JPH0250059B2 - - Google Patents

Info

Publication number
JPH0250059B2
JPH0250059B2 JP57223506A JP22350682A JPH0250059B2 JP H0250059 B2 JPH0250059 B2 JP H0250059B2 JP 57223506 A JP57223506 A JP 57223506A JP 22350682 A JP22350682 A JP 22350682A JP H0250059 B2 JPH0250059 B2 JP H0250059B2
Authority
JP
Japan
Prior art keywords
spherical
mold
glass material
optical lens
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57223506A
Other languages
Japanese (ja)
Other versions
JPS59116137A (en
Inventor
Kenzo Matsuzaka
Seitaro Okano
Nobuo Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP22350682A priority Critical patent/JPS59116137A/en
Publication of JPS59116137A publication Critical patent/JPS59116137A/en
Publication of JPH0250059B2 publication Critical patent/JPH0250059B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/005Pressing under special atmospheres, e.g. inert, reactive, vacuum, clean
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/125Cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/03Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/65Means for releasing gas trapped between glass and press die
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/66Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/68Means for parting the die from the pressed glass other than by cooling or use of a take-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は光学レンズをガス素材の成形によつて
製造する方法に関するもので、さらに詳しくいえ
ば、所望の光学レンズに対応する形状で高い面精
度をもつ型面を備えた一対の型の間に所定容量の
ガラス素材を置き、該ガラス素材を加熱しつつ上
記の型によつて加圧成形することによりレンズま
たはプリズム等の光学素子を製造する方法に関す
るものである。 従来レンズやプリズムを生産するには材料をダ
イヤモンド砥石等によつて研削した後酸化セリウ
ム等によつて研磨する方法が取られてきた。しか
し非球面レンズのニーズが高まり従来の方法によ
つては低コストで大量のレンズを生産するのはむ
ずかしい。そこで成形によつて非球面レンズ等を
生産する方法が各国で研究され、コダツク社から
は不活性ガス中において成形する方法(米国特許
第3833347号、同第4139677号)が提案されてい
る。 高精度の光学素子(例えばニユートンリング5
本以内、粗さ1/100μ以下)を成形によつて作る
には、リヒートプレス(すなわち、光学的に保証
された材料を再加熱して成形するプレス)が有効
である。しかし、従来、そのガラス素材の形態に
は注意が払われていないため、表面に凹凸のある
素材が使用される場合には、成形に際し、凹凸部
にある気体の逃げ場がなく、成形された光学素子
の表面に悪影響を残す場合がしばしば生じ、これ
は光学素子として不満足なものとなる。 本発明は、上記のようにして、所望の光学レン
ズに対応する成形の型面を備えた一対の型の間に
所定容量のガラス素材を置き、該ガラス素材を加
熱しつつ上記の型により成形することによつて光
学レンズを製造するにあたり、表面欠陥がなく光
学的に満足な光学レンズを製造する方法を提供し
ようとするもので、その特徴とすることろは、前
記型は、その表面粗さRnaxを0.02μ程度の高い面
精度に調整し、前記ガラス素材は、その表面粗さ
Rnaxを0.01μ以下の仕上り表面とした球状の予備
成形材に加工し、前記球状の予備成形材を不活性
ガス雰囲気中に置かれた前記型内に載置し、前記
型の加圧操作のみによつて前記球状予備成形材を
成形面の仕上り表面粗さRnaxが少なくとも0.02μ
m以下の光学レンズ機能面を形成することにあ
る。 第1図は本発明方法を実施する装置の一例を示
す。図中、1は密閉容器、2はその蓋、3は光学
素子を成形するための上型、4はその下型、5は
上型をおさえるるための上型おさえ、6は胴型、
7は型ホルダー、8はヒータ、9は下型をつき上
げるつき上げ棒、10は該つき上げ棒を作動する
エアシリンダ、11は油廻転ポンプ、12,1
3,14はバルブ、15は不活性ガス流入パイ
プ、16はバルブ、17は流出パイプ、18はバ
ルブ、19は温度センサ、20は水冷パイプを示
す。 光学素子を製造する際、先ず、密閉容器1の蓋
2をあけ、所定容量のガラス素材を下型4の上に
のせ、上型3をセツトしてから、密閉容器1の蓋
2を閉じ、水冷パイプ20に水を流して、ヒータ
8に通電する。 このとき不活性ガス用バルブ16,18は閉
じ、排気系バルブ12,13,14も閉じてい
る。尚、油廻転ポンプは常に廻転している。 バルブ12を開け排気をはじめガイスラー管に
蛍光が出るか又は真空計が10-2Torr以下になつ
たら、バルブ12を閉じバルブ16を開いて不活
性ガス(例えばN2)を密閉容器内に導入する。
ガラス素材が成形可能な温度になつたらエアシリ
ンダ10を作動させてガラスを加圧成形する。尚
下型は胴型6と同質の材料で作られ精度よく嵌合
して上下する。 装置を徐々に冷却して温度が200℃以下に下が
つたらバルブ16を閉じバルブ13を閉じて密閉
容器内に空気を導入する。蓋2を開け上型おさえ
5をはずして成形物を取り出す。 ガラス素材として、予め表面欠陥を除去した素
材、すなわち、表面粗さを0.01μ以下とするよう
に研磨等により予備成形された球状の予備成形材
が使用される。このようなガラス素材の例を第2
図に示す。 第2図に凹形の型面をもつ上型3および下型4
によつてガラス素材を成形する例を示し、この場
合にはガラス素材21として、第2図Aに示すよ
うに球状のものを使用する。このガラス素材21
を型3および4によつて加圧成型すると、第2図
Bに示すように、凸レンズ型の光学素子22がつ
くられる。 上記の光学レンズの成形の際、予め表面欠陥が
ないように表面を球面状に予備成形された素材2
1が使用されるので、成形の際に素材21の表面
の空気が逃げ場を失つて、成形された光学レンズ
22の表面に悪影響を残すような恐れはなく、光
学的に満足な光学レンズが得られる。 また、このような球形の素材21は転造によつ
て正確な球形に予備成形し易く、素材の仕上加工
を低コストとなし得る。また、このような球形の
素材は傾斜したシユート等によつて、ころがしな
がら搬送できるので搬送に要するコストが低い。
さらに、重要な特徴として、素材の直径のみを測
ることによつて、素材の重量を計算できるためガ
ラス素材の重量管理が容易で、寸法精度の良好な
ガラスレンズを能率よく成形することができる。 一例として、上記の球状のガラス素材の材料と
して通称SF14の光学ガラスを用い球状の素材
をつくつた。この球状素材の表面欠陥を除去し、
第3図イに示す表面粗度の球状の予備成形材をつ
くつた。Rnaxは0.01μ以下であつた。 上型3の表面は、その表面粗さRnaxを0.02μ程
度の高い面精度で曲率20.5mmに光学加工し、また
下型4の表面は、上型3と同程度の面精度で曲率
55.5mmに光学加工した一対の型を使用し、成形条
件として、570℃で10Kg/cm2の圧力を3分間加え
ることによつて、ガラス素材を加圧成形して光学
レンズをつくつた。成形品の表面粗度を第3図ロ
に示す。 この光学レンズの表面粗度はRnax0.02μであつ
た。 上記の例と全く同じ条件で、素材の両表面の仕
上をそれぞれ、#1200(比較例1)、#600(比較例
2)、#250(比較例3)として、光学素子を成形
した。 比較例1の素材および成形品の表面粗度を第4
図イおよびロに示し、比較例2の素材および成形
品の表面粗度を第5図イおよびロに示し、比較例
3の素材および成形品の表面粗度を第6図イおよ
びロに示す。 上記の本発明の例および比較例の結果を下表に
