JPH0372016B2 - - Google Patents

Info

Publication number
JPH0372016B2
JPH0372016B2 JP31082286A JP31082286A JPH0372016B2 JP H0372016 B2 JPH0372016 B2 JP H0372016B2 JP 31082286 A JP31082286 A JP 31082286A JP 31082286 A JP31082286 A JP 31082286A JP H0372016 B2 JPH0372016 B2 JP H0372016B2
Authority
JP
Japan
Prior art keywords
glass
temperature
mold
mold member
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP31082286A
Other languages
Japanese (ja)
Other versions
JPS63162539A (en
Inventor
Isamu Shigyo
Tamakazu Yogo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31082286A priority Critical patent/JPS63162539A/en
Publication of JPS63162539A publication Critical patent/JPS63162539A/en
Publication of JPH0372016B2 publication Critical patent/JPH0372016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould

Description

【発明の詳細な説明】 [発明の属する分野] 本発明は光学部品の成形方法に関し、特にガラ
ス原料を溶融してプレス成形する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a method for molding optical parts, and more particularly to a method for melting and press-molding glass raw materials.

[発明の従来技術] カメラ用のレンズ、コンパクトデイスク用ピツ
クアツプレンズの光学レンズの製造方法として、
切削−研磨工程を行なう方法とガラスを成形用の
型部材に入れてプレス成形する方法がある。プレ
ス成形法は型部材の材料選択、型表面の加工、型
とガラスの温度制御等に多くの解決すべき問題点
があるが製造コスト上のメリツトや複雑形状のレ
ンズも容易に成形できるようになり近年開発が進
んでいる。
[Prior Art of the Invention] As a method for manufacturing optical lenses such as camera lenses and pick-up lenses for compact discs,
There are two methods: a cutting-polishing process and a press-molding method in which the glass is placed in a mold member. The press molding method has many problems that need to be solved, such as material selection for mold parts, processing of the mold surface, and temperature control of the mold and glass, but it has advantages in terms of manufacturing costs and the ability to easily mold lenses with complex shapes. Development has been progressing in recent years.

[従来技術の問題点] プレス成形法としてあらかじめ予備成形された
半加工レンズ(以下ブランクと称する)を型部材
に入れ、ブランクと型部材を同時に又は別々にプ
レス温度まで加熱しプレス成形して型部材に形成
した光学機能面を押圧転写してレンズを成形する
方法と、ガラス原料を溶融後、適量型部材に入れ
プレス成形する方法がある。
[Problems with the prior art] In the press molding method, a preformed semi-finished lens (hereinafter referred to as a blank) is placed in a mold member, the blank and the mold member are heated simultaneously or separately to a press temperature, and the mold is formed by press forming. There is a method of molding a lens by press-transferring an optically functional surface formed on a member, and a method of melting a glass raw material and then putting an appropriate amount of it into a mold member and press-molding it.

前述のブランクを用いた成形方法としては特公
昭61−32263号公報があり、原料からの成形方法
としては特公昭56−378号公報がある。
A molding method using the aforementioned blank is disclosed in Japanese Patent Publication No. 61-32263, and a method of molding from raw materials is disclosed in Japanese Patent Publication No. 56-378.

ガラス型部材に入れてガラスプレス成形する意
義として型部材のプレスにより同一金型の型表面
のガラスへの押圧転写により成形できるため同一
精度のレンズを短い時間に数多く作ることができ
る。それ故従来のように切削−研磨による方法に
比し製造時間の短縮が図れコストダウンを可能と
したこと、及び、従来の研磨に依る方法において
はレンズ面の表面形状が複雑な形状の場合例えば
非球面レンズの場合には非球面表面の研磨処理の
研磨工具、研磨時間等に問題を有している。
The significance of glass press molding in a glass mold member is that the press of the mold member allows molding by pressure transfer of the mold surface of the same mold onto the glass, making it possible to produce a large number of lenses with the same precision in a short time. Therefore, compared to the conventional cutting-polishing method, manufacturing time can be shortened and costs can be reduced. In the case of an aspherical lens, there are problems with the polishing tool, polishing time, etc. for polishing the aspherical surface.

又、ガラスプレス成形においても前述のブラン
クを用いた方法の場合にはブランクの形状やブラ
ンク表面の最終製品の形状及び精度に準じた形態
とする必要があり、ブランク加工に要する設備・
工程、ブランク加工時間によるコストメリツトを
追求することが困難な面がある。
In addition, in the case of glass press molding, in the case of the method using the blank described above, it is necessary to make the shape of the blank and the shape and precision of the final product on the surface of the blank, and the equipment and equipment required for blank processing are required.
It is difficult to pursue cost benefits due to process and blank processing time.

更にガラス原料溶融による加熱・プレス成形に
よる方法も前述特公昭56−378号公報に示されて
いるがこの発明は金属型の温度を被成形ガラスの
転移点以上、軟化点以下で一定に保持し、この金
属型内に流動性を有する該ガラスを入れて加圧成
形し、そしてこの状態を成形されたガラスの温度
分布が均一化されるまで、20秒以上保持すること
を特徴とする成形法である。
Furthermore, a method of heating and press forming by melting glass raw materials is also disclosed in the aforementioned Japanese Patent Publication No. 56-378, but this invention maintains the temperature of the metal mold constant above the transition point and below the softening point of the glass to be formed. , a molding method characterized by placing the fluid glass in the metal mold, molding it under pressure, and maintaining this state for 20 seconds or more until the temperature distribution of the molded glass becomes uniform. It is.

この成形法においては型部材の型温度をガラス
の転移点以上に加熱して流動性ガラスを加圧成形
する方法のため型温度が高い故にガラスが型表面
に融着する問題を起こし、更に加圧成形時の型温
度が非常に高いため例えば中心肉厚の厚いレンズ
を成形する場合等に高温でプレスして形状を整え
たレンズの冷却時の歪除去の問題、更には前述の
高温に耐え得る型部材の材料選択及び型部材の型
寿命の短縮等の問題を有する。又この発明は「高
精度レンズ素材の成型法」が開示されておりひけ
の発生を除去し、公差3/100mm以下のレンズ素
材を得る方法であり、写真レンズの如き波長オー
ダーの面精度のレンズを溶融したガラス原料から
直接得る方法は開示されていない。
In this molding method, the mold temperature of the mold member is heated above the transition point of the glass and the fluid glass is pressure molded, so the high mold temperature causes the problem that the glass fuses to the mold surface. Because the mold temperature during pressure molding is extremely high, for example, when molding a lens with a thick center wall, there is a problem in removing distortion when the lens is cooled down after being pressed at high temperature, and it is also difficult to withstand the high temperatures mentioned above. There are problems such as material selection for the mold member to be obtained and shortening of the mold life of the mold member. This invention also discloses a "molding method for high-precision lens materials," which is a method for eliminating sink marks and obtaining lens materials with a tolerance of 3/100 mm or less, and is suitable for lenses with surface precision on the wavelength order, such as photographic lenses. There is no disclosure of a method for obtaining directly from molten glass raw materials.

