Made. Next, CH 4 : 15 sccm and H 2 : 30 sccm are introduced into the ionization chamber to a gas pressure of 3.5 × 10 −2 Pa, an ion beam is extracted at an acceleration voltage of 10 kV, and the molding surface is irradiated to a 35 nm mixing layer. Formed. The mixing layer of the analysis sample prepared under the same conditions is designated as XPS (Xray Photoelectron).
The result of depth direction analysis by spectroscopy is shown in FIG. As apparent from FIG. 4, the thickness of the mixing layer is 35 nm, and the concentration of carbon C decreases from the surface side toward the mold base material side. On the other hand, the concentration of Ti and N atoms increases from the surface side toward the mold base material side. A hard carbon film having a mixing layer was formed by the above method.
[0013]
Next, a method for forming a hydrocarbon film on the hard carbon film layer will be described. FIG. 5 is a schematic diagram showing a schematic configuration of a thin film deposition apparatus for forming a hydrocarbon film. In FIG. 5, 16 is a vacuum chamber, 17 is an exhaust port, 18 is a gas inlet, 19 is a dome-shaped holder for holding the mold base material, 20 is a heater for heating the mold base material, and 21 is a coating film. A quartz crystal monitor 22 for measuring the thickness is an antenna for applying a high frequency. Reference numeral 23 denotes a mold base material held by the holder.
[0014]
A well-cleaned hard carbon film and a mold base material on which TiN is formed are attached to a dome-shaped holder, heated to 300 ° C. by a heater 20, evacuated from an exhaust port 17, and the inside of the vacuum chamber 16 is 1 × 10 −3 Pa. After the pressure is reduced to below, argon gas is introduced from the gas inlet 18 until the pressure reaches 5 × 10 −2 Pa, and a high frequency of 300 W is applied to the high frequency applying antenna 22 to perform high frequency discharge and Plasma cleaning was performed. Thereafter, the introduction of argon gas was stopped, the degree of vacuum was returned to 1 × 10 −3 Pa, and CH 4 gas was introduced from the gas introduction port 18 until 1 × 10 −1 Pa was reached. Then, a high frequency of 500 W was applied to the high frequency applying antenna 22 to perform high frequency discharge, and a coating film having a thickness of about 30 nm was formed. In order to exhibit the mold release effect according to the present invention, the film thickness is required to be at least 5 nm, and when it is 50 nm or more, the appearance of the optical element may be defective.
[0015]
The result of infrared absorption spectroscopy (IR) of the hydrocarbon film formed here is shown in FIG. The hydrocarbon film as shown in FIG. 6 while the absorption of CH 3, CH 2 is seen from the IR analysis of the hard carbon film shown in FIG. 8, CH 3 found in hydrocarbon film in FIG. 6, Almost no absorption of CH 2 could be confirmed. Further, since the hydrogen concentration of the hydrocarbon film was 40 to 70 atomic%, it is considered that most of the hydrogen in the hydrocarbon film is bonded in a group state such as CH 3 CH 2 . On the other hand, the hydrogen concentration of the hard carbon film is 5 to 30 atomic%. However, since the absorption of CH 3 and CH 2 is small as described above, it is considered that the hydrogen in the film is bonded to the end of the dangling bond. .
[0016]
Next, an example in which press molding is performed using the optical element molding die according to the present invention will be described. FIG. 7 shows a molding apparatus, in which 51 is a vacuum chamber body, 52 is a lid, 53 is an upper mold for molding an optical element, 54 is a lower mold, and 55 is an upper mold presser for pressing the upper mold. , 56 is a barrel mold, 57 is a mold holder, 58 is a heater, 59 is a thrust bar that pushes up the lower mold, 60 is an air cylinder that operates the thrust bar, 61 is an oil rotary pump, 62, 63, and 64 are valves, 65 Is an inert gas inflow pipe, 66 is a valve, 67 is a leak valve, 68 is a valve, 69 is a temperature sensor 70 is a water-cooled pipe, and 71 is a table that supports a vacuum chamber. The process for manufacturing the lens will be described next. A gob prepared by adjusting the crown optical glass (SK12) to both predetermined positions is placed in a cavity of a mold, and this is placed in the apparatus. After the mold filled with the glass material is installed in the apparatus, the lid 52 of the vacuum chamber 51 is closed, water is supplied to the water cooling pipe 70, and current is supplied to the heater 58. At this time, the nitrogen gas valves 66 and 68 are closed, and the exhaust system valves 62, 63 and 64 are also closed. The oil rotary pump 61 is always rotating. When the pressure becomes 1 Pa or less after the valve 62 is opened and exhaust is started, the valve 62 is closed and the valve 66 is opened to introduce nitrogen gas into the vacuum chamber from the cylinder. When the temperature reaches a predetermined temperature, the air cylinder 60 is operated to pressurize at a pressure of 1.5 Pa for 1 minute. After releasing the pressure, cooling is performed at a cooling rate of −5 ° C./min until the transition point or lower, and then cooling is performed at a rate of −20 ° C./min or higher. 63 is opened to introduce air into the vacuum chamber 51. Then, the lid 52 is opened and the upper mold retainer is removed, and the molded product is taken out. The lens shown in FIG. 4 was used using the crown optical glass (softening point Sp = 672 ° C., transition point Tg = 550 ° C.) as described above.
[0017]
By using the optical element molding die according to the present invention, the mold release temperature of the first shot of press molding (the temperature at which the optical element peels from the mold during slow cooling after press molding) is the surface of the conventional hard carbon film. Compared with the mold which is, it rose by 70 ° C. (mold release temperature of the mold according to the invention: 530 ° C.). Since the present invention can increase the mold release temperature of the first press molding, the tact time of molding can be shortened.
