JPH01133948A - Manufacture of optical element - Google Patents

Manufacture of optical element

Info

Publication number
JPH01133948A
JPH01133948A JP29140987A JP29140987A JPH01133948A JP H01133948 A JPH01133948 A JP H01133948A JP 29140987 A JP29140987 A JP 29140987A JP 29140987 A JP29140987 A JP 29140987A JP H01133948 A JPH01133948 A JP H01133948A
Authority
JP
Japan
Prior art keywords
glass
mold
cutting
molding
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29140987A
Other languages
Japanese (ja)
Other versions
JPH0471853B2 (en
Inventor
Isamu Shigyo
勇 執行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29140987A priority Critical patent/JPH01133948A/en
Publication of JPH01133948A publication Critical patent/JPH01133948A/en
Publication of JPH0471853B2 publication Critical patent/JPH0471853B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/10Cutting-off or severing the glass flow with the aid of knives or scissors or non-contacting cutting means, e.g. a gas jet; Construction of the blades used
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/16Gearing or controlling mechanisms specially adapted for glass presses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B21/00Severing glass sheets, tubes or rods while still plastic
    • C03B21/02Severing glass sheets, tubes or rods while still plastic by cutting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/48Convex-concave
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/70Horizontal or inclined press axis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/76Pressing whereby some glass overflows unrestrained beyond the press mould in a direction perpendicular to the press axis
    • C03B2215/77Pressing whereby some glass overflows unrestrained beyond the press mould in a direction perpendicular to the press axis with means to trim off excess material

Abstract

PURPOSE:To obtain an optical element which is free from a surface flow and excellent in dimensional accuracy with good productivity by pressing glass melt with a pair of molding dies to mold it and thereafter cutting it with a cutting member provided on the outer periphery of the dies and separating the molded body from the other part. CONSTITUTION:A pair of molding dies 5, 6 are oppositely arranged so that glass melt 2 made flowed out through the nozzle 1 of a melting kiln is pinched from the orthogonal direction and a cavity is formed by respective molding faces 5a and 6a. This glass melt 2 made flowed out through the nozzle 1 is pressed with molding dies 5, 6 to form a part 21 to be molded and also the state being left to press it is held in a prescribed time and press-transcription due to the molding faces 5a, 6a is performed for both faces of the part 21 to be molted. Then cutting blades 4 provided on the outer periphery of the dies 5, 6 and a cutting ring 7 are successively actuated to cut the part 21 to be molded and this part 21 is separated from the other part and thereby an optical element is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プレス成形による光学素子の製造方法に関し
、より詳細には、プレス成形後において研削及び研摩等
の工程を経ることなしに表面精度及び重量精度の良好な
光学素子又はそのリヒートプレス用として好適するプリ
フォームの製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing an optical element by press molding, and more specifically, to improve surface accuracy without undergoing processes such as grinding and polishing after press molding. The present invention also relates to a method for producing an optical element with good weight accuracy or a preform suitable for reheat pressing thereof.

(従来の技術) 近年、所定の表面精度を有する成形用型内にガラス素材
を収容してプレス成形することにより、研削及び研摩等
の後加工を不要とした高精度の光学素子を成形する方法
が開発されている。
(Prior art) In recent years, a method of molding high-precision optical elements that eliminates the need for post-processing such as grinding and polishing has been developed by housing a glass material in a mold with a predetermined surface accuracy and press-molding it. is being developed.

このプレス成形法には、一般にリヒートプレス法とダイ
レクトプレス法がある。
This press molding method generally includes a reheat press method and a direct press method.

リヒートプレス法ぼ、予め溶融固化したガラス材料の必
要量を切断し、砂ずり等の方法により重量調整を施して
ガラス小塊とし、これを成形用型内に入れ、該ガラス小
塊と成形用型を同時に又は別々にプレス温度まで加熱し
た後、プレス成形して成形用型に形成した光学機能面を
抑圧転写して光学素子を成形する方法である。
In the reheat press method, the necessary amount of glass material that has been melted and solidified in advance is cut, the weight is adjusted by sanding, etc., to form glass pellets, and this is placed in a mold for molding. This is a method of molding an optical element by heating the molds simultaneously or separately to a pressing temperature, and then pressing and transferring the optical functional surface formed on the mold by press molding.

一方、ダイレクトプレス法は、溶融ガラス流出オリフィ
スより流出若しくは押出される溶融ガラス流の必要量を
切断刃により切断し、これを成形用型内に直接落下させ
るか又はシュートによって投入し、しかる後成形用型を
押圧して光学素子を成形する方法である。
On the other hand, in the direct press method, the necessary amount of molten glass flowing out or extruded from a molten glass outflow orifice is cut by a cutting blade, and the cut is directly dropped into a mold or charged into a chute, and then molded. This is a method of molding an optical element by pressing a mold.

又、上記のリヒートプレス法において、切断及び砂ずり
等のような生産性の低い工程を経ずにに記のダイレクト
プレス法における如く、溶融ガラスを成形用型に入れて
プレス成形し、最終製品に近似した形状の予備成形品(
プリフォーl、)を得た上で該プリフォームを最終製品
の形状及び面精度と同じか若しくはそれ以上に精度の高
い光学機能面を有する成形用型に入れてプレス成形を行
なう方法がある。
In addition, in the above-mentioned reheat press method, the molten glass is put into a mold and press-molded, as in the direct press method described above, without going through low-productivity steps such as cutting and sanding, and the final product is produced. A preformed product with a shape similar to (
There is a method in which after obtaining a preform (1), the preform is placed in a mold having an optically functional surface with the same or higher precision than the shape and surface precision of the final product, and press molding is performed.

(94明が解決しようとする問題点) これらの成形方法により得られた光学素子は。(Problems that 1994 Ming tries to solve) Optical elements obtained by these molding methods.

良好な像形成品質が得られるよう所定の面精度及び寸法
精度が要求され、又このため上記のいずれの方法におい
ても最終製品を得るためのプレス成形に供給されるガラ
ス材料は十分に重量調整がなされていなければならない
A certain level of surface accuracy and dimensional accuracy are required to obtain good image formation quality, and for this reason, in any of the above methods, the glass material supplied for press forming to obtain the final product must be sufficiently weight-adjusted. must be done.

しかしながら、上記のガラス小塊を用いてプレス成形す
る方法では、ガラス小塊のit調整を切断及び砂ずり等
により行なうため、成形品の表面に砂目が残留したり、
プレス成形前にガラス小塊を加熱する際、ガラスと加熱
用受皿との融着を防止するために塗布した離型済がプレ
ス時に成形品の表面に食い込んで該成形品の表面精度が
著しく悪化するという問題がある。
However, in the above-mentioned method of press molding using small glass lumps, the IT adjustment of the glass small lumps is performed by cutting, sanding, etc., so that grains may remain on the surface of the molded product.
When heating a small glass lump before press molding, the mold release agent applied to prevent the glass and the heating tray from fusing together bites into the surface of the molded product during pressing, significantly deteriorating the surface precision of the molded product. There is a problem with doing so.

又、直接溶融ガラスを用いてプレス成形する方法では、
切断刃による切断の際、成形品にシャーマークと称せら
れる切断痕が生じ、成形品の面精度が劣化するという問
題がある。又、このプレス成形法においては、成形品の
重量調整を溶融ガラス流の切断によって行なうため、こ
の溶融ガラス流の温度変化や切断タイミング或いはガラ
ス流の脈動等により成形品に重量変動が生じ、所定の寸
法精度が得られないという問題点もある。
In addition, in the method of press forming directly using molten glass,
When cutting with a cutting blade, cutting marks called shear marks are generated on the molded product, which causes a problem in that the surface precision of the molded product deteriorates. In addition, in this press molding method, the weight of the molded product is adjusted by cutting the molten glass flow, so weight fluctuations occur in the molded product due to temperature changes in the molten glass flow, cutting timing, pulsation of the glass flow, etc. There is also the problem that dimensional accuracy cannot be obtained.

なお、特にシャーマークの発生を防1h したプレス成
形法としては、特公昭41 9190−1公報或いは特
開昭61−132523号公報に記載されたものがある
In addition, as a press molding method that particularly prevents the occurrence of shear marks for 1 hour, there is a method described in Japanese Patent Publication No. 41-9190-1 or Japanese Patent Application Laid-open No. 132523-1983.