[本発明の解決すべき問題点] 本発明は前述の問題点を解決する成形方法を提
案するものであり、特にガラス粉末原料を加熱し
て溶融し、溶融したガラスを型に入れてプレス成
形することにより、後工程なしでそのまま写真用
レンズの如く高精度な光学部品を直接得る事がで
き、量産効果の期待できる成形方法を提案する。
[Problems to be Solved by the Present Invention] The present invention proposes a molding method that solves the above-mentioned problems. In particular, glass powder raw materials are heated and melted, and the molten glass is put into a mold and press-molded. By doing so, it is possible to directly obtain high-precision optical parts such as photographic lenses without post-processing, and we propose a molding method that can be expected to be effective in mass production.

更に本発明は溶融ガラスを型部材に入れてプレ
ス成形するにあたりガラスが型表面に融着を起こ
さず、又同一の型部材により繰り返しプレス成形
加工の可能なガラス及び型の温度範囲の設定を行
なうことを提案する。
Furthermore, the present invention prevents the glass from adhering to the mold surface when molten glass is put into a mold member and press-molded, and the temperature range of the glass and mold is set so that the same mold member can be repeatedly press-molded. suggest something.

[問題点を解決するための手段] 本発明は前述の問題点を解決するために次の各
工程を経ることを特徴とする。まず、 (a) ガラス原料を加熱してガラス溶融化する。こ
の工程では最終製品を例えば一眼レフカメラ用
レンズとする場合に該レンズ用ガラスに適した
ガラス原料の粉末をるつぼに入れ加熱して溶融
する。この溶融過程において溶融ガラス中の気
泡を脱泡、撹拌を行ない泡のない均質度の高い
ガラスにする。
[Means for Solving the Problems] The present invention is characterized by passing through the following steps in order to solve the above-mentioned problems. First, (a) glass raw materials are heated to melt the glass. In this step, when the final product is, for example, a lens for a single-lens reflex camera, powder of a glass raw material suitable for glass for the lens is placed in a crucible and heated to melt. During this melting process, air bubbles in the molten glass are defoamed and stirred to create a highly homogeneous glass without bubbles.

(b) 次に型温度を調整する。型部材としては超硬
合金等の素材により上型と下型及びレンズ形状
によつては上型・下型の側面に位置する胴型を
行い、型を閉じたときに型内の空間形状レンズ
形状と成し、型の内表面はレンズの光学機能面
を形成すべく鏡面仕上する。型の光学機能面の
精度は型の光学機能面がガラスに押圧され型表
面の精度がガラス表面に転写されてレンズ表面
となるものであり要求されるレンズの表面精度
と同程度かそれ以上に仕上げる。型部材の温度
はガラス原料のガラス転移点とガラス転移点よ
り100℃低い温度の範囲に調整する。
(b) Next, adjust the mold temperature. The mold members are made of materials such as cemented carbide, and are used as an upper mold, a lower mold, and depending on the shape of the lens, a body mold located on the side of the upper mold and the lower mold, and when the mold is closed, the spatial shape lens inside the mold is The inner surface of the mold is mirror-finished to form the optically functional surface of the lens. The precision of the optically functional surface of the mold is that the optically functional surface of the mold is pressed against the glass and the precision of the mold surface is transferred to the glass surface to become the lens surface, so it is equivalent to or higher than the required surface precision of the lens. Finish. The temperature of the mold member is adjusted within the range of the glass transition point of the glass raw material and a temperature 100°C lower than the glass transition point.

溶液化したガラスを上述の温度に調整した型
部材に入れるとガラスは急速に冷やされガラス
温度は下がり、型部材特に型の表面温度は上昇
し型温度は上がりガラスと型の温度差は急速に
縮小する。
When liquefied glass is placed in a mold member adjusted to the above temperature, the glass is rapidly cooled and the glass temperature drops, while the surface temperature of the mold member, especially the mold, rises, the mold temperature rises, and the temperature difference between the glass and the mold rapidly decreases. to shrink.

(c) ガラスを型に入れてガラスの表面温度が急速
に下がる過程において上型か下型又は上型と下
型の両方を1次加圧する。この加圧過程におい
てガラスの表面温度は急速低下するため型と融
着現象を防ぐことができ又、表面変質層も光学
上さしつかえない範囲に押えることができ型部
材の加圧によりガラスが流動して型の空間形状
に倣つた形状に変化して溶融ガラスはレンズ形
状を形成していく。この1次加圧はガラス温度
が108.5〜11ポアズの粘度に達するまでに最終製
品よりも5%以上の肉厚寸法の多い寸法に成る
ように最終製品に近似した形状まで加圧する。
(c) In the process of placing glass in a mold and rapidly reducing the surface temperature of the glass, primary pressure is applied to either the upper mold, the lower mold, or both the upper mold and the lower mold. In this pressurizing process, the surface temperature of the glass rapidly decreases, which prevents the phenomenon of fusion with the mold.Also, the surface deterioration layer can be suppressed to an optically acceptable range, and the glass flows due to the pressurization of the mold members. The molten glass changes shape to follow the spatial shape of the mold, forming a lens shape. This primary pressurization is performed until the glass temperature reaches a viscosity of 10 8.5 to 11 poise, and the glass is pressed to a shape similar to the final product so that the wall thickness is 5% or more larger than that of the final product.

前述のガラス温度が108.5〜11ポアズの粘度を
示す温度に達するまで近似形状にガラスを成形
すると短い時間で前述の最終製品より5%肉厚
寸法の大きい寸法形状に加工するのにガラスの
押圧による変形のために好ましかつた。
If the glass is formed into an approximate shape until the glass temperature reaches a temperature that indicates a viscosity of 108.5 to 11 poise, it will take a short time to process the glass into a shape that is 5% thicker than the final product. It was preferable for deformation due to