[0018]
The molding surface of the mold member and the surface roughness of the molded optical element after being molded 3000 times by the press process as described above, and the releasability between the mold member and the molded optical element were good. In particular, even when the molding surface of the mold member was observed with an optical microscope or a scanning electron microscope (SEM), there were no defects such as scratches and cracks, reaction deposits of glass components, and glass fusion.
[0019]
In addition, as a result of producing each optical element molding die whose optical element shape is a biconcave lens, a convex meniscus lens, and a concave meniscus lens by the same method as above, it was confirmed that the mold has better releasability than the conventional hard carbon film. It was. In particular, in the case of a convex meniscus lens as shown in FIG. 9, in the case of a conventional hard carbon film, the optical element may not be released from the mold up to 350 ° C., but when the optical element molding die of the present invention is used The mold release at 500 ° C. or higher was possible stably. Similar to the biconvex lens described in the first half of Example 1, the continuous molding of the various shapes described above had no problem even if it was performed 3000 times.
[0020]
In addition, lanthanum-based glass (LaK12) and SF-based glass (SF8) were molded with the mold of the present invention. However, as with crown-based glass (SK12), there was no problem at all, and an excellent release effect was confirmed. It was done.
[0021]
[Example 2] (TiN / i-C mixing layer, ion beam carbon film)
In the present invention, the mold base material, the TiN as the intermediate layer, and the hard carbon film were produced by the same method as in Example 1 above, so the method for producing the hydrocarbon film as the molding surface will be described in detail. In Example 1, a high frequency was used to generate a CH 4 plasma to form a hydrocarbon film, but in the present invention, a hydrocarbon film is formed into a mold base using an ion beam. As the film forming apparatus, the IBD apparatus in which the hard carbon film shown in the first embodiment is formed can be used. Therefore, in the present invention, hard carbon film formation and hydrocarbon film formation can be performed continuously. In the same manner as in Example 1, after depositing TiN and a hard carbon film in the form of a WC-Ti cemented carbide, a hydrocarbon film was continuously formed in the apparatus for forming the hard carbon film shown in FIG. .
[0022]
The hydrocarbon film forming method is described below. First, CH 4 : 20 sccm is introduced into the ionization chamber to a gas pressure of 4.0 × 10 −2 Pa. After ionizing the CH 4 gas, a voltage of 200 V is applied to the ion beam extraction grid to extract the ion beam, A bias voltage of −100 V was applied to the substrate holder to form a hydrocarbon film of about 30 nm on the hard carbon film. Next, press molding was performed in the same manner as in Example 1 using the optical element molding die according to the present invention. As a result, by using the mold for molding an optical element according to the present invention, the mold release temperature in the first shot of press molding was increased by 50 ° C. compared with the mold in which the conventional hard carbon film is the molding surface. (Mold release temperature of the mold according to the present invention: 520 ° C.) Since the present invention can increase the mold release temperature in the first shot of press molding, the tact time of molding can be shortened. Further, the molding surface of the mold member after molding 3000 times, the surface roughness of the molded optical element, and the releasability between the mold member and the molded optical element were good. In particular, even when the molding surface of the mold member was observed with an optical microscope or a scanning electron microscope (SEM), there were no defects such as scratches and cracks, reaction deposits of glass components, and glass fusion.
[0023]
In addition, as a result of producing each optical element molding die whose optical element shape is a biconcave lens, a convex meniscus lens, and a concave meniscus lens by the same method as above, it was confirmed that the mold has better releasability than the conventional hard carbon film. It was. In particular, in the case of a convex meniscus lens as shown in FIG. 9, in the case of a conventional hard carbon film, the optical element may not be released from the mold up to 350 ° C., but when the optical element molding die of the present invention is used The mold release at 500 ° C. or higher was possible stably. Similar to the biconvex lens described in the first half of Example 1, the continuous molding of the various shapes described above had no problem even if it was performed 3000 times.
[0024]
In addition, lanthanum-based glass (LaK12) and SF-based glass (SF8) were molded with the mold of the present invention. However, as with crown-based glass (SK12), there was no problem at all, and an excellent release effect was confirmed. It was done.
[0025]
[Example 3] (CVD SiC / i-C mixing layer, CVD carbon film)
In the present invention, atmospheric pressure sintered SiC is used as a mold base material, which is processed into a predetermined shape, and then an SiC film formed by CVD on the mold base material SiC for forming an intermediate layer made of a hard material and densifying the surface. And forming the molding surface with Rmax. What was mirror-polished to 0.02 was used. After this mold was thoroughly cleaned, it was placed in the IBD apparatus shown in FIG. 3 as in Example 1, and a hard carbon film was formed under the same conditions as in Example 1 so as to have a mixing layer of 35 nm. Next, a hydrocarbon film was formed to a thickness of 30 nm under the same apparatus and conditions as in Example 1.