示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical lens by molding a gas material, and more specifically, the present invention relates to a method for manufacturing an optical lens by molding a gas material. The present invention relates to a method for manufacturing optical elements such as lenses or prisms by placing a predetermined volume of glass material between a pair of molds, and pressing and molding the glass material using the molds while heating the glass material. Conventionally, lenses and prisms have been produced by grinding the material with a diamond grindstone or the like, and then polishing it with cerium oxide or the like. However, as the need for aspherical lenses increases, it is difficult to produce large quantities of lenses at low cost using conventional methods. Therefore, methods of producing aspherical lenses by molding are being researched in various countries, and Kodatsu has proposed a method of molding in an inert gas (US Pat. No. 3,833,347, US Pat. No. 4,139,677). High-precision optical elements (e.g. Newton ring 5
A reheat press (i.e., a press that reheats and molds an optically guaranteed material) is effective for molding a material with a roughness of 1/100μ or less. However, conventionally, no attention has been paid to the form of the glass material, so when a material with an uneven surface is used, there is no place for the gas in the uneven parts to escape during molding, and the molded optical This often leaves an adverse effect on the surface of the element, making it unsatisfactory as an optical element. In the present invention, as described above, a predetermined volume of glass material is placed between a pair of molds having mold surfaces corresponding to a desired optical lens, and the glass material is heated and molded by the mold. The purpose of the present invention is to provide a method for manufacturing optical lenses that are free from surface defects and are optically satisfactory. The surface roughness of the glass material is adjusted to a high surface accuracy of about 0.02μ .
Process R nax into a spherical preformed material with a finished surface of 0.01μ or less, place the spherical preformed material in the mold placed in an inert gas atmosphere, and pressurize the mold. The finished surface roughness of the molding surface Rnax is at least 0.02μ by chiseling the spherical preformed material.
The object of the present invention is to form an optical lens functional surface having a diameter of m or less. FIG. 1 shows an example of an apparatus for carrying out the method of the invention. In the figure, 1 is an airtight container, 2 is a lid thereof, 3 is an upper mold for molding an optical element, 4 is a lower mold, 5 is an upper mold presser for holding down the upper mold, 6 is a body mold,
7 is a mold holder, 8 is a heater, 9 is a lifting rod that lifts up the lower mold, 10 is an air cylinder that operates the lifting rod, 11 is an oil rotary pump, 12, 1
3 and 14 are valves, 15 is an inert gas inflow pipe, 16 is a valve, 17 is an outflow pipe, 18 is a valve, 19 is a temperature sensor, and 20 is a water cooling pipe. When manufacturing an optical element, first open the lid 2 of the sealed container 1, place a predetermined volume of glass material on the lower mold 4, set the upper mold 3, and then close the lid 2 of the sealed container 1. Water is made to flow through the water cooling pipe 20 and the heater 8 is energized. At this time, the inert gas valves 16 and 18 are closed, and the exhaust system valves 12, 13, and 14 are also closed. Note that the oil rotary pump is constantly rotating. Open the valve 12 and start exhausting. When fluorescence appears on the Geissler tube or the vacuum gauge becomes less than 10 -2 Torr, close the valve 12 and open the valve 16 to introduce an inert gas (for example, N 2 ) into the sealed container. do.
When the temperature of the glass material reaches a moldable temperature, the air cylinder 10 is operated to pressurize the glass. The lower mold is made of the same material as the body mold 6 and moves up and down with high accuracy. When the device is gradually cooled and the temperature drops to below 200° C., valve 16 is closed and valve 13 is closed to introduce air into the closed container. Open the lid 2, remove the upper mold presser 5, and take out the molded product. The glass material used is a material from which surface defects have been removed in advance, that is, a spherical preformed material that has been preformed by polishing or the like so that the surface roughness is 0.01 μm or less. The second example of such glass material is