ここでガラスは、冷却に供なうひけを生ずる
のが前述した如くガラスが108.5〜11ポアズの粘
度を示す温度まで加圧することで、ひけを大幅
に減少させる事が出来、さらに残り押ししろを
5%好ましくは1%以上残し、後述する次工程
で残り押ししろを押しきる事により前記ひけの
残り部分を十分に解消出来る事を本発明者らは
見出した。さらにひけを少なくする方法とし
て、型温を上げる事が考えられるが型温が被成
形ガラスのガラス転移点(Tg、1013ポアズ)
以上の温度で成形を開始すると融着を生じやす
く、又逆に型温がTg−100℃以下の温度で成形
を開始すると、ひけが大きくなり次工程でひけ
を解消出来なくなつた。以上の理由により成形
開始時の型温は被成形ガラスのガラス転移点温
度(Tg)からTg−100℃とする事が好ましか
つた。又さらに型温を前述の温度に保つこと
で、ひけや融着防止上有効であるばかりでな
く、加圧時に型温が成形に必要な温度(被成形
ガラスの粘度で108.5〜1011ポアズに相当する温
度)以上に上がる事がない為、高精度に加工さ
れた型の寿命にも大きく寄与する効果も生じ
た。
Here, as mentioned above, glass produces sink marks as it cools, but by pressurizing the glass to a temperature at which it exhibits a viscosity of 108.5 to 11 poise, it is possible to significantly reduce the sink marks. The present inventors have found that the remaining sink marks can be sufficiently eliminated by leaving 5% or more, preferably 1% or more, and pushing out the remaining push margin in the next step described below. A possible way to further reduce sink marks is to raise the mold temperature, but the mold temperature is the glass transition point (Tg, 10 13 poise) of the glass to be formed.
If molding was started at a temperature higher than that, fusion tended to occur, and conversely, if molding was started at a mold temperature of Tg-100°C or lower, sink marks became large and could not be eliminated in the next process. For the above reasons, it is preferable to set the mold temperature at the start of molding to Tg - 100°C from the glass transition temperature (Tg) of the glass to be molded. Furthermore, by keeping the mold temperature at the above-mentioned temperature, it is not only effective in preventing sink marks and fusion, but also keeps the mold temperature at the temperature required for molding (10 8.5 to 10 11 poise depending on the viscosity of the glass to be molded) during pressurization. Since the temperature does not rise above (corresponding to the temperature of

(d) 更に前述の1次加圧に引き続いて型部材に圧
力を加えて最終製品形状にガラスを成形する。
(d) Further, following the above-mentioned primary pressurization, pressure is applied to the mold member to mold the glass into the final product shape.

前述第1次加圧終了時のガラス温度は108.5
〜11ポアズの粘度を示す温度であるが最終製品
形状の加圧時の温度は型部材を構成する部材、
即ち、ガラスに接する部材の温度を前記ガラス
が108.5〜11ポアズの粘度を示す温度範囲に保ち
つつ、かつ前記型部材の温度差を少なくとも20
℃以内に収束するように型部材の温度を制御す
る。これにより型部材の中のガラス温度は108.5
〜11ポアズの粘度を示す温度の範囲内に保たれ、
さらに第2の加圧工程終了時にはガラス内部の
温度差も20℃以内に押えられ、最終製品形状が
成形が行なわれる。
The glass temperature at the end of the first pressurization mentioned above is 10 8.5
The temperature indicates a viscosity of ~11 poise, but the temperature at the time of pressurization of the final product shape is the temperature of the members constituting the mold member,
That is, while maintaining the temperature of the member in contact with the glass within a temperature range in which the glass exhibits a viscosity of 108.5 to 11 poise, the temperature difference between the mold members is at least 20 poise.
The temperature of the mold member is controlled so that it converges within ℃. As a result, the glass temperature inside the mold member is 10 8.5
kept within a temperature range exhibiting a viscosity of ~11 poise,
Furthermore, at the end of the second pressurizing process, the temperature difference inside the glass is kept within 20°C, and the final product shape is formed.

ここで第2の加圧工程においてガラスの粘度
が108.5より小さいと、ガラスの自重変形や冷却
時のひけの増大によりすぐれた面の転写性は得
られなかつた。逆にガラスの粘度が1011より大
きいと成形に要する時間が膨大となり、又プレ
ス後にガラスの部分的な弾性回復が発生し良好
な面が得られなかつた。さらに第2の加圧工程
終了時に前記型に部材、特に光学機能面を有す
る型部材間に温度差が存すると、前記型部材に
接しているがガラスにも同様の温度差を生じ
る。この為ガラス内部の熱膨張の相違により、
室温までの冷却収縮時にソリを生じガラスの光
学機能面の精度悪化させる原因となるが、前記
第2の加圧工程終了時までに前記型部材の温度
差を20℃以内にし、さらに後述する次工程の冷
却工程を行なうことで、前記第2の加圧工程で
生じたソリを解消出来る事を本発明者らは見出
した。
If the viscosity of the glass in the second pressing step was less than 10 8.5 , excellent surface transferability could not be obtained due to deformation of the glass under its own weight and increase in sink marks during cooling. On the other hand, if the viscosity of the glass was greater than 10 11 , the time required for molding would be enormous, and the glass would partially recover its elasticity after pressing, making it impossible to obtain a good surface. Furthermore, if there is a temperature difference between the members of the mold, especially the mold member having an optical function surface, at the end of the second pressurizing step, a similar temperature difference will occur in the glass that is in contact with the mold member. For this reason, due to the difference in thermal expansion inside the glass,
Warping occurs during cooling shrinkage to room temperature, which causes deterioration of the precision of the optical functional surface of the glass.However, by the end of the second pressurizing process, the temperature difference between the mold members should be kept within 20°C, and the following steps described below should be carried out. The present inventors have found that by performing the cooling step of the process, the warpage caused in the second pressurizing step can be eliminated.

(e) 前述の最終製品形状の加圧成形が終了すると
型部材を冷却して加圧成形した形状の製品を型
部材から取り出すための冷却工程に入る。この
冷却工程には最終製品のガラスの内部歪除去及
び屈折率調整のアニール操作のための準備工程
としての意味がある。
(e) When the above-mentioned pressure molding of the final product shape is completed, a cooling process begins in which the mold member is cooled and the product in the pressure molded shape is taken out from the mold member. This cooling step has the meaning of a preparatory step for the annealing operation for removing internal strain and adjusting the refractive index of the final product glass.

前記第2次加圧時のガラスと型の温度は108.5
〜11ポアズの間の範囲内で行なわれるので、こ
の温度状態で成形品を型から取り出すと成形品
の形状変形や、冷却にともなう歪の発生を生じ
る。そのため成形品を型と共に冷却して変形を
防ぐわけであるが、アニール工程の前の冷却工
程で型部材とガラス温度をほぼ同じにして同一
の冷却速度にするとアニール工程に好ましい結
果が得られた。そのため本発明者は前述の2次
加圧工程の後の冷却工程を2つの工程に分けて
操作することを考えた。つまり、冷却の第1の
工程はガラス粘度108.5〜11ポアズの範囲内のガ
ラスと型の温度を同一温度に冷却制御する。更
に第2の工程としてガラスと型を同一温度に保
つて取り出し温度又はアニール温度まで冷却す
る。
The temperature of the glass and mold during the second pressurization was 10 8.5
Since the temperature is between 11 poise and 11 poise, if the molded product is removed from the mold at this temperature, the shape of the molded product will be deformed and distortion will occur as it cools. For this reason, the molded product is cooled together with the mold to prevent deformation, but favorable results were obtained in the annealing process by keeping the mold member and glass temperature approximately the same and cooling at the same rate in the cooling process before the annealing process. . Therefore, the present inventor considered dividing the cooling process after the above-mentioned secondary pressurization process into two processes. That is, in the first step of cooling, the temperature of the glass within the range of glass viscosity 108.5 to 11 poise and the mold are controlled to be the same temperature. Furthermore, as a second step, the glass and the mold are kept at the same temperature and cooled to the take-out temperature or annealing temperature.