特公昭41−9190号公報に記載された成形方法では
、成形用型を溶融ガラスの流下方向に直角の方向に押圧
して型空所内に溶融ガラスを充填させてプレス成形する
方法であるが、成形用型の抑圧時に型空所内の余剰ガラ
スが成形用型とこれに対向するアンビルとの間から流出
するという現象が生じる。この余剰ガラスは成形用型の
抑圧動作が進行するに伴い、その流出抵抗を増大すると
ともに成形用型により冷却されて粘性を増し、これが成
形用型とこれに対向するアノビル間で完全に切取られな
いまま冷却されて成形品の外周にはみ出し部分を形成す
る。このため、プレス成形後においてこのはみ出し部分
の破断及び破断面を仕上げる作業が必要となる。又、溶
融ガラス流の大きさが変動することにより」;記した成
形品とはみ出し部分との間のガラス厚さが変動して成形
品の厚さにバラツキが生じてしまい1重!t31整が高
精度に行なえないという問題もある。
In the molding method described in Japanese Patent Publication No. 41-9190, press molding is performed by pressing a mold in a direction perpendicular to the direction of flow of molten glass to fill the mold cavity with molten glass. When the mold is compressed, a phenomenon occurs in which excess glass in the mold cavity flows out from between the mold and the anvil facing it. As the suppression action of the mold progresses, this excess glass increases its outflow resistance and is cooled by the mold, increasing its viscosity, and is completely cut off between the mold and the opposing anobile. The molded product is cooled without being completely wet, and a protruding portion is formed on the outer periphery of the molded product. Therefore, after press forming, it is necessary to break the protruding portion and finish the broken surface. Also, due to variations in the size of the molten glass flow, the thickness of the glass between the molded product and the protruding portion as described changes, resulting in variations in the thickness of the molded product. There is also the problem that the t31 adjustment cannot be performed with high precision.

−・方、特開昭61−132523号公報に記載された
成形方法では、成形品の精度は流動するガラス体を打抜
く前の該ガラス体の大きさ等に依存しており高精度の寸
法形状を有するロッド又はガラスシートが必要となる。
In the molding method described in JP-A No. 61-132523, the accuracy of the molded product depends on the size of the flowing glass body before punching it, and high precision dimensions are required. A shaped rod or glass sheet is required.

本発明は上述のような事情に鑑みて成されたもので、プ
レス成形後の研削及び研摩等の工程を一切必要とせず、
しかもシャーマーク等の表面欠陥がなく寸法精度及び重
量精度が良好な光学素子或いはこの光学素子のプレス成
形用プリフォームとして重量調整を高精度に成し得るプ
レス成形法を提供することを目的とする。
The present invention was made in view of the above-mentioned circumstances, and does not require any steps such as grinding and polishing after press molding.
Moreover, it is an object of the present invention to provide an optical element that is free from surface defects such as shear marks and has good dimensional accuracy and weight accuracy, and a press molding method that allows for highly accurate weight adjustment as a preform for press molding of this optical element. .

(問題点を解決するための手段) 上述した従来の問題点を解決するために1本発明の光学
素子の製造方法は、ガラス流体を狭むように一対の成形
用型を対向配置するとともに該成形用型のキャビティを
設定し、前記ガラス流体を前記成形用型で互いに押圧し
て被成形部を形成した後、前記成形用型の外周に設けた
切断部材により前記被成形部とその他の部分とを切断分
離することを特徴とする。
(Means for Solving the Problems) In order to solve the above-mentioned conventional problems, a method for manufacturing an optical element according to the present invention includes disposing a pair of molds facing each other so as to narrow the glass fluid, and After setting a mold cavity and pressing the glass fluid against each other with the molding mold to form a molded part, the molded part and other parts are separated by a cutting member provided on the outer periphery of the molding mold. It is characterized by cutting and separating.

(作 用) このように構成された光学素子の製造方法において、使
用される1対の成形用型を構成する各々の型部材を第1
の型部材及び第2の型部材とすると、これら型部材の各
成形面はガラス流体を介して互いに対向する如く配置さ
れる。このような成形用型の配置状況としては、ガラス
流体が例えば溶融炉からノズルを介して流出する溶融ガ
ラスである場合、該溶融ガラスの流下方向に対して略直
角方向に第1の型部材と第2の型部材の各成形面が対向
するように配置することができる。又、ガラス流体が既
に成形加工されたものを再加熱することにより流動性を
有するロッド或いはシート状の場合、上記のような配置
状況のほか、第1の型部材と第2の型部材が各々上下方
向に対向するように配置することも可能である。
(Function) In the method for manufacturing an optical element configured as described above, each mold member constituting the pair of molding molds used is
and a second mold member, the respective molding surfaces of these mold members are arranged so as to face each other via the glass fluid. When the glass fluid is, for example, molten glass flowing out from a melting furnace through a nozzle, the arrangement of such molding molds is such that the first mold member and The molding surfaces of the second mold member can be arranged to face each other. In addition, in the case where the glass fluid is in the form of a rod or sheet that has fluidity by reheating an already molded product, in addition to the arrangement described above, the first mold member and the second mold member may each be It is also possible to arrange them so as to face each other in the vertical direction.

そこで、例えば流下する溶融ガラス流体に対して、本発
明における成形用型を構成すると、このガラス流体の流
れの方向に対して略直角方向から各々の型部材が互いに
押圧される構成となり、流下するガラス流体に対して各
々の型部材の押圧のタイミングを調整することにより、
ガラス流体の先端部即ち切断跡を避けて被成形部を形成
することができる。
Therefore, if the mold according to the present invention is configured for, for example, a flowing molten glass fluid, each mold member will be pressed against each other from a direction substantially perpendicular to the direction of flow of the glass fluid, and By adjusting the timing of pressing each mold member against the glass fluid,
The molded part can be formed while avoiding the tip of the glass fluid, that is, the cutting trace.

被成形部の肉厚は予め設定された成形用型のキャビティ
により決まる。このキャビティは、対向する各々の型部
材が最も接近したときに有する夫々の成形面間隔により
設定することができる。
The wall thickness of the part to be molded is determined by the preset cavity of the mold. This cavity can be set by the distance between the molding surfaces of the opposing mold members when they are closest to each other.

各々の型部材の押圧時に生じる余剰ガラスは成形面の外
方に自由に流出し、成形品の肉厚はガラス流の大きさ等
に影響されることなく上記成形用型のキャビティにより
決まる。
Excess glass generated when pressing each mold member freely flows out of the molding surface, and the thickness of the molded product is determined by the cavity of the mold without being affected by the size of the glass flow.

そして、ガラス流体を各型部材で押圧し被成形部を形成
した後、成形用型の外周に設けられた切断部材により被
成形部とその他の余剰部分とを切断分離すると、被成形
部の外周形状が形成される。かくして得られた成形品は
上記のようにガラス流体の切断跡を含まない部分から形
成されたものであるからシャーマーク等の表面欠陥がな
く、予め設定されたキャビティ及び切断部材による被成
形部の外周形成により形状精度及び重量精度の高い成形
品が得られる。又、この成形品のtiat@面は各型部
材の成形面が転写されることにより形成されるから、各
々の成形面の表面性状を所望する成形品の表面性状と同
等かそれ以上に高精度なものに仕上げてプレス成形する
ことにより、高精度表面を有する成形品が得られる。
After pressing the glass fluid with each mold member to form a molded part, the molded part and other surplus parts are cut and separated by a cutting member provided on the outer periphery of the mold, and the outer periphery of the molded part is A shape is formed. As mentioned above, the molded product thus obtained is formed from a portion that does not contain cut marks of the glass fluid, so there are no surface defects such as shear marks, and the part to be molded is cut by the preset cavity and cutting member. By forming the outer periphery, a molded product with high shape accuracy and weight accuracy can be obtained. In addition, since the tiat@ surface of this molded product is formed by transferring the molding surface of each mold member, the surface texture of each molding surface can be made with high precision equal to or higher than the surface texture of the desired molded product. By finishing the material and press-molding it, a molded product with a high-precision surface can be obtained.