[0026]
Next, press molding was performed in the same manner as in Example 1 using the optical element molding die according to the present invention. As a result, by using the optical element molding die according to the present invention, the mold release temperature in the first shot of press molding was increased by 60 ° C. as compared with the mold in which the conventional hard carbon film was the molding surface. (Mold release temperature of the mold according to the present invention: 530 ° C.) The mold release temperature of the first shot of press molding can be increased by the present invention, so that the tact time of molding can be shortened. Further, the molding surface after molding 3000 times, the surface roughness of the molded optical element, and the releasability between the mold member and the molded optical element were good. In particular, even when the molding surface of the mold member was observed with an optical microscope or a scanning electron microscope (SEM), there were no defects such as scratches and cracks, reaction deposits of glass components, and glass fusion.
[0027]
In addition, as a result of producing each optical element molding die whose optical element shape is a biconcave lens, a convex meniscus lens, and a concave meniscus lens by the same method as above, it was confirmed that the mold has better releasability than the conventional hard carbon film. It was. In particular, in the case of a convex meniscus lens as shown in FIG. 9, in the case of a conventional hard carbon film, the optical element may not be released from the mold up to 350 ° C., but when the optical element molding die of the present invention is used The mold release at 500 ° C. or higher was possible stably. Similar to the biconvex lens described in the first half of Example 1, the continuous molding of the various shapes described above had no problem even if it was performed 3000 times.
[0028]
In addition, lanthanum-based glass (LaK12) and SF-based glass (SF8) were molded with the mold of the present invention. However, as with crown-based glass (SK12), there was no problem at all, and an excellent release effect was confirmed. It was done.
[0029]
[Example 4] (Diamond / i-C mixing layer, CVD carbon film)
After processing a WC-Ti cemented carbide as a mold base material into a predetermined shape, a diamond film was formed by plasma CVD, and the molding surface was subjected to Rmax. = 0.02 μm mirror-polished was used. After this mold was thoroughly cleaned, it was placed in the IBD apparatus shown in FIG. 3 as in Example 1, and a hard carbon film was formed under the same conditions as in Example 1 so as to have a mixing layer of 35 nm. Next, a hydrocarbon film was formed to a thickness of 30 nm under the same apparatus and conditions as in Example 1.
[0030]
Next, press molding was performed in the same manner as in Example 1 using the optical element molding die according to the present invention. As a result, by using the optical element molding die according to the present invention, the mold release temperature in the first shot of press molding was increased by 60 ° C. as compared with the mold in which the conventional hard carbon film was the molding surface. (Mold release temperature of the mold according to the present invention: 500 ° C.) Since the present invention makes it possible to increase the mold release temperature in the first shot of press molding, the tact time of the molding can be shortened. Further, the molding surface of the mold member after molding 3000 times, the surface roughness of the molded optical element, and the releasability between the mold member and the molded optical element were good. In particular, even when the molding surface of the mold member was observed with an optical microscope or a scanning electron microscope (SEM), there were no defects such as scratches and cracks, reaction deposits of glass components, and glass fusion.
[0031]
In addition, as a result of producing each optical element molding die whose optical element shape is a biconcave lens, a convex meniscus lens, and a concave meniscus lens by the same method as above, it was confirmed that the mold has better releasability than the conventional hard carbon film. It was. In particular, in the case of a convex meniscus lens as shown in FIG. 9, in the case of a conventional hard carbon film, the optical element may not be released from the mold up to 350 ° C., but when the optical element molding die of the present invention is used The mold release at 500 ° C. or higher was possible stably. Similar to the biconvex lens described in the first half of Example 1, the continuous molding of the various shapes described above had no problem even if it was performed 3000 times.
[0032]
In addition, lanthanum-based glass (LaK12) and SF-based glass (SF8) were molded with the mold of the present invention. However, as with crown-based glass (SK12), there was no problem at all, and an excellent release effect was confirmed. It was done.
[0033]
[Example 5] (CVDSiN / i-C mixing layer, CVD carbon film)
After processing Si 3 N 4 ceramics as a mold base material into a predetermined shape, a diamond film was formed by plasma CVD, and the molding surface was subjected to Rmax. What was mirror-polished to 0.02 was used. After this mold was thoroughly washed, it was placed in the IBD apparatus shown in FIG. 3 as in Example 1, and a hard carbon film was formed to have a mixing layer of 35 nm under the same conditions as in Example 1. Next, a hydrocarbon film was formed to a thickness of 30 nm under the same apparatus and conditions as in Example 1.
[0034]