As shown in the figure. Figure 2 shows an upper mold 3 and a lower mold 4 with concave mold surfaces.
An example is shown in which a glass material is molded by the following method. In this case, a spherical glass material 21 is used as shown in FIG. 2A. This glass material 21
When this is pressure-molded using molds 3 and 4, a convex lens type optical element 22 is produced as shown in FIG. 2B. When molding the above optical lens, the material 2 is preformed to have a spherical surface so that there are no surface defects.
1 is used, there is no risk that the air on the surface of the material 21 will have nowhere to escape during molding and leave an adverse effect on the surface of the molded optical lens 22, and an optical lens that is optically satisfactory can be obtained. It will be done. Moreover, such a spherical material 21 can be easily preformed into an accurate spherical shape by rolling, and finishing processing of the material can be performed at low cost. In addition, such spherical materials can be transported while being rolled using an inclined chute or the like, so that the cost required for transportation is low.
Another important feature is that the weight of the material can be calculated by measuring only the diameter of the material, making it easy to control the weight of the glass material and efficiently molding glass lenses with good dimensional accuracy. As an example, an optical glass commonly known as SF14 was used as the material for the above-mentioned spherical glass material to produce a spherical material. Remove surface defects of this spherical material,
A spherical preformed material with the surface roughness shown in FIG. 3A was prepared. R nax was less than 0.01μ. The surface of the upper mold 3 is optically processed to have a curvature of 20.5 mm with a surface roughness R nax of about 0.02μ, and the surface of the lower mold 4 has a curvature of 20.5 mm with a surface accuracy of about the same as that of the upper mold 3.
Using a pair of molds optically processed to 55.5 mm, the glass material was pressure molded to produce an optical lens by applying a pressure of 10 Kg/cm 2 at 570° C. for 3 minutes. The surface roughness of the molded product is shown in Figure 3B. The surface roughness of this optical lens was R nax 0.02μ. Optical elements were molded under exactly the same conditions as in the above example, with the finishes of both surfaces of the material set to #1200 (Comparative Example 1), #600 (Comparative Example 2), and #250 (Comparative Example 3), respectively. The surface roughness of the material and molded product of Comparative Example 1 was
Figures A and B show the surface roughness of the material and molded product of Comparative Example 2, Figures A and B show the surface roughness of the material and molded product of Comparative Example 3, and Figure 6 A and B show the surface roughness of the material and molded product of Comparative Example 3. . The results of the above examples of the present invention and comparative examples are shown in the table below. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するのに使用される
装置の一例を示す図、第2図A,Bは一対の型お
よびガラス素材の一例を示す断面図、第3図イお
よびロはそれぞれ本発明の一例におけるガラス素
材の表面粗度および成形品の表面粗度を示す図、
第4図イおよびロ、第5図イおよびロ、第6図イ
およびロは、それぞれ、比較例におけるガラス素
材の表面粗度および成形品の表面粗度を示す図で
ある。 1……密閉容器、2……蓋、3……上型、4…
…下型、8……ヒーター、9……つき上げ棒、1
1……油廻転ポンプ、21……ガラス素材、22
……成型された光学レンズ。
FIG. 1 is a diagram showing an example of the apparatus used to carry out the method of the present invention, FIGS. 2A and B are sectional views showing an example of a pair of molds and a glass material, and FIGS. 3A and 3B are respectively A diagram showing the surface roughness of the glass material and the surface roughness of the molded product in an example of the present invention,
4A and 4B, FIG. 5A and RO, and FIG. 6A and 6B are diagrams showing the surface roughness of the glass material and the molded product, respectively, in comparative examples. 1... airtight container, 2... lid, 3... upper mold, 4...
...lower die, 8...heater, 9...lifting rod, 1
1... Oil rotary pump, 21... Glass material, 22
...A molded optical lens.