そして、特に大事な条件は1次冷却において
ガラスと型の温度がガラス粘度108.5〜11ポアズ
からガラス転移点の温度に冷却される間にガラ
スと型部材の温度をほぼ同一の温度に制御しそ
の後ガラス転移点からガラス粘度1014.5ポアズ
の温度まで型部材とガラスを同一冷却速度で冷
却することであつた。
A particularly important condition is that during the primary cooling, the temperatures of the glass and mold members are controlled to almost the same temperature while the temperature of the glass and mold is cooled from the glass viscosity of 108.5 to 11 poise to the temperature of the glass transition point. Thereafter, the mold member and the glass were cooled at the same cooling rate from the glass transition point to the glass viscosity of 1014.5 poise.

この様な冷却工程を行なわずに成形した光学
部品は所望の屈折率を得る為の次工程のフアイ
ンアニールを行なうと前記第2の加圧工程まで
に得られた形状、特に光学機能面の面精度にニ
ユートンリング±5本以上の狂いを生じたが、
前記冷却工程を行なつて成形した光学部品には
成形や冷却による残留歪の発生がほとんどなく
前記のフアインアニールを行なつても、前記冷
却工程までに得られた形状や面精度を損なう事
はなかつた。
For optical parts molded without performing such a cooling step, if the next step of fine annealing is performed to obtain the desired refractive index, the shape obtained up to the second pressurizing step, especially the optical function surface, will change. There was a deviation of ±5 or more Newton rings in the surface accuracy,
Optical parts molded through the cooling process have almost no residual strain due to molding or cooling, and even if the fine annealing is performed, the shape and surface precision obtained up to the cooling process will not be impaired. I stopped talking.

[実施例の説明] 実施例 1 カメラ用のレンズ例えば本出願人の製造・販売
に係る一眼レフカメラのレンズに適するNd=
1.59551(屈折率)、νd=39.2(アツベ数)の性質を
有するF8相当のガラス原料を用いて、第4図に
示す形状のレンズ成形を行なつた。まず前記ガラ
ス原料を第1図Aに示す符号17のるつぼに入れ
1400℃に加熱してガラス原料をガラス化して溶融
状態にする。溶融したガラスを1300℃近辺まで冷
却し、撹拌操作及び脱泡操作を行なう。
[Description of Examples] Example 1 Nd= suitable for a camera lens, for example, a single-lens reflex camera lens manufactured and sold by the present applicant.
A lens having the shape shown in FIG. 4 was molded using a glass raw material equivalent to F8 having properties of 1.59551 (refractive index) and νd = 39.2 (Atsube number). First, the glass raw material is placed in a crucible 17 shown in FIG. 1A.
Heat to 1400℃ to vitrify the glass raw material into a molten state. The molten glass is cooled to around 1300°C, and stirred and defoamed.

第2図は本発明に用いる成形装置を示す。 FIG. 2 shows a molding apparatus used in the present invention.

図において、符号1,2は下型及び上型を示
し、炭化タングステン、超硬合金等の材料によつ
て作る。下型1、上型2には型を閉じたときに合
わせ面にレンズ形状となる空間形状を形成する凹
部1a,2aを設け、凹部1a,2aの表面はレ
ンズの光学機能面を形成するために表面粗さ
Rnax0.01μm程度に仕上げる。3,4は下型1と
上型2の温度調節用ヒーターを示し、各型部材の
周囲又は型部材に適宜に設けたヒーター用挿通孔
に巻回する。
In the figure, numerals 1 and 2 indicate a lower mold and an upper mold, which are made of materials such as tungsten carbide and cemented carbide. The lower mold 1 and the upper mold 2 are provided with recesses 1a and 2a that form a spatial shape that becomes a lens shape on the mating surfaces when the molds are closed, and the surfaces of the recesses 1a and 2a form the optically functional surfaces of the lens. surface roughness
Finish to R nax 0.01μm. Reference numerals 3 and 4 indicate heaters for adjusting the temperature of the lower mold 1 and the upper mold 2, which are wound around each mold member or through heater insertion holes appropriately provided in the mold member.

5,6は下型・上型を保持する保持部材で、該
保持部材の上・下方向の移動によつて下型1と上
型2の開閉操作を行なう。7,8は各型部材1,
2の温度測定のための温度検出器を示し、該温度
検出器の出力信号線7a,8aはコントローラー
9,10に入力している。コントローラー9,1
0はそれぞれ下型の型温度と上型の型温度をそれ
ぞれ制御する計器であり、各コントローラには前
記測定器7,8の入力信号とヒーター3,4への
電力を出力する様にし、コントローラ9,10に
は第3図に示す温度曲線に沿うように温度検出器
7,8の信号に基ずいてヒーター3,4への通電
制御を行なうプログラムが設けられている。
Reference numerals 5 and 6 denote holding members for holding the lower mold and upper mold, and opening and closing operations of the lower mold 1 and the upper mold 2 are performed by moving the holding members upward and downward. 7 and 8 are each mold member 1,
2 shows a temperature sensor for measuring the temperature of No. 2, and output signal lines 7a and 8a of the temperature sensor are input to controllers 9 and 10. controller 9,1
Reference numeral 0 denotes a meter that controls the mold temperature of the lower mold and the mold temperature of the upper mold, respectively, and input signals from the measuring devices 7 and 8 and power to the heaters 3 and 4 are output to each controller. 9 and 10 are provided with a program for controlling the supply of electricity to the heaters 3 and 4 based on the signals from the temperature detectors 7 and 8 so as to follow the temperature curve shown in FIG.

尚第2図の型部材において成形する光学部品の
形状によつては胴型を設ける。
Depending on the shape of the optical component to be molded, a body mold may be provided in the mold member shown in FIG.