Next, press molding was performed in the same manner as in Example 1 using this optical element molding die. As a result, by using the optical element molding die according to the present invention, the mold release temperature in the first shot of press molding was increased by 60 ° C. as compared with the mold in which the conventional hard carbon film was the molding surface. (Mold release temperature of the mold according to the present invention: 510 ° C.) The mold release temperature in the first shot of press molding can be increased by the present invention, so that the tact time of molding can be shortened. Further, the molding surface of the mold member after molding 3000 times, the surface roughness of the molded optical element, and the releasability between the mold member and the molded optical element were good. In particular, even when the molding surface of the mold member was observed with an optical microscope or a scanning electron microscope (SEM), there were no defects such as scratches and cracks, reaction deposits of glass components, and glass fusion.
[0035]
In addition, as a result of producing each optical element molding die whose optical element shape is a biconcave lens, a convex meniscus lens, and a concave meniscus lens by the same method as above, it was confirmed that the mold has better releasability than the conventional hard carbon film. It was. In particular, in the case of a convex meniscus lens as shown in FIG. 9, in the case of a conventional hard carbon film, the optical element may not be released from the mold up to 350 ° C., but when the optical element molding die of the present invention is used The mold release at 500 ° C. or higher was possible stably. Similar to the biconvex lens described in the first half of Example 1, the continuous molding of the various shapes described above had no problem even if it was performed 3000 times.
[0036]
In addition, lanthanum glass (LaK12) and SF glass (SF8) were molded with the mold of the present invention, but there was no problem even if it was molded 3000 times like crown glass (SK12), and a good mold release effect was confirmed. It was.
[0037]
Examples 6 to 79 are summarized in Tables 1 to 4 including Examples 1 to 5 below.
[0038]
The films of TaN, ZrN, HfN, TiC, TaC, ZrC, HfC, TiCN, TaCN, ZrCN, and HfCN, which are intermediate layer materials, were formed by ion plating and sputtering.
[0039]
Moreover, the cermet which is a mold base material was TiN-TiC, and the stainless steel was YHD50FM (α = 17 × 10 −6 ) made by Hitachi Metals which is a high expansion steel material.
[0040]
[Table 1]
Figure 0003847805
[0041]
[Table 2]
Figure 0003847805
[0042]
[Table 3]
Figure 0003847805
[0043]
[Table 4]
Figure 0003847805
[0044]
【The invention's effect】
As described above, according to the optical element molding die of the present invention, the following problems were successfully solved by providing the hydrocarbon film on the hard carbon film formed on the mold base material.
[0045]
First, it was possible to change the state of poor releasability occurring between the initial optical element molding shot to about 20 shots and the favorable release state from the initial molding shot. As a result, the molding cycle time can be significantly shortened compared to the prior art, the number of production per hour can be improved, and the breakage of the mold that occurs when the mold release property is poor can be suppressed as much as possible.
[0046]
Secondly, even if it is a convex meniscus lens shape that is difficult to release even with a conventional hard carbon film, the releasability is improved by using the optical element molding die according to the present invention. As a result, it is necessary to cool to 300 ° C. after the end of conventional press molding, and the mold can be released at 530 ° C., and the molding cycle time can be drastically shortened.
[0047]
By using the optical element molding die obtained by the present invention, it becomes possible to improve productivity and reduce costs.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an optical element molding die according to the present invention, showing a state before press molding.
FIG. 2 is a cross-sectional view showing an example of an optical element molding die according to the present invention, showing a state after press molding.
FIG. 3 is a schematic view showing an ion beam film forming apparatus used in an embodiment of the present invention.
FIG. 4 is a diagram showing a depth profile by photoelectric spectroscopic analysis (XPS) of a mixing layer formed between an intermediate layer of an optical element molding die according to the present invention and a hard carbon film.
FIG. 5 is a schematic view showing a high-frequency discharge type film forming apparatus used in an embodiment of the present invention.
FIG. 6 is a graph showing the results of infrared spectroscopic analysis (FT-IR) of a hydrocarbon film formed by a high frequency discharge method on the film formation surface according to the present invention.
FIG. 7 is a cross-sectional view showing a lens molding apparatus using the optical element molding die according to the present invention, which is discontinuous.
FIG. 8 is a graph showing the results of infrared spectroscopic analysis (FT-IR) of a hard carbon film formed on the molding surface according to the present invention by an ion beam film forming apparatus.
FIG. 9 is a cross-sectional view showing an example of an optical element molding die according to the present invention, showing a state before press molding.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Type | mold base material 2 Intermediate | middle layer 3 Hard carbon film 4 Hydrocarbon film 5 Glass material 6 Optical element 7 Vacuum layer 8 Ion beam apparatus 9 Ionization chamber 10 Gas inlet 11 Ion beam extraction grid 12 Ion beam 13 Type base material 14 Substrate holder And heater 15 exhaust port 16 vacuum chamber 17 exhaust port 18 gas introduction port 19 dome-shaped holder 20 heater 21 crystal monitor 22 high frequency applying antenna 23 mold base material 51 vacuum chamber 52 vacuum chamber lid 53 upper mold 54 lower mold 55 upper mold Presser 56 Body mold 57 Mold holder 58 Heater 59 Pushing rod for pushing up the lower mold 60 Air cylinder 61 Oil rotary pump 62, 63, 64 Valve 65 Inert gas introduction valve 66 Valve 67 Leak pipe 68 Valve 69 Temperature sensor 70 Water cooling pipe 71 Vacuum Stand that supports the tank