なお1本発明におけるガラス流体の粘度は、lO〜10
’ポアズが好適する。このガラス粘度が10ポアズより
低くなるとガラス流は糸状になって成形用型のキャビテ
ィ内で必要とされるガラス容量が不足してしまう、一方
、ガラス粘度が10’ ポアズよりも高くなると、プレ
ス成形後のガラスの切断が困難となる。なお、これらの
ガラス流体の粘度は103〜105ポアズが最適する。
Note that the viscosity of the glass fluid in the present invention is lO~10
'Poise is preferred. When the glass viscosity is lower than 10 poise, the glass flow becomes filamentous and the required glass capacity within the mold cavity becomes insufficient. It becomes difficult to cut the glass later. Note that the optimum viscosity of these glass fluids is 103 to 105 poise.

又、本発明における軟化ガラス流体としては。Also, as the softened glass fluid in the present invention.

上述のように、溶融ガラスのほか、予め成形加工された
ガラスロッド或いはシート状のものを再加熱することに
より得たものでもよい、なお、これらのガラス流体の粘
度は103〜105ポアズが最適する。
As mentioned above, in addition to molten glass, glass fluids obtained by reheating preformed glass rods or sheets may also be used.The optimum viscosity of these glass fluids is 103 to 105 poise. .

又、成形用型の温度は、ガラス粘度で1OLIポアズに
相当する温度からガラス転移点(以下、 tgと称する
。ガラス粘度で約1013に相当する。)よりも100
℃低い温度(Tg−100℃)の範囲内に設定する必要
がある。該型温が108ポアズに相当する温度を超える
とプレス成形後から切断までの間に成形された被成形部
におけるガラス表面の硬度変化が遅く、被成形部の外周
を切断して形成する際、所定の形状精度及び表面精度が
得られなくなる。又、ガラスと型の成形面が融着を生じ
易くなり、好ましくない、一方、型温かTg−100℃
より低いと被成形部の外周を切断する際。
In addition, the temperature of the molding die ranges from a temperature corresponding to 1 OLI poise in terms of glass viscosity to 100° below the glass transition point (hereinafter referred to as tg, which corresponds to approximately 1013 in terms of glass viscosity).
It is necessary to set the temperature within the range of 100°C (Tg - 100°C). If the mold temperature exceeds a temperature corresponding to 108 poise, the hardness of the glass surface in the molded part after press molding until cutting is slow, and when the outer periphery of the molded part is cut and formed, Predetermined shape accuracy and surface accuracy cannot be obtained. In addition, the molding surfaces of the glass and the mold tend to be fused, which is undesirable.
When cutting the outer periphery of the part to be formed.

切断が困難になるばかりか切断部分からヒビ割れを生じ
るおそれがある。
Not only will it be difficult to cut, but there is a risk that cracks will occur at the cut portion.

切断部材の温度は、ガラスの温度変化の影響を成形用型
におけると同様にするため、成形用型の型温と同等にす
るのが好ましい。
The temperature of the cutting member is preferably equal to the mold temperature of the mold, so that the influence of temperature changes on the glass is similar to that of the mold.

さらに成形品の取出しの際の粘IPiは、この成形品を
リヒートプレス用のプリフォームとして用いる場合、1
08ポアズ以りの粘度になるまで冷却すれば十分使用て
きるが、そのまま光学レンズ等に用いる場合、成形用型
内で圧力を加えたまま冷却し、10口5ポアズ程度の粘
度になったところで取出すようにすれば形状精度及び表
面精度の良好な光学素子として使用することができる。
Furthermore, the viscosity IPi when taking out the molded product is 1 when the molded product is used as a preform for reheat press.
It can be used sufficiently if it is cooled to a viscosity of 0.8 poise or higher, but if it is used as is for optical lenses etc., it must be cooled in a mold with pressure applied until it reaches a viscosity of about 5 poise. If taken out, it can be used as an optical element with good shape accuracy and surface accuracy.

“なお、本発明におけるプレス成形及びその後の切断処
理等は、成形用型や切断部材の寿命を保持するため、非
酸化雰囲気中で行なうことが望ましい。
"In addition, in order to maintain the life of the mold and cutting member, it is desirable that the press molding and subsequent cutting treatment in the present invention be performed in a non-oxidizing atmosphere.

(実施例) 以下、本発明の実施例について図面を参照しながら説明
する。
(Example) Examples of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例に用いられるプレス成形装置の
概略断面図である。
FIG. 1 is a schematic sectional view of a press molding apparatus used in an embodiment of the present invention.

第1図において、1は不図示の溶融炉から溶融ガラスを
流出するノズルであり、2はこのノズルから流出したガ
ラス流体であり、3はガラス流体2の先端に生じた切断
跡である。4はノズルlの下方に設けられ、不図示の駆
動装置により開閉動作を行なうことによりガラス流体2
を切断する切断刃である。この切断刃4が作動してガラ
ス流体2が途中で切断される゛ことにより切断跡3が発
生する。
In FIG. 1, 1 is a nozzle through which molten glass flows out from a melting furnace (not shown), 2 is a glass fluid flowing out from this nozzle, and 3 is a cut mark produced at the tip of the glass fluid 2. 4 is provided below the nozzle l, and the glass fluid 2 is opened and closed by a drive device (not shown).
It is a cutting blade that cuts. When the cutting blade 4 operates and the glass fluid 2 is cut midway, a cutting mark 3 is generated.

本実施例に示すプレス成形装置は、ガラス流体2が/ズ
ルlから流下する形式のものに対して構成されたもので
あり、従って1対の成形用型を構成する第1の型部材5
と第2の型部材6とがガラス流体2を略直角方向から狭
むように互いに対向した状態で配置しである。各々の型
部材5.6は、対向する夫々の面に鏡面加工が施された
成形面5a、6aを有している。
The press molding apparatus shown in this embodiment is configured for a type in which the glass fluid 2 flows down from a /l, and therefore the first mold member 5 constituting a pair of molds is
and the second mold member 6 are arranged to face each other so as to narrow the glass fluid 2 from a substantially right angle direction. Each mold member 5.6 has molding surfaces 5a, 6a which are mirror-finished on opposing surfaces.

第1の型部材5はスライダー14に保持され、このスラ
イダー14はスライドシャフト18に摺動可使に支持さ
れている。16はスライダー14を駆動するシリンダー
であり、このシリンダー16の作動によりスライダー1
4はスライドシャフト18の摺動方向に移動して第1の
型部材5の抑圧動作が行なわれる。
The first mold member 5 is held by a slider 14, which is slidably supported on a slide shaft 18. 16 is a cylinder that drives the slider 14, and the operation of this cylinder 16 causes the slider 1 to move.
4 moves in the sliding direction of the slide shaft 18, and the first mold member 5 is suppressed.

一方、第2の型部材6はアダプター12を介してシリン
ダー13に連結され、このシリンダー13の作動により
第2の型部材6の抑圧動作が行なわれる。
On the other hand, the second mold member 6 is connected to a cylinder 13 via an adapter 12, and the operation of the cylinder 13 causes the second mold member 6 to be suppressed.

これら型部材5.6の各成形面5a 、6aにより形成
されるキャビティは、各シリンダー13゜16のストロ
ークにより設定することができする。
The cavity formed by each molding surface 5a, 6a of these mold parts 5.6 can be set by the stroke of each cylinder 13.16.

又、第2の型部材6の外周には、第1の型部材5の側に
切断刃が形成された切断リング7が設けられ、この切断
リング7はスライドシャツ)18に摺動可使に支持され
たスライダー15に連結されている。さらに、スライダ
ー15はシリンダー17に連結され、このシリンダー1
7の作動により、切断リング7は第2の型部材6とは独
立した動作で該第2の型部材6の外周を摺動することが
できる。
Further, a cutting ring 7 having a cutting blade formed on the side of the first mold member 5 is provided on the outer periphery of the second mold member 6, and this cutting ring 7 is slidable on the slide shirt 18. It is connected to a supported slider 15. Further, the slider 15 is connected to a cylinder 17, and this cylinder 1
7 allows the cutting ring 7 to slide around the outer periphery of the second mold part 6 in a movement independent of the second mold part 6.

