JPH0741327A - Optical element forming method - Google Patents

Optical element forming method

Info

Publication number
JPH0741327A
JPH0741327A JP18565993A JP18565993A JPH0741327A JP H0741327 A JPH0741327 A JP H0741327A JP 18565993 A JP18565993 A JP 18565993A JP 18565993 A JP18565993 A JP 18565993A JP H0741327 A JPH0741327 A JP H0741327A
Authority
JP
Japan
Prior art keywords
optical element
temperature
mold
die
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18565993A
Other languages
Japanese (ja)
Inventor
Kazuaki Takagi
一彰 高木
Toshiaki Takano
利昭 高野
Takashi Inoue
孝志 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18565993A priority Critical patent/JPH0741327A/en
Publication of JPH0741327A publication Critical patent/JPH0741327A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/48Convex-concave
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To provide an inexpensive optical element excellent in shape precision and surface precision. CONSTITUTION:An optical element material 4 is inserted between the upper die 1 and lower die 2 of a mold M in the first stage. The material is heated and softened in the second stage. The softened material is press-formed in the third stage. The pressure except the gravity of the upper die 1 is released, a temp. difference is developed between the upper die 1 and lower die 2, and the material is cooled in the fourth stage. A pressure except the gravity of the upper die 1 is again applied, and a temp. is uniformly exerted between the upper die 1 and lower die 2 to cool the material in the fifth stage to form an optical element. Meanwhile, the optical element is formed by the fourth stage after the third stage and the fifth stage with the pressure increased in comparison with at least the fourth stage, or the element is formed by the fourth stage after the third stage and again by the fifth stage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は形状精度と面精度に優
れ、安価で大量生産に適した光学素子成形方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element molding method which is excellent in shape accuracy and surface accuracy, is inexpensive, and is suitable for mass production.

【0002】[0002]

【従来の技術】近年、レンズ、プリズム等の光学素子
は、ガラスなどの光学素子用素材を研磨して製造する代
わりに、光学素子素材を一定の形状に予備加工し、これ
を型の間に供給し、加熱後、加圧成形して得ることは公
知である(例えば、特開昭58−84134号公報)。
2. Description of the Related Art In recent years, optical elements such as lenses and prisms are manufactured by polishing an optical element material such as glass instead of polishing the material for an optical element. It is publicly known that the material is supplied, heated, and then pressure-molded (for example, JP-A-58-84134).

【0003】その際、高精度の光学素子を得るために
は、型の成形面形状が確実に光学素子に転写されること
が必要である。とりわけ変形終了後の冷却過程におい
て、型の成形面が光学素子に密着していることが重要で
ある。これを達成する手段として特開昭63−2658
33号公報に開示されている方法がある。以下に図面を
参照しながら従来の成形方法を説明する。
At this time, in order to obtain a highly accurate optical element, it is necessary to reliably transfer the molding surface shape of the mold to the optical element. In particular, it is important that the molding surface of the mold is in close contact with the optical element in the cooling process after the completion of deformation. As means for achieving this, JP-A-63-2658
There is a method disclosed in Japanese Patent No. 33. A conventional molding method will be described below with reference to the drawings.

【0004】図1に従来の光学素子成形方法で用いられ
る成形装置の構成を示す。図1において、1は上型、2
は下型、3は胴型、Mは前記上型、下型、胴型を含めた
成形型で、4は成形されたガラスレンズ、5は上ヒータ
ブロック、6は下ヒータブロック、7はストッパ、8は
加圧軸、9はシリンダ、10は外枠である。
FIG. 1 shows the structure of a molding apparatus used in a conventional optical element molding method. In FIG. 1, 1 is an upper die, 2
Is a lower mold, 3 is a barrel mold, M is a mold including the upper mold, lower mold, and barrel mold, 4 is a molded glass lens, 5 is an upper heater block, 6 is a lower heater block, and 7 is a stopper. , 8 is a pressure shaft, 9 is a cylinder, and 10 is an outer frame.

【0005】つぎに上記の部材で構成された成形装置に
よる従来の光学素子成形方法を説明する。
Next, a conventional optical element molding method using a molding apparatus composed of the above members will be described.

【0006】まず成形型M内にガラス素材4を供給し、
下ヒータブロック6上にセットする。次に外枠10内に
窒素ガスを供給し成形雰囲気を非酸化性雰囲気にする。
その後シリンダ9を下降させ(下降機構は図示せず)上
型1を上ヒータブロック5により垂直に加圧する。ガラ
ス素材4は次第に変形しシリンダ9がストッパ7に密着
したところで成形は完了する。
First, the glass material 4 is supplied into the molding die M,
Set on the lower heater block 6. Next, nitrogen gas is supplied into the outer frame 10 to make the molding atmosphere a non-oxidizing atmosphere.
After that, the cylinder 9 is lowered (the lowering mechanism is not shown), and the upper die 1 is vertically pressed by the upper heater block 5. The glass material 4 is gradually deformed and the molding is completed when the cylinder 9 comes into close contact with the stopper 7.