1300℃近辺の温度で撹拌、脱泡処理した溶融ガ
ラスを型部材に入れる前に型部材の温度を調整す
る。型部材1,2の温度は第3図に示すようにガ
ラス原料F8のガラス転移点(Tg=445℃)とガ
ラス転移点より100℃低い温度(Tg−100℃)の
範囲内に調整する。本発明者は一例として型温度
を440℃に設定した。型温度440℃の調温後下型1
の光学機能面1aにガラス14を入れるに際しガ
ラス溶融温度を調整する。溶融ガラス14を下型
に入れるときに第1図Aに示すガラス14は下型
の上で適度の粘性を有している必要があり反面液
状となつて下型の凹部に液状にひらたくなつては
好ましくなく適当な塊状態にする必要がある。
又、ガラス温度が高いとるつぼのノズル11の先
端から下型に流出する際にガラス中に泡を巻き込
んだり、脈理を発生させることもあつた。そのた
めノズル11から下型に溶融ガラスを流出する場
合にはガラスの温度をガラス粘土104.2ポアズ、温
度換算で860℃に流出ガラスの温度にすると良い
結果が得られた。このガラスの流出温度の範囲は
F8等のプリント及びクラウン系の材料の場合ガ
ラス粘度103.55.5ポアズの温度範囲に調整すると
前述の流出切断ガラスの塊形成及び泡の発生の防
止に好ましく、又、ランタン系ガラス材料の場合
にはガラス粘度100.53.5ポアズの温度範囲が好適
であつた。下型にガラスを流出切断後上型を被せ
下型と上型によつてガラスを押圧成形する。(第
1図B参照)ガラス14を下型の上に流出させる
と下型の温度440℃とガラスの温度860℃の温度の
差により第3図に示すようにガラス14の温度変
化は曲線G1として示されるようにガラス粘度
104.2ポアズから109.09.2ポアズに温度が急速に低
下し、反対に型部材の温度は曲線M1(下型)M2
(上型)に示すように440℃から急激に上昇する。
下型1は上型2より先にガラスに接するため先に
温度上昇を始める。型内にガラスを投入した後プ
レス操作は第3図の第1の加圧工程による1次加
圧と第2の加圧工程の2次加圧の操作を行なつ
た。第1次加圧は上型の下型の型を閉じ6秒間か
けてプレス圧力を除々に上げ最大30Kg/cm2になる
まで加圧した。この操作により前述したようにガ
ラス温度の急降下と型温度の急上昇が行なわれガ
ラスは上型と下型の凹部1a,2aによる形状成
形が進めめられる。第1次加圧の上型と下型のプ
レス操作は成形ガラスの肉厚部の中心肉厚寸法が
最終製品のレンズ肉厚の寸法より約5%分余分に
残るように行なう。
The temperature of the mold member is adjusted before pouring the molten glass, which has been stirred and defoamed at a temperature of around 1300°C, into the mold member. As shown in FIG. 3, the temperatures of the mold members 1 and 2 are adjusted within the range between the glass transition point (Tg=445°C) of the glass raw material F8 and a temperature 100°C lower than the glass transition point (Tg-100°C). As an example, the inventor set the mold temperature to 440°C. Lower mold 1 after controlling the mold temperature to 440℃
The glass melting temperature is adjusted when glass 14 is placed on the optically functional surface 1a. When putting the molten glass 14 into the lower mold, the glass 14 shown in FIG. This is not desirable and it is necessary to make it into a suitable lump state.
Furthermore, when the glass temperature is high, bubbles may be drawn into the glass or striae may be generated when the glass flows out from the tip of the nozzle 11 of the crucible to the lower mold. Therefore, when the molten glass flows out from the nozzle 11 into the lower mold, good results were obtained by setting the temperature of the glass clay to 10 4.2 poise, or 860°C in terms of temperature. In the case of print and crown materials such as F8, it is preferable to adjust the glass outflow temperature to a temperature range in which the glass viscosity is 10 3.5 to 5.5 poise to prevent the formation of lumps and bubbles in the outflow cut glass mentioned above. In the case of lanthanum-based glass materials, a temperature range with a glass viscosity of 10 0.5 to 3.5 poise was suitable. After the glass is poured into the lower mold and cut, the upper mold is placed over the glass and the glass is pressed and molded by the lower mold and the upper mold. (See Figure 1 B) When the glass 14 is poured onto the lower mold, the temperature change of the glass 14 is caused by a curve G as shown in Figure 3 due to the temperature difference between the lower mold temperature of 440°C and the glass temperature of 860°C. Glass viscosity as shown as 1
The temperature decreases rapidly from 10 4.2 poise to 10 9.0 ~ 9.2 poise, and on the contrary, the temperature of the mold part changes to the curve M 1 (lower mold) M 2
As shown in (upper mold), the temperature rises rapidly from 440℃.
Since the lower mold 1 comes into contact with the glass before the upper mold 2, the temperature starts to rise first. After the glass was placed in the mold, the press operation consisted of primary pressing in the first pressing step shown in FIG. 3 and secondary pressing in the second pressing step. In the first pressurization, the lower mold of the upper mold was closed and the press pressure was gradually increased over 6 seconds until it reached a maximum of 30 kg/cm 2 . As a result of this operation, as described above, the glass temperature is rapidly lowered and the mold temperature is rapidly raised, and the glass is formed into a shape by the recesses 1a and 2a of the upper and lower molds. The press operation of the upper and lower molds for the first pressurization is performed so that the center thickness of the thick portion of the molded glass remains approximately 5% larger than the lens thickness of the final product.

更に引き続いて2次加圧を行なう。2次加圧は
プレス圧力60Kg/cm2を約60秒間負荷し、第3図第
2の加圧工程として示すように、この第2次加圧
の間は型部材の各部材間の温度分布のばらつきを
20℃以内に収束させるとともに第2次加圧をプレ
ス終了時のガラス温度が第3図g1点に示す520℃
(粘土109.3ポアズ)になるように第2図のコント
ローラー9,10によつてヒーター3,4を操作
する。第2時加圧操作の終了時点ではガラスは下
型と上型の凹部によつて成形される形状となり第
1時加圧終了時の5%の余裕分は圧縮される(第
1図C参照)。前記プレス操作の終了によりガラ
ス14はレンズの形に形状形成される。形成され
たガラスの温度は520℃の高温であり、製品とす
るために冷却される。520℃の高温のガラスレン
ズを冷却するためには冷却時にレンズ形状の形状
変化、歪の発生を抑えつつ加圧終了時の形状を保
つて冷却する必要がある。
Further, secondary pressurization is subsequently performed. In the secondary pressurization, a press pressure of 60 kg/cm 2 is applied for about 60 seconds, and as shown in the second pressurization process in Figure 3, during this secondary pressurization, the temperature distribution between each member of the mold member is variation of
While converging to within 20℃, the glass temperature at the end of the second pressing was 520℃ as shown at point 1 in Figure 3.
The heaters 3 and 4 are operated by the controllers 9 and 10 shown in Fig. 2 so that the clay becomes 10 9.3 poise. At the end of the second pressurization operation, the glass has a shape formed by the concave parts of the lower and upper molds, and the 5% margin left at the end of the first pressurization is compressed (see Figure 1C). ). Upon completion of the pressing operation, the glass 14 is shaped into a lens. The temperature of the formed glass is as high as 520°C, and it is cooled to make it into a product. In order to cool a glass lens at a high temperature of 520°C, it is necessary to maintain the shape at the end of pressurization while suppressing changes in the lens shape and distortion.