又、各型部材5.6の内部にはヒーター8,9が設けら
れている。to、iiは夫々のヒーターに接続された導
線である。19は本装置全体のベースであり、シリンダ
ー13.16.17及びスライドシャフト18を堅固に
支持している。
Furthermore, heaters 8 and 9 are provided inside each mold member 5.6. to and ii are conducting wires connected to each heater. 19 is the base of the entire device, which firmly supports the cylinders 13, 16, 17 and the slide shaft 18.

次に本装置の動作について第2〜7因及び第8図を用い
て説明する。
Next, the operation of this device will be explained using factors 2 to 7 and FIG. 8.

第2〜7図は、本装置の各工程順における作動状態を示
す要部断面図であり、第8図は、本装置における作動部
、即ち第1の型部材5、第2の型部材6、切断刃4及び
切断リング7の各部作動タイミングを示すタイミングチ
ャートであり、横軸は時間Tを示す、これら作動部の作
動タイミングは、各作動部を接続した不図示のコントロ
ーラーにより制御することができる。
2 to 7 are main part sectional views showing the operating state of this device in each process order, and FIG. , is a timing chart showing the operation timing of each part of the cutting blade 4 and the cutting ring 7, and the horizontal axis shows time T. The operation timing of these operating parts can be controlled by a controller (not shown) connected to each operating part. can.

第2図はプレス成形直曲の状態であり、ノズルlからは
ガラス流体2が流下している。このガラス流体2の先端
、即ち切断跡3が対向する各成形面5a、6aより下方
に流下した時点で、第1の型部材5及び第2の型部材6
の押圧動作を開始する。第8!4においてT=0はこの
両型部材5,6の作動開始時期を示す、これら型部材5
,6の作動開始時期は双方において同時でよいが、型部
材5.6のガラス流体2に対する抑圧動作終了時期T2
は双方において同時か多くとも±0.055の誤差に収
めるのが好ましい、T7は型部材5.6のガラス流体2
に対する抑圧動作開始時期を示す、そして、型部材5.
6は、第3図に示すように、ガラス流体2の被成形部2
1を押圧したままの状態を所定時間保ち、この間被成形
部21の両表面に対して夫々の成形面5a、6aによる
押圧転写が行なわれる。
FIG. 2 shows the press molding in a straight bent state, and the glass fluid 2 is flowing down from the nozzle l. At the point when the tip of the glass fluid 2, that is, the cutting mark 3 flows downward from each opposing molding surface 5a, 6a, the first mold member 5 and the second mold member 6
Starts the pressing operation. In No. 8!4, T=0 indicates the start time of the operation of both mold members 5 and 6.
, 6 may be started at the same time on both sides, but the timing at which the suppression operation of the mold member 5.6 for the glass fluid 2 ends is T2.
It is preferable that T7 be the same or within an error of ±0.055 at most on both sides. T7 is the glass fluid 2 of the mold member 5.6
It indicates the start time of the suppressing operation for the mold member 5.
6 is a molded part 2 of the glass fluid 2, as shown in FIG.
1 is kept pressed for a predetermined period of time, and during this time, pressure transfer is performed on both surfaces of the molded portion 21 by the respective molding surfaces 5a and 6a.

切断刃4の作動開始時期及び切断開始時期は。When does the cutting blade 4 start operating and when does it start cutting?

夫々型部材5,6の作動開始時期T=O及び押圧開始時
期T2と同時であってよいが、この切断刃4によるガラ
ス流体2の切断完了時期T4は型部材5.6がガラス流
体2を十分保持した後でなげればならない、好ましくは
、切断刃4の作動開始時期T=Oから切断開始時期T4
までに要する時間を0.3〜0.4sとする。その後、
切断刃4は元の状yEに復帰せしめられる。第8図には
、このνJ断刃の復帰完了時期をT5として示しである
The operation start time T=O and the pressing start time T2 of the mold members 5 and 6 may be the same, respectively, but the time T4 when the cutting blade 4 finishes cutting the glass fluid 2 is the same as the time when the mold members 5 and 6 cut the glass fluid 2. It must be released after being held sufficiently, preferably from the operation start time T=O of the cutting blade 4 to the cutting start time T4.
The time required for this is 0.3 to 0.4 seconds. after that,
The cutting blade 4 is returned to its original state yE. In FIG. 8, the return completion time of the νJ cutting blade is indicated as T5.

切断リング7の作動開始時期T+  (第4図)は、切
断刃4の切断開始時期T2より早い時期としてよいが、
第5図に示すように、少なくともしJ断すング7による
被成形部21の外周切断終了前には切断刃4によるガラ
ス流体2の切断が終了した状態であるのが望ましい、こ
うすることにより、切断リング7の切断動作が完Tした
時点においてガラス流体2は切断刃4により既に切り離
された状態にあり、切断リング7で切取られた切断片2
2は容易に第1の型部材5の外部に移動することができ
る。かくして、切断リング7は第2の型部材6の外周に
沿ってM!j動しつつ被成形部21の外周を切断し、該
被成形部21の外周形状を形成する。その後、切断リン
グ7は切断終了時の状態を維持し、被成形部21の外周
を保持したままその温度差により被成形部21を外周か
ら冷却し、該被成形部21の外周付近は粘度を徐々に増
してその形状が定着する。一方、型部材5.6による抑
圧後、類型部材と被成形部21の温度差により該被成形
部21は両表面から冷却されて徐々に粘度を増し、表面
形状が安定化する。
The operation start time T+ (FIG. 4) of the cutting ring 7 may be earlier than the cutting start time T2 of the cutting blade 4, but
As shown in FIG. 5, it is desirable that cutting of the glass fluid 2 by the cutting blade 4 is completed at least before the cutting edge 7 finishes cutting the outer periphery of the part 21 to be formed. When the cutting operation of the cutting ring 7 is completed T, the glass fluid 2 has already been cut off by the cutting blade 4, and the cut piece 2 cut by the cutting ring 7 is
2 can be easily moved to the outside of the first mold member 5. Thus, the cutting ring 7 extends M! along the outer circumference of the second mold member 6. The outer periphery of the part 21 to be formed is cut while moving in the same direction, thereby forming the shape of the outer periphery of the part 21 to be formed. Thereafter, the cutting ring 7 maintains the state at the end of cutting, and cools the molded part 21 from the outer periphery by the temperature difference while holding the outer periphery of the molded part 21, and the viscosity near the outer periphery of the molded part 21 is reduced. It gradually increases and its shape becomes established. On the other hand, after being suppressed by the mold member 5.6, the molded part 21 is cooled from both surfaces due to the temperature difference between the molded member and the molded part 21, gradually increasing its viscosity and stabilizing its surface shape.

次いで所定時間この状態を維持した後、まず、第6図に
示すように、第1の型部材5を元の状態に復帰する。こ
の作動開始時期をT6とし、作動終了時期をT7とする
と、この時期においては被成形部21は切断リング7に
より保持された状態にあり、自然に落下することがない
Next, after maintaining this state for a predetermined time, first, as shown in FIG. 6, the first mold member 5 is returned to its original state. Assuming that the operation start time is T6 and the operation end time is T7, at this time the part to be formed 21 is held by the cutting ring 7 and will not fall off naturally.

切断リング7の元の状態に作動する開始時期は第1の型
部材5の復帰終了時期TIと同時かその終了後とし、切
断リング7の復帰終了時期T8と同時に、被成形部即ち
成形品23を取出す、これは1周知の吸着ハンド等を用
いて行なうことができる。そして、この取出し作業の終
゛r後、第2の型部材6を元の状態に復帰せしめる。第
8図には、この第2の型部材6の復帰開始時期をT9と
し、復帰終了時期をTIOとしである。
The cutting ring 7 starts operating to its original state at the same time as or after the return end time TI of the first mold member 5, and at the same time as the return end time T8 of the cutting ring 7, the part to be formed, that is, the molded product 23 This can be done using a well-known suction hand or the like. After this removal operation is completed, the second mold member 6 is returned to its original state. In FIG. 8, the return start time of the second mold member 6 is shown as T9, and the return end time is shown as TIO.