【0007】成形されたガラスレンズ4の厚みはストッ
パ7の高さにより規制され、常に一定の寸法に成形され
る。このまま冷却すると成形型Mおよびガラスレンズ4
は収縮していくが、上ヒータブロック5はストッパ7に
より規制されているため下降できず、上型1を加圧する
ことができない。そこで加圧を一旦停止しストッパ7を
除去した後、再び加圧すると同時にヒータをオフするこ
とにより加圧しつつ冷却して光学素子を成形していた。
The thickness of the molded glass lens 4 is regulated by the height of the stopper 7 and is always molded to a constant size. When cooled as it is, the mold M and the glass lens 4
However, since the upper heater block 5 is restricted by the stopper 7, the upper heater block 5 cannot be lowered and the upper mold 1 cannot be pressurized. Therefore, the pressurization is temporarily stopped, the stopper 7 is removed, and then the pressurization is performed again, and at the same time, the heater is turned off to pressurize and cool to form the optical element.

【0008】[0008]

【発明が解決しようとする課題】しかし、上記のような
従来の成形方法では、成形終了後の冷却過程で上下型が
必要以上の圧力で加圧規制されているため、光学素子素
材が型に密着しながら収縮しようとする時に光学素子素
材の収縮速度の方が上型あるいは下型の収縮速度よりも
速いため光学素子素材が思うように収縮できず、割れた
り欠けたりして所望のレンズ性能が得られないという問
題を有していた。
However, in the conventional molding method as described above, since the upper and lower molds are regulated under pressure with an unnecessarily high pressure in the cooling process after the molding is completed, the optical element material is molded into the mold. When trying to shrink while closely contacting, the shrinking speed of the optical element material is faster than the shrinking speed of the upper mold or the lower mold, so the optical element material cannot shrink as expected, cracking or chipping and the desired lens performance Had a problem that was not obtained.

【0009】本発明はこのような課題を解決するもの
で、成形終了後の冷却課程の圧力と温度を光学素子素材
が型にうまく密着しながら収縮できるようにコントロー
ルし、形状精度および面精度に優れ、安価で大量生産に
適した光学素子の成形方法を提供することを目的とする
ものである。
The present invention solves such a problem by controlling the pressure and temperature of the cooling process after completion of molding so that the optical element material can be contracted while closely adhering to the mold, thereby achieving shape accuracy and surface accuracy. It is an object of the present invention to provide an optical element molding method which is excellent, inexpensive and suitable for mass production.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の第1の手段は、上型と下型とからなる成形
型の間に光学素子素材を挿入し、加熱軟化させ、加圧成
形した後、上型自重分以外の圧力を除き、上型と下型と
の間に温度差を設けながら冷却し、再び上型自重分以外
の圧力をかけ、上型と下型との間に均等に温度をかけな
がら冷却するようにしたものである。
In order to achieve the above object, the first means of the present invention is to insert an optical element material between a molding die composed of an upper die and a lower die, and heat and soften it. After pressure molding, remove the pressure other than the weight of the upper mold, cool with a temperature difference between the upper mold and the lower mold, and apply pressure other than the weight of the upper mold again to separate the upper mold and the lower mold. The temperature is evenly applied during the cooling.

【0011】第2の手段は、上型と下型とからなる成形
型の間に光学素子素材を挿入し、加熱軟化させ、加圧成
形した後、上型自重分以外の圧力をかけながら冷却し、
途中で圧力を増圧して冷却するようにしたものである。
The second means is to insert an optical element material between a molding die composed of an upper die and a lower die, heat and soften it, press-mold it, and then cool while applying a pressure other than the weight of the upper die. Then
The pressure is increased on the way to cool it.

【0012】また第3の手段は、上型と下型とからなる
成形型の間に光学素子素材を挿入し、加熱軟化させ、加
圧成形した後、上型と下型との間に温度差を設けながら
冷却し、途中で上型と下型との間に均等に温度をかけな
がら冷却するようにしたものである。
A third means is to insert an optical element material between a molding die composed of an upper die and a lower die, heat and soften it, and press-mold it. The cooling is performed while providing a difference, and the temperature is evenly applied between the upper die and the lower die during the cooling.

【0013】[0013]

【作用】上記の方法によれば、光学素子素材を成形した
後の冷却過程で、上下型が加圧制御されていて、上下型
の収縮速度の方が光学素子素材の収縮速度よりも速いの
で、常に光学素子素材が上下型に密着しながら冷却収縮
する。このため、面精度と形状精度の優れた光学素子を
再現性よく量産できることとなる。
According to the above method, the upper and lower molds are pressure-controlled in the cooling process after molding the optical element material, and the contraction speed of the upper and lower molds is faster than the contraction speed of the optical element material. , The optical element material always cools and shrinks while closely contacting the upper and lower molds. Therefore, it is possible to mass-produce optical elements having excellent surface accuracy and shape accuracy with good reproducibility.