本実施例では第3図に示すようにガラスレンズ
の冷却曲線G3と型部材の冷却曲線M4を図示の如
くにし、特にガラス転移点(Tg=455℃)に達し
たときにガラスレンズと型部材の温度差を5℃以
内にとどまるようにコントローラー9,10によ
つてヒーターを作動制御した。その後、ガラスレ
ンズと型部材の温度を第3図g2点に示す425℃
(ガラス粘度1014.5ポアズ)まで同一の冷却曲線に
沿つて冷却した。冷却曲線g4の冷却スピードは5
℃/min、冷却曲線G3の冷却スピードは約10℃/
minで行なつた。
In this example, as shown in Fig. 3, the cooling curve G 3 of the glass lens and the cooling curve M 4 of the mold member are set as shown in the figure. The heaters were controlled by controllers 9 and 10 so that the temperature difference between the mold members remained within 5°C. After that, the temperature of the glass lens and mold member was set to 425℃ as shown at point g2 in Figure 3.
(glass viscosity 10 14.5 poise) along the same cooling curve. The cooling speed of cooling curve g 4 is 5
℃/min, the cooling speed of cooling curve G 3 is approximately 10℃/min.
I did it at min.

型部材及びガラスレンズ温度が第3図に示すg2
点に達した時、ただちに上型の下型を開きガラス
レンズを取り出し、室温まで放冷した。この時点
でガラスレンズの精度を測定した所、外形寸法は
第4図に示す公差内におさまつており、さらにレ
ンズ面の面精度は写真レンズに要求される精度で
あるアス(非対称性)、クセ(部分的なR成分の
ズレ)ともニユートンで0.5本(0.63/4μmのズ
レ)以内、表面粗さはRnax0.02μm以内におさま
つていた。さらにこのガラスレンズの屈折率を所
定の屈折率(nd=1.59551)にもどす為フアイン
アニールを行なつた、その後前記と同様に精度を
測定した所、前述のアス、クセ、表面粗さとも変
化なく、レンズ面の曲率のズレもニユートンリン
クで±2本(±0.63μm)内におさまつていた。
又表面変化層も400Å以下であり、そのままで写
真用レンズとして十分に使用出来るものであつ
た。
The temperature of the mold member and glass lens is g 2 as shown in Figure 3.
When this point was reached, the lower mold of the upper mold was immediately opened, the glass lens was taken out, and the glass lens was left to cool to room temperature. When we measured the accuracy of the glass lens at this point, we found that the external dimensions were within the tolerances shown in Figure 4, and the surface accuracy of the lens surface was asymmetry, which is the accuracy required for photographic lenses. The irregularity (partial deviation of the R component) was within 0.5 Newton (0.63/4 μm deviation), and the surface roughness was within R nax 0.02 μm. Furthermore, fine annealing was performed to return the refractive index of this glass lens to the predetermined refractive index (nd = 1.59551).After that, the accuracy was measured in the same manner as above, and the above-mentioned asperities, curls, and surface roughness also changed. There was no difference in the curvature of the lens surface, and the deviation in the curvature of the lens surface was within ±2 lines (±0.63 μm) with the Newton link.
The surface change layer was also less than 400 Å, and could be used as a photographic lens as is.

実施例 2 実施例1と同様のF8の相当のガラス原料を用
い、外径φ25mm、中心部肉厚11±0.05mm、光学機
能面の曲率がそれぞれR1=20mm、R2=40mmの両
凸レンズの成形を行なつた。又この成形に用いた
型は内部形状が、前記レンズに対応するように成
形された上型、下型より成り、その光学機能面に
対応する型表面は、表面粗さRnax0.01μm以上に
仕上げておいた。
Example 2 A biconvex lens using the same glass raw material equivalent to F8 as in Example 1, with an outer diameter of 25 mm, a central wall thickness of 11 ± 0.05 mm, and a curvature of the optical functional surface of R 1 = 20 mm and R 2 = 40 mm, respectively. The molding process was carried out. The mold used for this molding consists of an upper mold and a lower mold whose internal shape corresponds to the lens, and the mold surface corresponding to the optical functional surface has a surface roughness R nax of 0.01 μm or more. I finished it.

まず前記上、下型温を350℃(ガラス転移点445
℃より95℃低い温度)に調温後、実施例1と同様
にして得られた溶融ガラス840℃(ガラス粘度
104.4ポアズ)の温度で前記上・下型間に入れ、10
秒間かけてプレス圧力を徐々に上げ最大30Kg/cm2
になるまで加圧し、成形ガラスの中心肉厚寸法が
最終製品のレンズ肉厚寸法より約2%分残るよう
に第1の加圧を行なつた。
First, set the temperature of the upper and lower molds to 350℃ (glass transition point 445
The molten glass obtained in the same manner as in Example 1 was heated to 840℃ (glass viscosity lower than 95℃).
Place it between the upper and lower molds at a temperature of 10 4.4 poise, and
Gradually increase the press pressure over a period of seconds to a maximum of 30Kg/cm 2
The first pressurization was performed so that the center wall thickness of the formed glass remained approximately 2% of the lens wall thickness of the final product.

更に引続いて2次加圧を行なつた。2次加圧は
プレス圧力50Kg/cm2を約50秒間負荷し第2の加圧
工程終了時にガラス温度が510℃(粘土109.5ポア
ズ)上型、下型の型温がそれぞれ510℃±5℃に
なる様に操作した。その後加圧を解除し、ガラス
レンズを型間に入れたまま、毎分約10℃の冷却ス
ピードで、ガラスレンズと各型の温度差が2℃以
内に収束する様に型温をコントロールしながらガ
ラス転移点(445℃)まで冷却しさらに毎分5℃
の冷却スピードでガラスレンズと各型の温度差が
生じないように425℃(ガラス粘度1014.5ポアズ)
まで冷却した。その後ガラスレンズを型より取り
出し、屈折率調整の為のフアインアニールを行な
つた。さらに実施例1を同様の測定を行なつた
所、光学機能面の曲率のズレはニユートンリング
で±2本以内、アスクセともニユートンリングで
0.5本以内、表面粗さはRnax0.02以下であり、従
来の研磨レンズと同等以上の性能を有していた。
Further, secondary pressurization was subsequently performed. In the secondary pressurization, a press pressure of 50Kg/cm 2 was applied for about 50 seconds, and at the end of the second pressurization process, the glass temperature was 510℃ (clay 10 9.5 poise), and the mold temperatures of the upper mold and lower mold were 510℃±5, respectively. The temperature was adjusted to ℃. After that, the pressure is released, and while the glass lens is still placed between the molds, the mold temperature is controlled at a cooling rate of about 10℃ per minute so that the temperature difference between the glass lens and each mold converges to within 2℃. Cooled to glass transition point (445℃) and further cooled at 5℃ per minute
Cooling speed of 425℃ (glass viscosity 10 to 14.5 poise) so that there is no temperature difference between the glass lens and each mold.
Cooled to . Thereafter, the glass lens was removed from the mold and fine annealed to adjust the refractive index. Furthermore, when similar measurements were performed for Example 1, the deviation in the curvature of the optical functional surface was within ±2 lines for the Newton ring, and for both the ask and the Newton rings.
The surface roughness was within R nax 0.02, and the performance was equivalent to or better than that of conventional polished lenses.