なお、第7図は切断リング7を復帰した状態を示しであ
るが、この時成形品23は切断リング7の保持を解除さ
れて自然落下する。
Note that FIG. 7 shows a state in which the cutting ring 7 is returned to its original position, and at this time the molded product 23 is released from the holding of the cutting ring 7 and falls naturally.

以上のような動作において、成形用型5.6によるプレ
ス成形は、ガラス流体2の先端即ち切断跡3を除いた部
分に対して行なわれるため、得られた成形品23にシャ
ーマーク等の表面欠陥が生じない。
In the above-described operation, press molding by the molding die 5.6 is performed on the tip of the glass fluid 2, that is, the part excluding the cut marks 3, so that the resulting molded product 23 has surface marks such as shear marks. No defects occur.

又、成形用型5.6により形成されるキャビティ容量は
、各シリンダー13.16のストロークにより設定する
ことができる。即ち、設定されたシリンダー13.16
のストロークによって、抑圧時における各成形部材5,
6間の最短接近幅が決まり、これが成形用型5.6の各
成形面間隔を規制する。従って、成形品23の肉厚はこ
の成形面間隔により決定されるものであるから、シリン
ダー13.16のストロークを製造すべき成形品23の
肉厚に応じて設定することにより常に所定の肉厚を有す
る成形品が得られる。又、成形品23の表面形状及び性
状は各成形部材5.6の夫々の成形部5a、6aにより
決まる。さらに。
Furthermore, the volume of the cavity formed by the mold 5.6 can be set by the stroke of each cylinder 13.16. i.e. set cylinder 13.16
By the stroke of each molded member 5,
The shortest approach width between the molds 6 and 6 is determined, and this regulates the distance between each molding surface of the mold 5.6. Therefore, since the wall thickness of the molded product 23 is determined by this molding surface interval, by setting the stroke of the cylinder 13, 16 according to the wall thickness of the molded product 23 to be manufactured, a predetermined wall thickness can always be achieved. A molded article having the following properties is obtained. Further, the surface shape and properties of the molded article 23 are determined by the respective molded portions 5a, 6a of each molded member 5.6. moreover.

成形品23の外周形状は切断リング7の内周形状により
決まり、該切断リング7の切断動作と同時に成形品21
の外周が形成される。
The outer peripheral shape of the molded product 23 is determined by the inner peripheral shape of the cutting ring 7, and the molded product 23 is cut simultaneously with the cutting operation of the cutting ring 7.
The outer periphery of is formed.

なお、以上説明したプレス成形装置は、成形用素材たる
ガラス流体が下方に流下するノズルに対応して左右横方
向から押圧動作を行なう成形用型が用いであるが、本発
明はこのような流下形式及び成形用型に限定されるもの
ではなく、例えば横方向或いは傾斜方向に供給されるガ
ラス流体に対して構成される成形用型を用いることもで
きる。
Note that the press molding apparatus described above uses a mold that performs pressing operations from the left and right directions in response to a nozzle through which glass fluid, which is a molding material, flows downward. The type and mold are not limited; for example, molds configured for transversely or obliquely supplied glass fluid may also be used.

次に、上述のようなプレス成形法を用いた具体的実施例
について第1図〜第8図を参照しながら説明する。
Next, a specific example using the press molding method as described above will be described with reference to FIGS. 1 to 8.

(実施例1) 通常カメラレンズ等に使用される光学ガラスSF8 (
Tg=443℃、比重4.22)を用いて、外径20+
am、中心肉厚2.7■、コバ厚1.29m層、曲率R
+  =20+*、R2=40mm、ガラス容量0、[
138cc、重陽2.68gの凸メニスカス形状のリヒ
ートプレス用プリフォームの成形を行なった。
(Example 1) Optical glass SF8 (
Tg=443℃, specific gravity 4.22), outer diameter 20+
am, center wall thickness 2.7cm, edge thickness 1.29m layer, curvature R
+ =20+*, R2=40mm, glass capacity 0, [
A 138 cc, 2.68 g convex meniscus preform for reheat press was molded.

型部材5,6は5US420Jから形成し、夫々の成形
面5a、6aは光学鏡面に研磨しである。この型部材5
.6の型温か400℃(SF8のTg=443℃より4
3℃低い温度)となるようヒーター8,9で加熱する。
The mold members 5 and 6 are made of 5US420J, and the respective molding surfaces 5a and 6a are polished to optical mirror surfaces. This mold member 5
.. Mold temperature of 6 is 400℃ (Tg of SF8 is 443℃)
Heat with heaters 8 and 9 so that the temperature is 3°C lower.

又、シリンダー13.16のストロークを各々の型部材
5.6の押圧動作時における最大接近幅が2.7■とな
るように調整し、所望の肉厚が得られるようにしである
Further, the stroke of the cylinder 13.16 is adjusted so that the maximum width of approach during the pressing operation of each mold member 5.6 is 2.7 cm, so that the desired wall thickness can be obtained.

まず、不図示の溶融炉で溶融したガラスをガラス流体2
の粘度が約1046ボアズ(815°±5℃)となるよ
うに調整し、ノズルlより流出させた。次に、第2図及
び第3図に示すように、ガラス流体2の先端の切断跡3
が型部材5,6の各成形面5a、6aより下方に流下し
た時点でシリンダー13.16を作動させ、これと同時
に切断刃4も作動させた。このシリンダー13.16の
作動圧力は夫々120kg、300kgであり1作動速
度は双方とも200mm/ sとしである。
First, glass melted in a melting furnace (not shown) is heated to a glass fluid 2.
The viscosity was adjusted to about 1046 boads (815°±5°C), and the mixture was discharged from nozzle l. Next, as shown in FIGS. 2 and 3, there is a cut mark 3 at the tip of the glass fluid 2.
When the molding surfaces 5a and 6a of the mold members 5 and 6 flowed downward, the cylinders 13 and 16 were actuated, and at the same time, the cutting blade 4 was also actuated. The operating pressures of the cylinders 13 and 16 are 120 kg and 300 kg, respectively, and the operating speeds of both cylinders are 200 mm/s.

そして、TiS3図に示すように、型部材5.6のガラ
ス流体2に対する押圧動作が開始された後、切断リング
7を作動させる。なお、この切断リング7はSK3より
形成され、予め型部材5,6の抑圧動作が完了した時点
から切断リング7による切断が完了するまでの時間を0
,2sとなるよう不図示のコントローラーで各シリンダ
ー13゜16.17の作動タイミングを調整しておく。
Then, as shown in Figure TiS3, after the pressing operation of the mold member 5.6 against the glass fluid 2 is started, the cutting ring 7 is activated. The cutting ring 7 is made of SK3, and the time from the time when the pressing operation of the mold members 5 and 6 is completed until the cutting by the cutting ring 7 is completed is 0.
, 2s by adjusting the operating timing of each cylinder 13° 16.17 using a controller (not shown).

この切断リング7を駆動するシリンダー17の作動圧力
は100kgであり、作動速度は2005m/sとしで
ある。又、第5図に示すように、切断リング7による切
断動作が完了した時点では、切断刃4によるガラス流2
の切断も完了する。さらに同図に示すように、切断リン
グ7の切断動作により、被成形部21の外周形状が形成
されると同時にこの被成形部21と切断片22とが分離
される。
The operating pressure of the cylinder 17 that drives this cutting ring 7 is 100 kg, and the operating speed is 2005 m/s. Further, as shown in FIG. 5, when the cutting operation by the cutting ring 7 is completed, the glass flow 2 by the cutting blade 4 is
The cutting is also completed. Further, as shown in the figure, the cutting operation of the cutting ring 7 forms the outer peripheral shape of the part to be formed 21 and at the same time separates the part to be formed 21 and the cut piece 22.

なお、第5図においては、第1の型部材5と切断リング
7はかみ合った状態になっているが、双方が接触するだ
けの状態でも切断状況は良好であった。
In FIG. 5, the first mold member 5 and the cutting ring 7 are in an engaged state, but the cutting condition was good even when the two were only in contact with each other.