Claims (8)

ガラスよりなる光学素子のプレス成形に用いる成形用型において、型母材上に水素濃度が5〜30atomic%の硬質炭素膜、及び膜厚が5nm以上50nm未満で水素濃度が40〜70atomic%の炭化水素膜からなる成形表面をこの順に有することを特徴とする光学素子成形用型。In a molding die used for press molding of an optical element made of glass, a hard carbon film having a hydrogen concentration of 5 to 30 atomic% and a carbonization having a thickness of 5 nm to less than 50 nm and a hydrogen concentration of 40 to 70 atomic% on the mold base material. An optical element molding die having a molding surface made of a hydrogen film in this order. 型母材と硬質炭素膜の間に、硬質物質からなる中間層を有する請求項1記載の光学素子成形用型。  The optical element molding die according to claim 1, further comprising an intermediate layer made of a hard substance between the die base material and the hard carbon film. 中間層と硬質炭素膜の間に、イオンビームミキシングにより形成された、中間層を構成する元素が硬質炭素膜に向かって減少しかつ硬質炭素膜を構成する炭素が中間層に向かって減少しているミキシング層を有する請求項2記載の光学素子成形用型。  The elements constituting the intermediate layer formed by ion beam mixing between the intermediate layer and the hard carbon film decrease toward the hard carbon film, and the carbon included in the hard carbon film decreases toward the intermediate layer. The mold for molding an optical element according to claim 2, further comprising a mixing layer. 型母材が超硬合金、サーメット、ステンレス鋼、窒化珪素及び炭化珪素から選ばれる請求項1記載の光学素子成形用型。  The mold for molding an optical element according to claim 1, wherein the mold base material is selected from cemented carbide, cermet, stainless steel, silicon nitride, and silicon carbide. 中間層材料がTiN、TaN、ZrN、HfN、TiC、TaC、ZrC、HfC、TiCN、TaCN、ZrCN、HfCN、CVDにより形成されたSiC、CVDにより形成されたSiN、及びダイヤモンドから選ばれる請求項2記載の光学素子成形用型。  The intermediate layer material is selected from TiN, TaN, ZrN, HfN, TiC, TaC, ZrC, HfC, TiCN, TaCN, ZrCN, HfCN, SiC formed by CVD, SiN formed by CVD, and diamond. The mold for molding an optical element as described. 硬質炭素膜がダイヤモンド薄膜、ダイヤモンド状炭素膜及び水素化アモルファス炭素膜から選ばれる請求項1記載の光学素子成形用型。  2. The mold for molding an optical element according to claim 1, wherein the hard carbon film is selected from a diamond thin film, a diamond-like carbon film, and a hydrogenated amorphous carbon film. 成形表面である炭化水素膜がプラズマCVDにより形成された膜である請求項1記載の光学素子成形用型。  The mold for molding an optical element according to claim 1, wherein the hydrocarbon film as the molding surface is a film formed by plasma CVD. 成形表面である炭化水素膜がイオンビームにより形成された膜である請求項1記載の光学素子成形用型。  2. The mold for molding an optical element according to claim 1, wherein the hydrocarbon film as a molding surface is a film formed by an ion beam.
JP28991794A 1994-11-24 1994-11-24 Mold for optical element molding Expired - Fee Related JP3847805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28991794A JP3847805B2 (en) 1994-11-24 1994-11-24 Mold for optical element molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28991794A JP3847805B2 (en) 1994-11-24 1994-11-24 Mold for optical element molding