実施例 3 実施例1と同じ形状のレンズ(図4参照)を
nd=1.77250、νd=49.6ガラス点移点Tg=700℃
なる性質を有するランタン系ガラスLaSF016相当
のガラス原料を用いて成形を行なつた。又この成
形に用いた型部材は実施例1と同じものを用い
た。
Example 3 A lens with the same shape as Example 1 (see Figure 4) was
nd=1.77250, νd=49.6 Glass point transition point Tg=700℃
Molding was carried out using a glass raw material equivalent to lanthanum-based glass L a SF016, which has the following properties. The mold member used for this molding was the same as in Example 1.

まず前記型部材を650℃(ガラス転移点700℃よ
り50℃低い温度)に調温後、実施例1と同様にし
て得られた溶融ガラスを900℃(ガラス粘度102.9
ポアズ)の温度で前記型部材間に入れ、5秒間か
けてプレス圧力を徐々に上げ最大45Kg/cm2になる
まで加圧し、成形ガラスの中心肉厚寸法が最終製
品のレンズ肉厚寸法より約5%分残るように第1
の加圧を行なつた。
First, the temperature of the mold member was adjusted to 650°C (50°C lower than the glass transition point of 700°C), and then the molten glass obtained in the same manner as in Example 1 was heated to 900°C (glass viscosity: 10 2.9
Poise), the press pressure is gradually increased over 5 seconds until it reaches a maximum of 45 kg/cm 2 , and the center wall thickness of the molded glass is approx. 1st so that 5% remains
Pressure was applied.

更に引き続いて2次加圧を行なつた。2次加圧
はプレス圧力80Kg/cm2を約120秒間負荷し第2の
加圧工程終了時にガラス温度が718℃(粘度1010.2
ポアズ)上型、下型の型温がそれぞれ716℃±3
℃になる様に操作した。その後加圧を解除し、ガ
ラスレンズを型間に入れたまま毎分約5℃の冷却
スピードで、ガラスレンズと各型の温度差が1℃
以内に収束する様に型温をコントロールしなが
ら、ガラス転移点(700℃)まで冷却しさらに毎
分3℃の冷却スピードでガラスレンズと各型の温
度差が生じないように685℃(ガラス粘度1014.5
アズ)まで冷却した。その後ガラスレンズを型よ
り取り出し、屈折率調整の為のフアインアニール
を行なつた。さらに実施例1を同様の測定を行な
つた所、光学機能面の曲率のズレはニユートンリ
ングで±2本以内、アスクセともニユートンリン
グで0.5本以内、表面粗さはRnax0.02以下であり、
従来の研磨レンズと同等以上の性能を有してい
た。
Further, secondary pressurization was subsequently performed. In the secondary pressurization, a press pressure of 80 kg/cm 2 was applied for about 120 seconds, and at the end of the second pressurization process, the glass temperature was 718℃ (viscosity 10 10.2
Poise) Mold temperature of upper mold and lower mold is 716℃±3 respectively
The temperature was adjusted to ℃. After that, the pressure was released, and the glass lens was cooled at a cooling rate of about 5℃ per minute with the glass lens placed between the molds until the temperature difference between the glass lens and each mold was 1℃.
While controlling the mold temperature so that it converges within the glass transition point (700℃), the temperature is further reduced to 685℃ (glass viscosity 10 to 14.5 poise). Thereafter, the glass lens was removed from the mold and fine annealed to adjust the refractive index. Furthermore, when similar measurements were performed on Example 1, the deviation of the curvature of the optical functional surface was within ±2 lines for the Newton ring, within 0.5 lines for both the ask and Newton rings, and the surface roughness was R nax 0.02 or less. can be,
Its performance was equivalent to or better than that of conventional polished lenses.

[発明の効果] 以上説明した様に本発明による工程を行なうこ
とにより写真用レンズ等に代表される様高精度な
(外径寸法公差5/100mm以内、アス、クセがニユー
トンリング0.5本以内、曲率のズレのバラツキが
ニユートンリング±2本以内)光学部品を研削、
研磨等の後工程を必要としないで、ガラス原材料
の溶融液から直接成形出来る事が可能になつた。
この本発明の効果として以下の点が上げられる。
[Effects of the Invention] As explained above, by carrying out the process according to the present invention, it is possible to achieve high precision as typified by photographic lenses (outer diameter tolerance within 5/100 mm, asperity and curl within 0.5 Newton ring). , the variation in curvature deviation is within ±2 Newton rings) Grinding optical parts,
It has become possible to directly mold glass raw materials from molten liquid without the need for post-processes such as polishing.
The following points can be cited as effects of the present invention.

(1) 冷却時のひけやソリの発生のない高精度な特
に曲率の部分的な変化が0.63/4μm以内の光学
部品を原材料の溶融から直接モールド成形によ
り得る事が出来る。
(1) It is possible to obtain optical components with high precision, especially local changes in curvature within 0.63/4 μm, without sink marks or warpage during cooling, by direct molding from melted raw materials.

(2) 研削研磨による従来方法やリヒートプレスに
よる成形に比較しコストは2/1以下。
(2) The cost is less than 2/1 compared to conventional methods using grinding and polishing or molding using reheat press.

(3) 型温の変化巾が少なく、かつ成形前後の型温
が近い為くり返して型を使用する事が容易な
為、効率的な量産が期待出来る。
(3) Efficient mass production can be expected because the range of mold temperature variation is small and the mold temperatures before and after molding are close, making it easy to use the mold repeatedly.

(4) 低温の型に高温の硝子を入れる為、硝子表面
が素早く冷却される為、硝子表面の変質層を実
用上問題にしなくてする範囲内に押さえられ
る。
(4) Since high-temperature glass is placed in a low-temperature mold, the surface of the glass is quickly cooled, so the deterioration layer on the glass surface can be kept to a level that does not pose a practical problem.