【0014】[0014]

【実施例】以下に本発明の一実施例の光学素子の成形方
法について図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for molding an optical element according to an embodiment of the present invention will be described below with reference to the drawings.

【0015】(実施例1)使用した成形機の概略構成を
図1に示す。図1において、1は上型、2は下型、3は
胴型、Mは前記上型、下型、胴型からなる成形型で、型
材料としては超硬材料を使用し、その熱膨張係数は約5
0×107 /℃である。4は成形されたガラスレンズ
で、適用したガラスはガラス転移点温度が530℃、熱
膨張係数は約99×107 /℃である。最終レンズ形状
は外径φ26mm、最大傾斜角度40.5の球面メニス
カスレンズである。5は上ヒータブロック、6は下ヒー
タブロック、7はストッパ、8は加圧軸、9はシリン
ダ、10は外枠である。
(Example 1) FIG. 1 shows a schematic structure of a molding machine used. In FIG. 1, 1 is an upper die, 2 is a lower die, 3 is a barrel die, M is a forming die consisting of the upper die, the lower die and the barrel die, and a superhard material is used as the die material, and its thermal expansion Coefficient is about 5
It is 0 × 10 7 / ° C. Reference numeral 4 is a molded glass lens, and the glass applied has a glass transition temperature of 530 ° C. and a thermal expansion coefficient of about 99 × 10 7 / ° C. The final lens shape is a spherical meniscus lens having an outer diameter of 26 mm and a maximum inclination angle of 40.5. 5 is an upper heater block, 6 is a lower heater block, 7 is a stopper, 8 is a pressing shaft, 9 is a cylinder, and 10 is an outer frame.

【0016】まず成形型M内(上型1を凸金型とする)
にガラス素材4を供給し、下ヒータブロック6上にセッ
トする。次に外枠10内に窒素ガスを供給し成形雰囲気
を非酸化性雰囲気にする。その後シリンダ9を下降させ
(下降機構は図示せず)、上ヒータブロック5が上型1
に垂直に接触するようにし、加熱された上下ヒータブロ
ックより上下金型を均等に加熱する。このまゝ、ガラス
素材4が575℃になるまで昇温して温度が一定となっ
たところで300kgfの圧力で加圧し、シリンダ9が
ストッパ7に密着したところで成形は完了する。成形さ
れたガラスレンズ4の厚みはストッパ7の高さにより規
制され、常に一定の寸法に成形される。その後、シリン
ダ9を上昇させ上ヒータブロック5を上型1から離し、
上型1の自重分以外の圧力を除く。上下ヒータブロック
は7.5℃/minの速度で冷却するが、上ヒータブロ
ック5は上型1とは離されているため、上型1と下型2
との間には温度差が生じたまま冷却される。上下ヒータ
ブロックの温度が529℃、ガラスレンズ4の温度が5
33℃になったところで再びシリンダ9を下降し上ヒー
タブロック5を上型1に接触、20kgfの圧力で加圧
させ上下金型に均等に温度をかけたまま上下ヒータブロ
ックの温度が500℃になるまで冷却する。その後金型
が取り出せる温度まで徐冷し、成形されたガラスレンズ
4を取り出す。
First, in the molding die M (the upper die 1 is a convex die)
The glass material 4 is supplied to and is set on the lower heater block 6. Next, nitrogen gas is supplied into the outer frame 10 to make the molding atmosphere a non-oxidizing atmosphere. After that, the cylinder 9 is lowered (the lowering mechanism is not shown), and the upper heater block 5 is moved to the upper mold 1.
The upper and lower molds are evenly heated by the heated upper and lower heater blocks. Until then, the temperature of the glass material 4 was raised to 575 ° C., and when the temperature became constant, pressure was applied with a pressure of 300 kgf, and the molding was completed when the cylinder 9 was brought into close contact with the stopper 7. The thickness of the molded glass lens 4 is regulated by the height of the stopper 7, and is always molded to a constant size. Then, the cylinder 9 is raised to separate the upper heater block 5 from the upper mold 1,
Excludes pressures other than the weight of upper mold 1. The upper and lower heater blocks cool at a rate of 7.5 ° C./min, but since the upper heater block 5 is separated from the upper mold 1, the upper mold 1 and the lower mold 2
Are cooled with a temperature difference between them. The temperature of the upper and lower heater blocks is 529 ° C, and the temperature of the glass lens 4 is 5
When the temperature reaches 33 ° C., the cylinder 9 is lowered again to bring the upper heater block 5 into contact with the upper mold 1 and pressurize it with a pressure of 20 kgf to keep the upper and lower molds evenly heated to 500 ° C. Allow to cool. After that, the mold is slowly cooled to a temperature at which the mold can be taken out, and the molded glass lens 4 is taken out.

【0017】このガラスレンズ4の面精度は、光学干渉
計による測定で金型との面精度の差が44nmであっ
た。
Regarding the surface accuracy of this glass lens 4, the difference in surface accuracy with the mold was 44 nm as measured by an optical interferometer.