次に、シリンター13.16に圧力を加えたまま、成形
品23の温度が型部材5,6の温度(400℃)と略等
しくなるまで約lθ秒間第5図の状態を保持し、しかる
後、第6図に示すように、シリンダー16のみを作動さ
せ、第1の型部材5を成形品23から引き離した。この
時、成形品23は切断リング7に保持された状態を保ち
勝手に落下しない0次いで、シリンダー17を作動させ
て切断リング7を引き戻すと同時に、不図示のハンドリ
ング装置により成形品23を取り出し、シリンダー13
を作動させて第1の型部材6を元の位置に戻す、そして
、切断片22を不図示の切断片排除装置により取り除く
Next, while applying pressure to the cylinders 13 and 16, the state shown in FIG. As shown in FIG. 6, only the cylinder 16 was operated and the first mold member 5 was separated from the molded product 23. At this time, the molded product 23 remains held in the cutting ring 7 so that it does not fall off by itself.Next, the cylinder 17 is activated to pull back the cutting ring 7, and at the same time, the molded product 23 is taken out by a handling device (not shown). cylinder 13
is operated to return the first mold member 6 to its original position, and the cut piece 22 is removed by a cut piece removing device (not shown).

かくして、この実施例により得られた成形品23は、所
望成形品に対して外径精度で±0.0005層1、中心
肉厚で±0.01諺層、重量で0.02g (±0.7
%)以内のバラツキに収まり、シャーマークはもとより
イj害な表面欠陥は生じておらず、又ヒケも各型部材5
,6の形状に対して最大で1101L以内に収るもので
あり、リヒートプレス用プリフォームとしてだけではな
く、あまり精度を要求されない光学レンズとしてト分使
用できるものであった。
Thus, the molded product 23 obtained in this example has an outer diameter accuracy of ±0.0005 layer 1, a center wall thickness of ±0.01 layer, and a weight of 0.02 g (±0 .7
%), there were no shear marks or other harmful surface defects, and sink marks were within 5% of each mold member.
, 6, and could be used not only as a preform for reheat press but also as an optical lens that does not require much precision.

第9図は1本実施例における第1の型部材5゜:jS2
の型部材6及び被成形材料であるガラスの温度の時間的
変化を示すグラフである。なお、この説明にあたり、第
8図の時間Tが用いである。
FIG. 9 shows the first mold member 5°:jS2 in this embodiment.
3 is a graph showing temporal changes in temperature of the mold member 6 and the glass which is the material to be molded. Incidentally, in this explanation, the time T shown in FIG. 8 is used.

当初(第8図においてT=O)、第1及び第2の型部材
5.6は、ガラス材料のガラス転移点Tg(SF8のT
g=443℃)より43℃低い400℃に調整された。
Initially (T=O in FIG. 8), the first and second mold members 5.6 are set at the glass transition point Tg of the glass material (T of SF8).
g = 443°C) was adjusted to 400°C, which is 43°C lower.

又、第2図に示すノズルエから流化するガラス流体2の
粘度は約IQ4.6ポアズ(815°±5℃)となるよ
うに調整され。
Further, the viscosity of the glass fluid 2 flowing from the nozzle shown in FIG. 2 is adjusted to approximately IQ 4.6 poise (815°±5° C.).

た。Ta.

上記型部材5.6の抑圧開始時期T2から押圧終了時期
T6までの成形期間(約10秒間)において、被成形部
21のガラスは、型部材5,6の温度差により急激に冷
却され、粘度は1046ボアズから10目5ポアズ以上
となる。A実施例においては、型部材5.6は抑圧終了
時まで400℃に保持されるよう夫々ヒーター8,9に
より加熱され、この時成形品23のガラス温度はこの型
部材5.6と略同温となる。
During the molding period (approximately 10 seconds) from the pressing start time T2 of the mold member 5.6 to the pressing end time T6, the glass in the molded part 21 is rapidly cooled due to the temperature difference between the mold members 5 and 6, and the viscosity is 1046 boaz to 10th 5 poise or more. In Example A, the mold member 5.6 is heated by heaters 8 and 9, respectively, so as to be maintained at 400° C. until the end of the compression, and at this time the glass temperature of the molded product 23 is approximately the same as that of the mold member 5.6. It becomes warm.

(実施例2) この実施例においては、光学ガラスF8(Tg=445
℃、比重3.36)の溶融ガラスを用い、実施例1と同
様の方法で外径6璽■、中心肉厚4■、コバ厚3.08
m諺、曲率がR1=R2=10m腸、ガラス容量0.1
OOcc 、重量337mgの両凸形状のリヒートプレ
ス用プリフォームの成形を行なった。
(Example 2) In this example, optical glass F8 (Tg=445
Using molten glass with a specific gravity of 3.36℃ and a specific gravity of 3.36), the outer diameter is 6 mm, the center thickness is 4 mm, and the edge thickness is 3.08 mm, using the same method as in Example 1.
m proverb, curvature is R1 = R2 = 10m intestine, glass volume 0.1
A biconvex preform for reheat press with a weight of 337 mg was molded.

この実施例では、型部材5,6として実施例1と同様の
ものを使用し、型温が375℃(F8のTg445℃よ
り70℃低い温度)となるようヒーター8.9の調整を
行なった。
In this example, the same mold members 5 and 6 as in Example 1 were used, and the heater 8.9 was adjusted so that the mold temperature was 375°C (70°C lower than the F8 Tg of 445°C). .

又、不図示の溶融炉にて溶融されたガラスをガラス流体
2の粘度がlQ2.95〜1031 ポアズ(1080
℃〜1050℃)となるように調整した。
Further, the viscosity of the glass fluid 2 is 1Q2.95 to 1031 poise (1080
℃~1050℃).

そして、各シリンダー13.16.17の作動圧力を夫
々50kg、 200kg、 50kgに設定し、実施
例1と同様の方法でプレス成形及び切断処理を行ない、
成形品23の内部粘度が109ポアズ(約540℃)に
なったところで第2の型部材6かも取り出したところ、
得られた成形品23は、所望の成形品に対して外径精度
で±O,OL+*m、中心肉厚で±0.02.重量で±
31g(±0.9%)のバラツキ内に収り、表面中心部
のヒケも平均40JLm程度のものであり、表面状態も
良好なリヒートプレス用プリフォームとして十分使用で
きる精度のものであった。
Then, the operating pressure of each cylinder 13, 16, and 17 was set to 50 kg, 200 kg, and 50 kg, respectively, and press forming and cutting were performed in the same manner as in Example 1.
When the internal viscosity of the molded product 23 reached 109 poise (approximately 540°C), the second mold member 6 was also taken out.
The obtained molded product 23 has an outer diameter accuracy of ±0, OL+*m and a center wall thickness of ±0.02. ± in weight
The variation was within 31 g (±0.9%), and the sink mark at the center of the surface was about 40 JLm on average, and the surface condition was good and the precision was sufficient to be used as a reheat press preform.

(実施例3) −この実施例においては、実施例1と同様の光学ガラス
SF8の丸棒を用い、外径201濡、中心肉厚3 +s
m、コバ厚り、S an、曲率がR+=32mm、ガラ
ス容量0.Ei133cc 、 ffE量242gの平
凸形状のレンズ成形を非酸化雰囲気中で行なった。
(Example 3) - In this example, a round bar made of optical glass SF8 similar to Example 1 was used, with an outer diameter of 201 mm and a center thickness of 3 + s.
m, edge thickness, San, curvature R+=32mm, glass capacity 0. A plano-convex lens having an Ei of 133 cc and an ffE of 242 g was molded in a non-oxidizing atmosphere.

SF8から成る丸棒は直径10曹薦±lagのもので、
表面のキズやゴミを除去した上で、不図示の加熱炉で1
05ポアズ(約775℃)程度の粘度となるように加熱
した。
The round bar made of SF8 has a diameter of 10mm ± lag,
After removing scratches and dirt from the surface, heat it in a heating furnace (not shown).
The mixture was heated to a viscosity of approximately 0.05 poise (approximately 775°C).

又、型部材5,6は炭化タングステンから成るものを用
い、成形面5a、6aを光学鏡面とし、型温が510℃
(ガラス粘度で約109ポアズに相当する)となるよう
ヒーター8.9により加熱した。又、切断リングも型部
材5,6と同様炭化タングステンから成るものを用い、
この切断リング7を不図示の外部ヒータで400℃とな
るように加熱した。
The mold members 5 and 6 are made of tungsten carbide, the molding surfaces 5a and 6a are optical mirror surfaces, and the mold temperature is 510°C.
(corresponding to about 109 poise in terms of glass viscosity) using a heater 8.9. In addition, the cutting ring is also made of tungsten carbide like the mold members 5 and 6,
This cutting ring 7 was heated to 400° C. using an external heater (not shown).