Claims (1)

【特許請求の範囲】 1 所望の光学レンズに対応する形状の型面を備
えた一対の型の間に所定容量のガラス素材を置
き、該ガラス素材を加熱しつつ上記の型により成
形することによつて光学レンズを成形する方法に
おいて、 前記型は、いずれも、その表面粗さRnax
0.02μ程度の高い面精度に調整し、 前記ガラス素材は、その表面粗さRnaxを0.01μ
以下の仕上り表面とした球状の予備成形材に加工
し、 前記球状の予備成形材を不活性ガス雰囲気中に
置かれた前記型内に載置し、 前記型の加圧操作のみによつて前記球状予備成
形材を成形面の仕上り表面粗さRnaxが少なくと
も0.02μ以下の光学レンズ機能面を形成すること
を特徴とする光学レンズの成形方法。
[Claims] 1. A predetermined volume of glass material is placed between a pair of molds each having a mold surface shaped to correspond to a desired optical lens, and the glass material is heated and molded using the above-mentioned molds. Therefore, in the method of molding an optical lens, the mold has a surface roughness R nax of
Adjusted to a high surface accuracy of about 0.02μ, the glass material has a surface roughness R nax of 0.01μ.
The spherical preformed material is processed into a spherical preformed material with the following finished surface, and the spherical preformed material is placed in the mold placed in an inert gas atmosphere. A method for molding an optical lens, which comprises using a spherical preforming material to form an optical lens functional surface having a finished surface roughness R nax of at least 0.02μ or less.
JP22350682A 1982-12-20 1982-12-20 Manufacture of optical element Granted JPS59116137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22350682A JPS59116137A (en) 1982-12-20 1982-12-20 Manufacture of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22350682A JPS59116137A (en) 1982-12-20 1982-12-20 Manufacture of optical element