【0018】533℃前後の温度でつくったレンズ4の
面精度を金型の面精度との差で(表1)に示す。この結
果より増圧時の温度はガラス転移点温度より3℃以上高
い温度でなければレンズ精度が悪くなることがわかる。
The surface accuracy of the lens 4 made at a temperature of around 533 ° C. is shown in Table 1 as a difference from the surface accuracy of the mold. From this result, it is understood that the lens accuracy is deteriorated unless the temperature at the time of pressure increase is higher than the glass transition temperature by 3 ° C. or more.

【0019】[0019]

【表1】 [Table 1]

【0020】一方、上記の成形方法の冷却条件におい
て、従来の成形方法である成形完了後、上ヒータブロッ
ク5を上型1から離さず上型1の自重分以外の圧力20
kgfをかけ、均等な温度をかけたまま上下ヒータブロ
ックの温度が500℃になるまで冷却する成形方法によ
るガラスレンズ4の面精度は、光学干渉計による測定で
金型との面精度の差が平均228nmであった。また一
方、上記の成形方法の冷却条件において、成形完了後、
上ヒータブロック5を上型1から離し上型1の自重分以
外の圧力を除き、上型1と下型2との間に温度差を生じ
たまま上下ヒータブロックの温度が500℃になるまで
冷却した場合のガラスレンズ4の面精度は、光学干渉計
による測定で金型との面精度の差が平均196nmであ
り、いずれの方法においても本実施例の成形方法の方が
従来の成形方法に比べ優れたガラスレンズが得られた。
On the other hand, under the cooling conditions of the above-described molding method, after the molding which is the conventional molding method is completed, the upper heater block 5 is not separated from the upper mold 1 and the pressure other than the weight of the upper mold 1 is 20.
The surface accuracy of the glass lens 4 by the molding method in which kgf is applied and the temperature of the upper and lower heater blocks is cooled to 500 ° C. while the uniform temperature is applied, the surface accuracy of the glass lens 4 is different from that of the mold when measured by an optical interferometer. The average was 228 nm. On the other hand, under the cooling conditions of the above molding method, after the completion of molding,
The upper heater block 5 is separated from the upper mold 1 to remove the pressure other than the weight of the upper mold 1 until the temperature of the upper and lower heater blocks reaches 500 ° C. with a temperature difference between the upper mold 1 and the lower mold 2. Regarding the surface accuracy of the glass lens 4 when cooled, the difference in surface accuracy with the mold is 196 nm on average when measured by an optical interferometer, and in any method, the molding method of this embodiment is the conventional molding method. An excellent glass lens was obtained as compared with.

【0021】なお、本実施例では球面メニスカスレンズ
の成形について説明したが、本発明は球面に限らず非球
面レンズについても、また凸レンズ、凹レンズ、プリズ
ムについても同様の効果が得られる。また、ガラス転移
点温度の違った光学素子素材についても同様の効果が得
られるが、圧力、温度の条件については光学素子素材ご
とに変わることはいうまでもない。
Although the molding of the spherical meniscus lens has been described in the present embodiment, the present invention is not limited to the spherical surface, and the same effect can be obtained for an aspherical lens, a convex lens, a concave lens and a prism. Further, similar effects can be obtained with optical element materials having different glass transition temperatures, but it goes without saying that the conditions of pressure and temperature are different for each optical element material.

【0022】(実施例2)本実施例では、実施例1と同
様に図1に示す成形装置を用いて光学素子を成形した。
なお図1の構成は実施例1と同じであるので説明を省略
する。
Example 2 In this example, an optical element was molded by using the molding apparatus shown in FIG. 1 as in Example 1.
Since the configuration of FIG. 1 is the same as that of the first embodiment, the description thereof will be omitted.

【0023】まず成形型M内(上型1を凸金型とする)
にガラス素材4を供給し、下ヒータブロック6上にセッ
トする。次に外枠10内に窒素ガスを供給し成形雰囲気
を非酸化性雰囲気にする。その後シリンダ9を下降させ
(下降機構は図示せず)上ヒータブロック5が上型1に
垂直に接触するようにし、上下ヒータブロックより上下
金型を均等に加熱する。ガラス素材4が575℃になる
まで加熱して、温度が一定になったところで300kg
fの圧力で加圧、シリンダ9がストッパ7に密着したと
ころで成形を完了する。成形されたガラスレンズ4の厚
みはストッパ7の高さにより規制され、常に一定の寸法
に成形される。このまま冷却すると成形型Mおよびガラ
スレンズ4は収縮していくが、上ヒータブロック5はス
トッパ7により規制されているため下降できず、上型1
を加圧することができない。そこで一旦シリンダ9を上
昇しストッパ7を除去した後再びシリンダ9を下降し加
圧するが圧力は2kgfまで減圧し、上下ヒータブロッ
クを7.5℃/minの速度で冷却する。上下ヒータブ
ロックの温度が531℃、ガラスレンズ4の温度が53
6℃(増圧する第5の工程の温度は実施例1に従う)に
なったところで再びシリンダ9の圧力を20kgfまで
あげ、上下金型を均等に加熱したまま上下ヒータブロッ
クの温度が500℃になるまで冷却する。その後金型が
取り出せる温度まで徐冷し、成形されたガラスレンズ4
を取り出す。
First, in the molding die M (the upper die 1 is a convex die)
The glass material 4 is supplied to and is set on the lower heater block 6. Next, nitrogen gas is supplied into the outer frame 10 to make the molding atmosphere a non-oxidizing atmosphere. After that, the cylinder 9 is lowered (the lowering mechanism is not shown) so that the upper heater block 5 comes into vertical contact with the upper mold 1, and the upper and lower molds are uniformly heated by the upper and lower heater blocks. The glass material 4 is heated to 575 ℃, and when the temperature becomes constant, 300kg
Pressing with the pressure of f, the molding is completed when the cylinder 9 comes into close contact with the stopper 7. The thickness of the molded glass lens 4 is regulated by the height of the stopper 7, and is always molded to a constant size. When cooled as it is, the molding die M and the glass lens 4 shrink, but the upper heater block 5 cannot be lowered because it is regulated by the stopper 7, and the upper die 1
Cannot be pressurized. Therefore, the cylinder 9 is once raised and the stopper 7 is removed, and then the cylinder 9 is lowered and pressurized again, but the pressure is reduced to 2 kgf and the upper and lower heater blocks are cooled at a rate of 7.5 ° C./min. The temperature of the upper and lower heater blocks is 531 ° C, and the temperature of the glass lens 4 is 53
When the temperature reaches 6 ° C. (the temperature of the fifth step of increasing the pressure is in accordance with Example 1), the pressure of the cylinder 9 is again raised to 20 kgf, and the temperature of the upper and lower heater blocks becomes 500 ° C. while heating the upper and lower molds evenly. Cool down. After that, the glass lens 4 is gradually cooled to a temperature at which the mold can be taken out and molded.
Take out.

【0024】このガラスレンズ4の面精度は、光学干渉
計による測定で金型との面精度の差が101nmであっ
た。
Regarding the surface accuracy of the glass lens 4, the difference in surface accuracy with the mold was 101 nm as measured by an optical interferometer.

【0025】一方、上記の成形方法の冷却条件におい
て、従来の方法である成形完了、ストッパ7除去後、再
びシリンダ9を下降し加圧する際の圧力を減圧せずに上
型1自重分以外の圧力20kgfを維持し、均等な温度
をかけたまま上下ヒータブロックの温度が500℃にな
るまで冷却する成形方法によるガラスレンズ4の面精度
は、光学干渉計による測定で金型との面精度の差が平均
228nmであり、本実施例の成形方法の方が従来の成
形方法に比べ優れたガラスレンズが得られた。
On the other hand, under the cooling conditions of the above molding method, after the molding is completed and the stopper 7 is removed, which is a conventional method, the pressure when the cylinder 9 is lowered and pressurized again is not reduced, and the pressure other than the weight of the upper mold 1 is reduced. The surface accuracy of the glass lens 4 according to the molding method in which the pressure is maintained at 20 kgf and the temperature of the upper and lower heater blocks is cooled to 500 ° C. while the uniform temperature is being applied, the surface accuracy of the glass lens 4 can be determined by measuring with an optical interferometer. The average difference was 228 nm, and the molding method of this example provided a glass lens superior to the conventional molding method.

【0026】なお、本実施例では球面メニスカスレンズ
の成形方法について説明したが、球面レンズに限らず非
球面レンズについても、また凸レンズ、凹レンズ、プリ
ズムについても同様の効果が得られる。また、ガラス転
移点温度の違った光学素子素材についても同様の効果が
得られるが、圧力、温度の条件については光学素子素材
ごとに変わることはいうまでもない。
Although the method of forming the spherical meniscus lens has been described in the present embodiment, the same effect can be obtained not only for the spherical lens but also for the aspherical lens, the convex lens, the concave lens and the prism. Further, similar effects can be obtained with optical element materials having different glass transition temperatures, but it goes without saying that the conditions of pressure and temperature are different for each optical element material.

【0027】(実施例3)本実施例では実施例1と同様
に図1に示す成形装置を用いて光学素子を成形した。な
お、図1の構成は、実施例1と同じであるので説明を省
略する。
Example 3 In this example, an optical element was molded using the molding apparatus shown in FIG. 1 as in Example 1. Since the configuration of FIG. 1 is the same as that of the first embodiment, the description thereof will be omitted.