(5) 型温が低い為、高温の硝子を使用しても融通
が生じないばかりでなく、型温が実際の成形に
必要な温度以上にならない為、型の寿命が大幅
に延びる。
(5) Since the mold temperature is low, not only is there no flexibility even when high-temperature glass is used, but the life of the mold is greatly extended because the mold temperature does not exceed the temperature required for actual molding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A〜Cは本発明に係る成形プロセスを説
明する図で、第1図Aはノズル11から型部材に
溶融ガラスを挿入する説明図、第1図Bは第1次
加圧の説明図、第1図Cは第2次加圧の説明図、
第2図は本発明のプロセスに用いる装置の説明
図、第3図は本発明の実施例1に係る温度曲線
図、第4図は成形するレンズの形状を示す図。 1……下型、2……上型、3,4……ヒータ、
5,6……型保持部材、7,8……温度検出器、
9,10……コントローラ、11……ノズル、1
2……流出硝子、13a,13b……切断刃、1
4,15,16……被成形硝子、17……るつ
ぼ、18,19……ヒーター、1a,2a……光
学機能面、7a,8a……温度出力信号線。
FIGS. 1A to 1C are diagrams explaining the molding process according to the present invention. FIG. 1A is an explanatory diagram of inserting molten glass into the mold member from the nozzle 11, and FIG. 1B is an explanation of the first pressurization. Figure 1C is an explanatory diagram of the second pressurization,
FIG. 2 is an explanatory diagram of an apparatus used in the process of the present invention, FIG. 3 is a temperature curve diagram according to Example 1 of the present invention, and FIG. 4 is a diagram showing the shape of a lens to be molded. 1...Lower mold, 2...Upper mold, 3, 4...Heater,
5, 6...Mold holding member, 7, 8...Temperature detector,
9, 10... Controller, 11... Nozzle, 1
2... Outflow glass, 13a, 13b... Cutting blade, 1
4, 15, 16... Glass to be formed, 17... Crucible, 18, 19... Heater, 1a, 2a... Optical functional surface, 7a, 8a... Temperature output signal line.

Claims (1)

【特許請求の範囲】 1 ガラス原料を加熱溶融し、プレスして光学部
品を成形する方法は次の工程を含む: (a) ガラス原料を加熱してガラス溶液化する第1
の工程。 (b) 溶液化したガラスをプレスする光学機能面を
有する上型と下型から成る型部材を有し、前記
型部材の型温度を前記ガラス原料のガラス転移
点とガラス転移点より100℃低い温度の間の温
度範囲に調温する第2の工程。 (c) 前記第1の工程のガラスを前記第2の工程に
よつて調温した型部材に入れ、ガラス温度が
108.5〜11ポアズの粘土を示す温度に達したとき
に最終製品よりも5%以上好ましくは1%以上
の肉厚寸法に成るように近似形状にプレスする
第1の加圧工程。 (d) 前記第1の加圧工程に続いて前記型部材の温
度をガラスが108.511ポアズの粘土を示す温度
の範囲に保ちつつ、前記型部材を最終の光学部
品形状にプレスし、そのプレス終了時までに、
前記型部材の型の温度の差が20℃以内に収束す
るように調温しながらプレスする第2の加圧工
程。 (e) 前記第2の加圧工程の後に、成形された光学
部品と型部材を冷却する工程を有し、前記冷却
工程はガラス温度がガラス転移点に達する前ま
でに型の温度と成形された光学部品の温度差を
5℃以内に保つように冷却する第1冷却工程
と、第1冷却の後にガラスと接する上型と下型
の温度差を僅少差に保つてガラスを除歪下限点
まで冷却する第2の冷却工程。
[Claims] 1. A method for heating and melting a glass raw material and pressing it to form an optical component includes the following steps: (a) A first step of heating the glass raw material to form a glass solution.
process. (b) It has a mold member consisting of an upper mold and a lower mold having an optically functional surface for pressing the glass solution, and the mold temperature of the mold member is 100°C lower than the glass transition point of the glass raw material and the glass transition point. The second step is to adjust the temperature to a temperature range between the temperatures. (c) The glass from the first step is placed in the mold member whose temperature has been controlled by the second step, and the glass temperature is
10 The first pressurizing step of pressing into an approximate shape so that the wall thickness is 5% or more preferably 1% or more than the final product when the temperature reaches a temperature indicating clay of 8.5 to 11 poise. (d) following the first pressing step, pressing the mold member into the final optical component shape while maintaining the temperature of the mold member within a temperature range where the glass exhibits a clay of 10 8.5 to 11 poise; By the end of the press,
A second pressurizing step in which the mold member is pressed while controlling its temperature so that the temperature difference between the molds converges within 20°C. (e) After the second pressurizing step, there is a step of cooling the molded optical component and the mold member, and the cooling step is performed until the glass temperature reaches the glass transition point. A first cooling step in which the optical components are cooled to keep the temperature difference within 5 degrees Celsius, and after the first cooling, the temperature difference between the upper mold and the lower mold in contact with the glass is kept to a slight difference to remove the strain from the glass to the lower limit. A second cooling step to cool down to.
JP31082286A 1986-12-26 1986-12-26 Forming of optical member Granted JPS63162539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31082286A JPS63162539A (en) 1986-12-26 1986-12-26 Forming of optical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31082286A JPS63162539A (en) 1986-12-26 1986-12-26 Forming of optical member

Publications (2)

Publication Number Publication Date
JPS63162539A JPS63162539A (en) 1988-07-06
JPH0372016B2 true JPH0372016B2 (en) 1991-11-15

Family

ID=18009829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31082286A Granted JPS63162539A (en) 1986-12-26 1986-12-26 Forming of optical member

Country Status (1)

Country Link
JP (1) JPS63162539A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4495842B2 (en) 2000-09-01 2010-07-07 Hoya株式会社 Manufacturing method and manufacturing apparatus for glass molded product, and manufacturing method for glass product
JP4692500B2 (en) * 2007-03-07 2011-06-01 旭硝子株式会社 Method for producing optical glass element and method for fine adjustment of refractive index of glass molded article
WO2009035082A1 (en) * 2007-09-13 2009-03-19 Konica Minolta Opto, Inc. Process for producing glass molded product
JP2009196847A (en) * 2008-02-21 2009-09-03 Konica Minolta Opto Inc Method for manufacturing shaped glass

Also Published As

Publication number Publication date
JPS63162539A (en) 1988-07-06

Similar Documents

Publication Publication Date Title
JPS6132263B2 (en)
US6003338A (en) Molding method for optical element
JP4951166B2 (en) Lens blank and lens manufacturing method
JPH01133948A (en) Manufacture of optical element
JPH0372016B2 (en)
JP4223967B2 (en) Manufacturing method of glass optical element
JPH0513096B2 (en)
JP4289716B2 (en) Glass element molding method
JP2501585B2 (en) Optical element molding method
JPS61291427A (en) Molded lens and production thererof
JPH0455134B2 (en)
JPH06122525A (en) Apparatus for forming optical element, forming method and optical element
JP2746454B2 (en) Optical element molding method
JP2718452B2 (en) Glass optical element molding method
JP2746450B2 (en) Optical element molding method
JPS6153126A (en) Molding of pressed lenses with high accuracy
JP4436561B2 (en) Optical element manufacturing method
JPH01176237A (en) Forming of glass lens
JPH0729782B2 (en) Optical element molding method
JPS63103835A (en) Molding of optical glass element
JP3387635B2 (en) Optical element manufacturing method
JPH11322349A (en) Molding of glass product
JP3323556B2 (en) Press molding method for optical glass element
JPS63182223A (en) Method for molding glass lens
JPH01153539A (en) Molding device for optical element