又、本実施例においては、成形を非酸化雰囲気中で行な
うため、装置全体をカバーでおおい、アルゴノガスで鐙
換した。
Further, in this example, since the molding was performed in a non-oxidizing atmosphere, the entire apparatus was covered with a cover and stirred with argono gas.

そして、各シリンダー13.16.17の作動圧力を夫
々170kg、 350kg、 150kgに設定し、
実施例1と同様の方法でプレス成形及び切断処理を行っ
た。ただし1本実施例においては、溶融ガラス流の代わ
りに先端付近を上記した粘度にまで軟化したあガラス棒
を使用した。
Then, the working pressures of each cylinder 13, 16, and 17 were set to 170 kg, 350 kg, and 150 kg, respectively.
Press molding and cutting were performed in the same manner as in Example 1. However, in this example, instead of the molten glass flow, a glass rod whose tip portion had been softened to the above-mentioned viscosity was used.

プレス成形及び切断完T後、各シリンダー13゜16.
17は圧力を加えたままの状態で、ヒーター8.9及び
切断リング加熱用の外部ヒーターの出力を徐々に弱め、
型部材5.6と成形品22の温度が400℃(ガラス粘
度で約lOロ5ポアズ以上)になるまで冷却した後、成
形品23を実施例1と同様の方法で第2の型部材6から
取り出した。1!)られた成形品は、所望の成形品に対
して外径精度で±0.005−一、中心肉厚で±0 、
01m+s  重量で±0.025 g (±0.85
%)以内のバラツキに収まり、表面状態も良好で、ヒケ
による面食形もほとんど見られず、特に高精度を要求さ
れないレンズとしてこのままで十分使用できる状態であ
った。
After press forming and cutting are completed, each cylinder is 13° 16.
17, while keeping the pressure applied, gradually weaken the output of heater 8.9 and the external heater for heating the cutting ring.
After cooling the mold member 5.6 and the molded product 22 until the temperature reaches 400° C. (glass viscosity of about 105 poise or more), the molded product 23 is molded into the second mold member 6 in the same manner as in Example 1. I took it out. 1! ) The molded product has an outer diameter accuracy of ±0.005-1 and a center wall thickness of ±0, relative to the desired molded product.
01m+s Weight: ±0.025g (±0.85
%), the surface condition was good, and there was almost no surface erosion due to sink marks, and the lens could be used as it is without particularly requiring high precision.

(発明の効果) 以上説明したように、本発明によれば、次のような効果
が生じる。
(Effects of the Invention) As explained above, according to the present invention, the following effects occur.

(1)成形品表面にシャーマーク等の表面欠陥がなく、
寸法精度及び重量精度の高い光学レンズ或いはリヒート
プレス用プリフォーム等の光学素子をプレス成形後の研
削、研摩等の後加工を一切必要とせずに製造することが
できる。
(1) There are no surface defects such as shear marks on the surface of the molded product.
Optical elements such as optical lenses or reheat press preforms with high dimensional and weight accuracy can be manufactured without any post-processing such as grinding or polishing after press molding.

(2)成形に用いるガラス流体の精度があまり要求され
ないため、溶融ガラス等の流出装置が安価なものでよく
、高い技術を必要としない、又、溶融炉のガラス液面変
動による流出ガラスの重量、温度変化に対して柔軟性が
あるため、溶融炉も安価なものでよい。
(2) Since the precision of the glass fluid used for molding is not required, the device for discharging the molten glass etc. can be inexpensive and does not require high technology, and the weight of the discharged glass due to fluctuations in the glass liquid level in the melting furnace Since the melting furnace is flexible against temperature changes, the melting furnace may be inexpensive.

(3) I&形に用いるガラス材料は、溶融ガラスのほ
かガラス棒或いはシート状のものでも差し支えなく、又
これらの精度もさほど要求されない。
(3) In addition to molten glass, the glass material used for the I& shape may be a glass rod or sheet, and the accuracy of these materials is not required.

(4)ガラス流体に対して直接プレス成形及び切断処理
をするため、従来プレス成形が困難であった小型で薄い
成形品も高精度かつ容易に製造できる。
(4) Since the glass fluid is directly press-molded and cut, small and thin molded products, which were conventionally difficult to press-form, can be easily manufactured with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すプレス成形装置の概略的
断面図である。第2図〜第7図は第1因に示す装置の要
部断面図であり、同装置の工程順の作動状態が示しであ
る。第8図は第1図に示すプレス成形装置の各作動部の
タイミングチャートを示す図である。第9図は第1実施
例におけるプレス成形時の型部材及びガラスの温度の時
間的変化を示すグラフである。 1…ノズル 2・・・ガラス流 3・・・切断跡 4・・・切断刃 5・・・第1の型部材 6・・・第2の型部材 7・・・切断リング 21・・・被成形部 22・・・切断片 23・・・成形品 代理人  弁理士 山 下 穣 平 第1図 第2図 第31v1 第4図 第5図 第6図 第72 第8図 T+ T2 T3 T4 T5 第9図
FIG. 1 is a schematic sectional view of a press molding apparatus showing an embodiment of the present invention. FIGS. 2 to 7 are sectional views of main parts of the apparatus shown in the first factor, and show the operating state of the apparatus in the order of steps. FIG. 8 is a diagram showing a timing chart of each operating section of the press molding apparatus shown in FIG. 1. FIG. 9 is a graph showing temporal changes in temperature of the mold member and glass during press molding in the first example. 1... Nozzle 2... Glass flow 3... Cutting mark 4... Cutting blade 5... First die member 6... Second die member 7... Cutting ring 21... Target Molded part 22... Cut piece 23... Molded product agent Patent attorney Jo Taira Yamashita Figure 1 Figure 2 Figure 31v1 Figure 4 Figure 5 Figure 6 Figure 72 Figure 8 T+ T2 T3 T4 T5 No. Figure 9

Claims (5)

【特許請求の範囲】[Claims] (1)ガラス流体を狭むように一対の成形用型を対向配
置するとともに該成形用型のキャビティを設定し、前記
ガラス流体を前記成形用型で互いに押圧して被成形部を
形成した後、前記成形用型の外周に設けた切断部材によ
り前記被成形部とその他の部分とを切断分離することを
特徴とする光学素子の製造方法。
(1) After arranging a pair of molds facing each other so as to narrow the glass fluid and setting a cavity in the molds, and pressing the glass fluid against each other with the molds to form a molded part, A method for manufacturing an optical element, characterized in that the part to be molded and other parts are cut and separated using a cutting member provided on the outer periphery of a mold.
(2)前記ガラス流体が10〜10^7ポアズの粘度を
有することを特徴とする特許請求の範囲第1項記載の光
学素子の製造方法。
(2) The method for manufacturing an optical element according to claim 1, wherein the glass fluid has a viscosity of 10 to 10^7 poise.
(3)前記ガラス流体がガラス溶融炉の流出ノズルから
流下する溶融ガラス流であることを特徴とする特許請求
の範囲第2項記載の光学素子の製造方法。
(3) The method for manufacturing an optical element according to claim 2, wherein the glass fluid is a molten glass flow flowing down from an outflow nozzle of a glass melting furnace.
(4)前記ガラス流体が再加熱されたロッド又はシート
状のガラス材料から成ることを特徴とする特許請求の範
囲第2項記載の光学素子の製造方法。
(4) The method for manufacturing an optical element according to claim 2, wherein the glass fluid is made of a reheated rod or sheet glass material.
(5)前記ガラス流体をガラス粘度で10^8ポアズに
相当する温度とガラス転移点(ガラス粘度で約10^1
^3ポアズに相当する)より100℃低い温度の範囲内
の成形用型で加圧成形することを特徴とする特許請求の
範囲第2項記載の光学素子の製造方法。
(5) The glass fluid is heated at a temperature corresponding to a glass viscosity of 10^8 poise and a glass transition point (about 10^1 in glass viscosity).
3. The method for manufacturing an optical element according to claim 2, characterized in that pressure molding is carried out using a mold at a temperature that is 100° C. lower than 3 poise.
JP29140987A 1987-11-18 1987-11-18 Manufacture of optical element Granted JPH01133948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29140987A JPH01133948A (en) 1987-11-18 1987-11-18 Manufacture of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29140987A JPH01133948A (en) 1987-11-18 1987-11-18 Manufacture of optical element

Publications (2)

Publication Number Publication Date
JPH01133948A true JPH01133948A (en) 1989-05-26
JPH0471853B2 JPH0471853B2 (en) 1992-11-16

Family

ID=17768519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29140987A Granted JPH01133948A (en) 1987-11-18 1987-11-18 Manufacture of optical element

Country Status (1)

Country Link
JP (1) JPH01133948A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03228836A (en) * 1990-01-31 1991-10-09 Canon Inc Production of optical glass parts
JPH03228837A (en) * 1990-01-31 1991-10-09 Canon Inc Production of optical glass parts
US5275637A (en) * 1990-01-31 1994-01-04 Canon Kabushiki Kaisha Method of manufacturing a glass optical part
US5322541A (en) * 1991-03-28 1994-06-21 Matsushita Electric Industrial Co., Ltd. Method of producing glass blank
WO2011080912A1 (en) * 2009-12-29 2011-07-07 Hoya株式会社 Method for manufacturing magnetic-disk glass substrate, and magnetic-disk glass substrate
WO2011080913A1 (en) * 2009-12-29 2011-07-07 Hoya株式会社 Method for manufacturing magnetic-disk glass substrate, and magnetic-disk glass substrate
US20130086945A1 (en) * 2011-03-31 2013-04-11 Hoya Corporation Manufacturing method of a sheet glass material for magnetic disk and manufacturing method of a glass substrate for magnetic disk
US20130316194A1 (en) * 2011-04-21 2013-11-28 Hoya Corporation Manufacturing method of glass blank for magnetic disk, manufacturing method of glass substrate for magnetic disk, glass blank for magnetic disk, glass substrate for magnetic disk, and magnetic disk
US20140065446A1 (en) * 2011-04-27 2014-03-06 Hideki Isono Method for manufacturing glass blank for magnetic disk, method for manufacturing glass substrate for magnetic disk, glass blank for magnetic disk
US20140060117A1 (en) * 2011-05-23 2014-03-06 Hoya Corporation Method for manufacturing glass substrate for magnetic disk
US8869559B2 (en) 2011-01-31 2014-10-28 Hoya Corporation Method of manufacturing a glass substrate for magnetic disk
US8973404B2 (en) 2010-03-31 2015-03-10 Hoya Corporation Manufacturing method of glass substrate for magnetic disk, manufacturing method of glass blank, glass substrate for magnetic disk, and glass blank

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03228836A (en) * 1990-01-31 1991-10-09 Canon Inc Production of optical glass parts
JPH03228837A (en) * 1990-01-31 1991-10-09 Canon Inc Production of optical glass parts
US5275637A (en) * 1990-01-31 1994-01-04 Canon Kabushiki Kaisha Method of manufacturing a glass optical part
US5322541A (en) * 1991-03-28 1994-06-21 Matsushita Electric Industrial Co., Ltd. Method of producing glass blank
JP2011154773A (en) * 2009-12-29 2011-08-11 Hoya Corp Method for manufacturing magnetic disk glass substrate, and magnetic disk glass substrate
WO2011080913A1 (en) * 2009-12-29 2011-07-07 Hoya株式会社 Method for manufacturing magnetic-disk glass substrate, and magnetic-disk glass substrate
US8733129B2 (en) 2009-12-29 2014-05-27 Hoya Corporation Glass substrate for magnetic disk and manufacturing method thereof
JP2011154772A (en) * 2009-12-29 2011-08-11 Hoya Corp Manufacturing method of glass substrate for magnetic disk, and the glass substrate for magnetic disk
CN102656631A (en) * 2009-12-29 2012-09-05 Hoya株式会社 Method for manufacturing magnetic-disk glass substrate, and magnetic-disk glass substrate
US9085479B2 (en) 2009-12-29 2015-07-21 Hoya Corporation Glass substrate for magnetic disk and manufacturing method thereof
US9003834B2 (en) 2009-12-29 2015-04-14 Hoya Corporation Glass substrate for magnetic disk and manufacturing method thereof
WO2011080912A1 (en) * 2009-12-29 2011-07-07 Hoya株式会社 Method for manufacturing magnetic-disk glass substrate, and magnetic-disk glass substrate
US8973404B2 (en) 2010-03-31 2015-03-10 Hoya Corporation Manufacturing method of glass substrate for magnetic disk, manufacturing method of glass blank, glass substrate for magnetic disk, and glass blank
US8869559B2 (en) 2011-01-31 2014-10-28 Hoya Corporation Method of manufacturing a glass substrate for magnetic disk
US8844320B2 (en) * 2011-03-31 2014-09-30 Hoya Corporation Manufacturing method of a sheet glass material for magnetic disk and manufacturing method of a glass substrate for magnetic disk
US20130086945A1 (en) * 2011-03-31 2013-04-11 Hoya Corporation Manufacturing method of a sheet glass material for magnetic disk and manufacturing method of a glass substrate for magnetic disk
CN103547539A (en) * 2011-04-21 2014-01-29 Hoya株式会社 Method for manufacturing glass blank for magnetic disk, method for manufacturing glass substrate for magnetic disk, glass blank for magnetic disk, glass substrate for magnetic disk, and magnetic disk
US20130316194A1 (en) * 2011-04-21 2013-11-28 Hoya Corporation Manufacturing method of glass blank for magnetic disk, manufacturing method of glass substrate for magnetic disk, glass blank for magnetic disk, glass substrate for magnetic disk, and magnetic disk
US9242888B2 (en) * 2011-04-21 2016-01-26 Hoya Corporation Manufacturing method of glass blank for magnetic disk, manufacturing method of glass substrate for magnetic disk, glass blank for magnetic disk, glass substrate for magnetic disk, and magnetic disk
US20140065446A1 (en) * 2011-04-27 2014-03-06 Hideki Isono Method for manufacturing glass blank for magnetic disk, method for manufacturing glass substrate for magnetic disk, glass blank for magnetic disk
US9409809B2 (en) * 2011-04-27 2016-08-09 Hoya Corporation Method for manufacturing glass blank for magnetic disk, method for manufacturing glass substrate for magnetic disk, glass blank for magnetic disk
US20140060117A1 (en) * 2011-05-23 2014-03-06 Hoya Corporation Method for manufacturing glass substrate for magnetic disk
US9153269B2 (en) * 2011-05-23 2015-10-06 Hoya Corporation Method for manufacturing glass substrate for magnetic disk

Also Published As

Publication number Publication date
JPH0471853B2 (en) 1992-11-16

Similar Documents

Publication Publication Date Title
JPH01133948A (en) Manufacture of optical element
JPH0513096B2 (en)
JP6739131B2 (en) Mold for molding optical component made of glass and method for manufacturing optical component made of glass using the mold
JPH0948621A (en) Molding of optical element
JPH0419172B2 (en)
JPH0729780B2 (en) Optical glass molding method
JPH0445454B2 (en)
JPH0445459B2 (en)
JPH01138144A (en) Production of optical element
JPH01153538A (en) Production of optical element
JP4289716B2 (en) Glass element molding method
JPH0472777B2 (en)
JP2501585B2 (en) Optical element molding method
JP2008074636A (en) Method and device for producing optical element
JPH01212240A (en) Method for molding optical element
JP2662300B2 (en) Manufacturing method and apparatus for glass molded product
JPH01153540A (en) Production of optical element
JPH01148715A (en) Die for forming optical element
JPH0372016B2 (en)
JP2746450B2 (en) Optical element molding method
JPH01212241A (en) Method for molding optical element
JPH0629147B2 (en) Optical element molding method
JP4426740B2 (en) Glass molded product manufacturing method, optical component manufacturing method, press molding apparatus
JPH0769650A (en) Production of optical element
JP2504802B2 (en) Method and apparatus for press-molding optical molded body