【0028】まず成形型M内(上型1を凸金型とする)
にガラス素材4を供給し、下ヒータブロック6上にセッ
トする。次に外枠10内に窒素ガスを供給し成形雰囲気
を非酸化性雰囲気にする。その後シリンダ9を下降させ
(下降機構は図示せず)上ヒータブロック5が上型1に
垂直に接触するようにし、上下ヒータブロックより上下
金型を均等に加熱する。ガラス素材4が575℃になる
まで加熱して、温度が一定になったところで300kg
fの圧力で加圧、シリンダ9がストッパ7に密着したと
ころで成形は完了する。成形されたガラスレンズ4の厚
みはストッパ7の高さにより規制され、常に一定の寸法
に成形される。このまま冷却すると成形型Mおよびガラ
スレンズ4は収縮していくが、上ヒータブロック5はス
トッパ7により規制されているため下降できず、上型1
を加圧することができない。そこで一旦シリンダ9を上
昇しストッパ7を除去した後再びシリンダ9を下降し2
0kgfの圧力で加圧する。そして、上ヒータブロック
5は568℃から7.5℃/minの速度で冷却し、下
ヒータブロック6は575℃から7.5℃/minの速
度で冷却する。上ヒータブロック5の温度が530℃、
ガラスレンズ4の温度が535℃(均等に温度をかける
第5の工程の温度は実施例1に従う)になったところで
再び上ヒータブロック5の温度を下ヒータブロック6の
温度と同じ温度に戻し、その後上下金型を均等に加熱し
たまま上下ヒータブロックの温度が500℃になるまで
上記速度で冷却する。その後金型が取り出せる温度まで
徐冷し、成形されたガラスレンズ4を取り出す。
First, in the molding die M (the upper die 1 is a convex die)
The glass material 4 is supplied to and is set on the lower heater block 6. Next, nitrogen gas is supplied into the outer frame 10 to make the molding atmosphere a non-oxidizing atmosphere. After that, the cylinder 9 is lowered (the lowering mechanism is not shown) so that the upper heater block 5 comes into vertical contact with the upper mold 1, and the upper and lower molds are uniformly heated by the upper and lower heater blocks. The glass material 4 is heated to 575 ℃, and when the temperature becomes constant, 300kg
The molding is completed when pressure is applied by the pressure f and the cylinder 9 comes into close contact with the stopper 7. The thickness of the molded glass lens 4 is regulated by the height of the stopper 7, and is always molded to a constant size. When cooled as it is, the molding die M and the glass lens 4 shrink, but the upper heater block 5 cannot be lowered because it is regulated by the stopper 7, and the upper die 1
Cannot be pressurized. Therefore, the cylinder 9 is once raised, the stopper 7 is removed, and then the cylinder 9 is lowered again to
Pressurize with a pressure of 0 kgf. Then, the upper heater block 5 is cooled at a rate of 568 ° C. to 7.5 ° C./min, and the lower heater block 6 is cooled at a rate of 575 ° C. to 7.5 ° C./min. The temperature of the upper heater block 5 is 530 ° C,
When the temperature of the glass lens 4 reaches 535 ° C. (the temperature of the fifth step for applying the temperature evenly is according to the first embodiment), the temperature of the upper heater block 5 is returned to the same temperature as the temperature of the lower heater block 6, After that, the upper and lower molds are uniformly heated and cooled at the above rate until the temperature of the upper and lower heater blocks reaches 500 ° C. After that, the mold is slowly cooled to a temperature at which the mold can be taken out, and the molded glass lens 4 is taken out.

【0029】このガラスレンズ4の面精度は、光学干渉
計による測定で金型との面精度の差が107nmであっ
た。
Regarding the surface accuracy of this glass lens 4, the difference in surface accuracy with the mold was 107 nm as measured by an optical interferometer.

【0030】この温度前後の温度から冷却したレンズ4
の面精度を金型との面精度の差で(表2)に示す。この
結果より上下型の温度の差は7℃以上で無ければレンズ
精度が悪くなることがわかる。
Lens 4 cooled from a temperature around this temperature
The surface accuracy of is shown in Table 2 as a difference in surface accuracy from the mold. From this result, it is understood that the lens accuracy is deteriorated unless the temperature difference between the upper and lower molds is 7 ° C. or more.

【0031】[0031]

【表2】 [Table 2]

【0032】一方、上述の成形方法の冷却条件におい
て、成形完了、ストッパ7除去後、再びシリンダ9を下
降し加圧した際、上下ヒータブロックに温度差をつけず
に上記の上ヒータブロック5の温度条件で均等に冷却を
する従来の成形方法によるガラスレンズ4の面精度は、
光学干渉計による測定で金型との面精度の差が平均22
8nmであり、本実施例の成形方法の方が従来の成形方
法に比べ優れたガラスレンズが得られた。
On the other hand, under the cooling conditions of the above-mentioned molding method, after the molding is completed and the stopper 7 is removed, when the cylinder 9 is lowered and pressed again, the upper and lower heater blocks 5 are heated with no temperature difference. The surface accuracy of the glass lens 4 according to the conventional molding method for uniformly cooling under temperature conditions is
The difference in surface accuracy with the mold is 22 on average when measured with an optical interferometer.
The thickness was 8 nm, and the glass lens obtained by the molding method of this example was superior to the conventional molding method.

【0033】なお、本実施例では球面メニスカスレンズ
の成形方法について説明したが、球面に限らず非球面レ
ンズについても、また凸レンズ、凹レンズ、プリズムに
ついても同様の効果が得られる。また、ガラス転移点温
度の違った光学素子素材についても同様の効果が得られ
るが、圧力、温度の条件については光学素子素材ごとに
変わることはいうまでもない。
Although the method of forming the spherical meniscus lens has been described in the present embodiment, the same effect can be obtained not only for the spherical surface but also for the aspherical lens, the convex lens, the concave lens and the prism. Further, similar effects can be obtained with optical element materials having different glass transition temperatures, but it goes without saying that the conditions of pressure and temperature are different for each optical element material.

【0034】[0034]

【発明の効果】上記の実施例の説明から明らかなように
本発明によれば、光学素子素材の加圧成形完了後、冷却
時の圧力と温度を制御することにより、光学素子素材が
成形型に密着したまゝ収縮するので、形状精度と面精度
に優れた光学素子を安価に量産することができる。
As is apparent from the above description of the embodiments, according to the present invention, after the pressure molding of the optical element material is completed, the pressure and temperature at the time of cooling are controlled to form the optical element material in the molding die. Since it shrinks in close contact with, it is possible to mass-produce optical elements with excellent shape accuracy and surface accuracy at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明および従来の光学素子成形装置の構成を
示す断面図
FIG. 1 is a cross-sectional view showing a configuration of the present invention and a conventional optical element molding apparatus.

【符号の説明】[Explanation of symbols]

1 上型 2 下型 3 胴型 4 ガラスレンズ 5 上ヒータブロック 6 下ヒータブロック 7 ストッパ 8 加圧軸 9 シリンダ 10 外枠 M 成形型 1 Upper Mold 2 Lower Mold 3 Body 4 Glass Lens 5 Upper Heater Block 6 Lower Heater Block 7 Stopper 8 Pressure Shaft 9 Cylinder 10 Outer Frame M Mold

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】上型と下型を有する成形型の間に光学素子
素材を挿入する第1の工程と、前記光学素子素材を加熱
軟化させる第2の工程と、軟化した前記光学素子素材を
加圧成形する第3の工程と、前記上型の自重分以外の圧
力を除き、前記上型と前記下型との間に温度差を設けな
がら冷却する第4の工程と、再び前記上型に自重分以外
の圧力をかけ、前記上型と前記下型との間に均等に温度
をかけながら冷却する第5の工程を備えた光学素子成形
方法。
1. A first step of inserting an optical element material between a molding die having an upper die and a lower die, a second step of heating and softening the optical element material, and the softened optical element material. A third step of pressure molding, a fourth step of removing pressure other than the weight of the upper mold and cooling while providing a temperature difference between the upper mold and the lower mold, and the upper mold again An optical element molding method comprising a fifth step of applying a pressure other than its own weight to and cooling while uniformly applying a temperature between the upper mold and the lower mold.
【請求項2】再び圧力と温度をかけながら冷却しはじめ
る温度は、光学素子素材がガラス転移点近傍の温度に達
したときである請求項1記載の光学素子成形方法。
2. The optical element molding method according to claim 1, wherein the temperature at which cooling is started again while applying pressure and temperature is when the optical element material reaches a temperature near the glass transition point.
【請求項3】上型と下型を備えた成形型の間に光学素子
素材を挿入する第1の工程と、前記光学素子素材を加熱
軟化させる第2の工程と、軟化した前記光学素子素材を
加圧成形する第3の工程と、前記上型の自重分以外の圧
力をかけながら冷却する第4の工程と、少なくとも前記
第4の工程よりも増圧して冷却する第5の工程を備えた
光学素子成形方法。
3. A first step of inserting an optical element material between a molding die having an upper die and a lower die, a second step of heating and softening the optical element material, and the softened optical element material. Pressure molding, a fourth step of cooling while applying a pressure other than the weight of the upper mold, and a fifth step of cooling at a pressure higher than at least the fourth step. Optical element molding method.
【請求項4】第4の工程よりも増圧する時の温度は、光
学素子素材がガラス転移点近傍の温度である請求項3記
載の光学素子成形方法。
4. The optical element molding method according to claim 3, wherein the temperature at which the pressure is increased more than in the fourth step is a temperature near the glass transition point of the optical element material.
【請求項5】ガラス転移点近傍の温度が、ガラス転移点
よりも3℃以上高い温度を下限とする請求項2または請
求項4記載の光学素子成形方法。
5. The optical element molding method according to claim 2, wherein the lower limit of the temperature near the glass transition point is 3 ° C. or more higher than the glass transition point.
【請求項6】上型と下型の少なくともどちらか一方が、
凸面を有する型である請求項1ないし5のいずれかに記
載の光学素子成形方法。
6. At least one of the upper die and the lower die,
The optical element molding method according to claim 1, which is a mold having a convex surface.
【請求項7】上型と下型を有する成形型の間に光学素子
素材を挿入する第1の工程と、前記光学素子素材を加熱
軟化させる第2の工程と、軟化した前記光学素子素材を
加圧成形する第3の工程と、前記上型と前記下型との間
に温度差を設けながら冷却する第4の工程と、再び前記
上型と前記下型との間に均等に温度をかけながら冷却す
る第5の工程を備えた光学素子成形方法。
7. A first step of inserting an optical element material between a molding die having an upper die and a lower die, a second step of heating and softening the optical element material, and the softened optical element material. The third step of pressure molding, the fourth step of cooling while providing a temperature difference between the upper mold and the lower mold, and the temperature of the upper mold and the lower mold is evenly adjusted again. An optical element molding method comprising a fifth step of cooling while applying.
【請求項8】再び均等に温度をかけながら冷却しはじめ
る温度は、光学素子素材がガラス転移点近傍の温度に達
したときである請求項7記載の光学素子成形方法。
8. The method for molding an optical element according to claim 7, wherein the temperature at which the cooling is started while the temperature is evenly applied again is when the optical element material reaches a temperature near the glass transition point.
【請求項9】ガラス転移点近傍の温度が、ガラス転移点
よりも3℃以上高い温度を下限とする請求項8記載の光
学素子成形方法。
9. The optical element molding method according to claim 8, wherein the lower limit of the temperature in the vicinity of the glass transition point is a temperature higher by 3 ° C. or more than the glass transition point.
【請求項10】上型と下型との間の温度差を少なくとも
7℃以上設ける請求項7ないし9のいずれかに記載の光
学素子成形方法。
10. The optical element molding method according to claim 7, wherein a temperature difference between the upper mold and the lower mold is at least 7 ° C. or more.
【請求項11】上型と下型の少なくともどちらか一方
が、凸面を有する型である請求項7ないし10のいずれ
かに記載の光学素子成形方法。
11. The optical element molding method according to claim 7, wherein at least one of the upper mold and the lower mold is a mold having a convex surface.
【請求項12】温度を低くする側が、凸面を有する側で
ある請求項11記載の光学素子成形方法。
12. The optical element molding method according to claim 11, wherein the side on which the temperature is lowered is the side having a convex surface.
JP18565993A 1993-07-28 1993-07-28 Optical element forming method Pending JPH0741327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18565993A JPH0741327A (en) 1993-07-28 1993-07-28 Optical element forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18565993A JPH0741327A (en) 1993-07-28 1993-07-28 Optical element forming method

Publications (1)

Publication Number Publication Date
JPH0741327A true JPH0741327A (en) 1995-02-10

Family

ID=16174631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18565993A Pending JPH0741327A (en) 1993-07-28 1993-07-28 Optical element forming method

Country Status (1)

Country Link
JP (1) JPH0741327A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000064823A1 (en) * 1999-04-22 2000-11-02 Matsushita Electric Industrial Co., Ltd. Method and apparatus for molding optical device
WO2014199514A1 (en) 2013-06-14 2014-12-18 三菱電機株式会社 Outdoor unit for air conditioner and production method for outdoor unit for air conditioner
US10113756B2 (en) 2013-06-14 2018-10-30 Mitsubishi Electric Corporation Air-conditioning-apparatus outdoor unit and method of manufacturing air-conditioning-apparatus outdoor unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000064823A1 (en) * 1999-04-22 2000-11-02 Matsushita Electric Industrial Co., Ltd. Method and apparatus for molding optical device
WO2014199514A1 (en) 2013-06-14 2014-12-18 三菱電機株式会社 Outdoor unit for air conditioner and production method for outdoor unit for air conditioner
US10113756B2 (en) 2013-06-14 2018-10-30 Mitsubishi Electric Corporation Air-conditioning-apparatus outdoor unit and method of manufacturing air-conditioning-apparatus outdoor unit

Similar Documents

Publication Publication Date Title
JP2001180946A (en) Method for forming optical glass element and forming apparatus for optical glass with method
US6003338A (en) Molding method for optical element
JPH0741327A (en) Optical element forming method
JP4223967B2 (en) Manufacturing method of glass optical element
JP2000095532A (en) Press-formed optical element, its production, die for press-forming optical element and device for press- forming optical element
JP3681114B2 (en) Manufacturing method of glass optical element
JPS6121927A (en) Preparation of pressed lens
JPH06122525A (en) Apparatus for forming optical element, forming method and optical element
JPH0435427B2 (en)
JPH0455134B2 (en)
JPS61291427A (en) Molded lens and production thererof
JP2000086255A (en) Method for molding optical element
US20020053222A1 (en) Method of manufacturing glass optical elements
JP2001010831A (en) Molding mold for glass optical element and production of glass optical element using the same
JP2002145630A5 (en)
JPH01176237A (en) Forming of glass lens
JP2924311B2 (en) Glass optical element molding method
JPS6153126A (en) Molding of pressed lenses with high accuracy
JPH07247128A (en) Method for forming optical element
JP3109251B2 (en) Optical element molding method
JPH0372016B2 (en)
JPH02196039A (en) Method for molding glass optical device
JP2002249328A (en) Method for forming optical element
JPH02311322A (en) Molding method of pressed lens
JPS63103835A (en) Molding of optical glass element