Publications (2)

Publication Number Publication Date
JPS59116137A JPS59116137A (en) 1984-07-04
JPH0250059B2 true JPH0250059B2 (en) 1990-11-01

Family

ID=16799208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22350682A Granted JPS59116137A (en) 1982-12-20 1982-12-20 Manufacture of optical element

Country Status (1)

Country Link
JP (1) JPS59116137A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609716A (en) * 1983-06-29 1985-01-18 Canon Inc Manufacture of optical element
JPS61146723A (en) * 1984-12-19 1986-07-04 Matsushita Electric Ind Co Ltd Molding method of nonspherical surface lens
JPH0828098B2 (en) * 1985-09-24 1996-03-21 日立マクセル株式会社 Cartridge containing a recording medium
JPS62191128A (en) * 1986-02-19 1987-08-21 Canon Inc Pressure mold of optical element
JPH01301528A (en) * 1988-05-30 1989-12-05 Matsushita Electric Ind Co Ltd Method for press forming optical glass element
US5087279A (en) * 1989-07-14 1992-02-11 Matsushita Electric Industrial Co., Ltd. Method of producing optical glass element and production apparatus using this method
JP3224472B2 (en) * 1993-05-26 2001-10-29 キヤノン株式会社 Optical lens and mold for molding the same
JPH08169721A (en) * 1995-08-01 1996-07-02 Canon Inc Glass blank for forming optical element
JP5927637B1 (en) * 2015-06-19 2016-06-01 Hoya株式会社 Glass material for press molding, method for producing glass material for press molding, and method for producing optical element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244A (en) * 1975-06-21 1977-01-05 Nikkei Kizai Kk Blade shielding mechanism for damper, shutter and the like
JPS5884134A (en) * 1981-10-30 1983-05-20 コ−ニング グラス ワ−クス Formation of precision glass product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244A (en) * 1975-06-21 1977-01-05 Nikkei Kizai Kk Blade shielding mechanism for damper, shutter and the like
JPS5884134A (en) * 1981-10-30 1983-05-20 コ−ニング グラス ワ−クス Formation of precision glass product

Also Published As

Publication number Publication date
JPS59116137A (en) 1984-07-04

Similar Documents

Publication Publication Date Title
JP2620875B2 (en) Manufacturing method of glass molded products for precision optics
JPH0250059B2 (en)
JPS6067118A (en) Manufacture of optical element
JPH0420854B2 (en)
JPH0431328A (en) Mold structure for forming optical element and press-molding method
JPH0359016B2 (en)
JPS6221733B2 (en)
JPS61291427A (en) Molded lens and production thererof
JPH0451495B2 (en)
JPS60200833A (en) Method for forming glass lens of high accuracy
JPS59120425A (en) Formation of lens
JPS638050B2 (en)
JPS6296328A (en) Method of molding optical glass element
JPS63295448A (en) Method for molding glass lens
JPH0741327A (en) Optical element forming method
JP3481968B2 (en) Optical element molding method
JPS61132526A (en) Production of optical element
JPH0372017B2 (en)
JPS6287B2 (en)
JPH0375231A (en) Synthetic optical element
JPH04175231A (en) Production of optical element
JPS6114150A (en) Surface finishing method of glass article
JPS6251211B2 (en)
JPS62256732A (en) Molding tool for glass lens
JPS60118643A (en) Method for forming high precision glass lens