Publications (2)

Publication Number Publication Date
JPH08151217A JPH08151217A (en) 1996-06-11
JP3847805B2 true JP3847805B2 (en) 2006-11-22

Family

ID=17749441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28991794A Expired - Fee Related JP3847805B2 (en) 1994-11-24 1994-11-24 Mold for optical element molding

Country Status (1)

Country Link
JP (1) JP3847805B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100381379C (en) * 2004-11-10 2008-04-16 亚洲光学股份有限公司 Mold core for molding glass
CN100363278C (en) * 2004-11-10 2008-01-23 亚洲光学股份有限公司 Mold core for molding glass
CN100363279C (en) * 2004-11-10 2008-01-23 亚洲光学股份有限公司 Mold core for molding glass

Also Published As

Publication number Publication date
JPH08151217A (en) 1996-06-11

Similar Documents

Publication Publication Date Title
JP3231165B2 (en) Optical element molding die and method of manufacturing the same
US5380349A (en) Mold having a diamond layer, for molding optical elements
JPH0461816B2 (en)
JP3847805B2 (en) Mold for optical element molding
JPH08259241A (en) Method for forming optical device
JPH04154634A (en) Mold for optical element formation and its production
JP2830969B2 (en) Optical element molding die and method of manufacturing the same
JP3149149B2 (en) Optical element molding die
JPH0729786B2 (en) Mold for optical element molding
JPH06345448A (en) Production of optical element
JP2785903B2 (en) Mold for optical element molding
JP2531819B2 (en) Mold for optical element molding
JP3625295B2 (en) Optical element molding die and manufacturing method thereof
JP3011574B2 (en) Mold for molding optical elements
JP3810022B2 (en) Method for manufacturing optical element molding die
JPH04154633A (en) Mold for optical element formation and its production
JPH0925130A (en) Die for forming optical element and its production
JPH06320636A (en) Production of mold for molding optical element
JP3144608B2 (en) Optical element molding die and method of manufacturing the same
JP3397470B2 (en) Optical element molding die and method of manufacturing the same
JP2612621B2 (en) Mold for optical element molding
JP3308720B2 (en) Mold for optical element molding
JP2505897B2 (en) Mold for optical element molding
JPH09188536A (en) Mold for forming optical element and its production
JPH06279037A (en) Mold for molding optical element and its production

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060824

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees