JPH01148715A - Die for forming optical element - Google Patents
Die for forming optical elementInfo
- Publication number
- JPH01148715A JPH01148715A JP30457187A JP30457187A JPH01148715A JP H01148715 A JPH01148715 A JP H01148715A JP 30457187 A JP30457187 A JP 30457187A JP 30457187 A JP30457187 A JP 30457187A JP H01148715 A JPH01148715 A JP H01148715A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- glass
- molding
- cutting
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 36
- 239000011521 glass Substances 0.000 claims abstract description 104
- 238000005520 cutting process Methods 0.000 claims abstract description 96
- 239000012530 fluid Substances 0.000 claims abstract description 58
- 238000003825 pressing Methods 0.000 claims abstract description 28
- 238000002844 melting Methods 0.000 claims abstract description 10
- 230000008018 melting Effects 0.000 claims abstract description 10
- 238000000465 moulding Methods 0.000 claims description 88
- 239000006060 molten glass Substances 0.000 claims description 18
- 230000002093 peripheral effect Effects 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 10
- 230000009477 glass transition Effects 0.000 claims description 3
- 230000007547 defect Effects 0.000 abstract description 7
- 239000000047 product Substances 0.000 description 54
- 238000000034 method Methods 0.000 description 27
- 238000010438 heat treatment Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000012467 final product Substances 0.000 description 3
- 239000005304 optical glass Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- 206010049040 Weight fluctuation Diseases 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
- C03B11/088—Flat discs
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/40—Product characteristics
- C03B2215/44—Flat, parallel-faced disc or plate products
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/70—Horizontal or inclined press axis
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/76—Pressing whereby some glass overflows unrestrained beyond the press mould in a direction perpendicular to the press axis
- C03B2215/77—Pressing whereby some glass overflows unrestrained beyond the press mould in a direction perpendicular to the press axis with means to trim off excess material
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optical Elements Other Than Lenses (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、プレス成形による光学素子の成形用型に関し
、より詳細には、プレス成形後において研削及び研摩等
の工程を経ることなしに表面精度及び重量精度の良好な
光学素子又はそのリヒートプレス用として好適するプリ
フォームの成形用型に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a mold for molding an optical element by press molding, and more specifically, the present invention relates to a mold for molding an optical element by press molding, and more specifically, the present invention relates to a mold for molding an optical element by press molding. The present invention relates to a mold for molding an optical element with good precision and weight accuracy, or a preform suitable for reheat pressing thereof.
(従来の技術)
近年、所定の表面精度を有する成形用層内にガラス素材
を収容してプレス成形することにより。(Prior Art) In recent years, press molding is performed by housing a glass material in a molding layer having a predetermined surface precision.
研削及び研摩等の後加工を不要とした高精度の光学素子
を成形する方法が開発されている。Methods have been developed for molding high-precision optical elements that do not require post-processing such as grinding and polishing.
このプレス成形法には、一般にリヒートプレス法とダイ
レクトプレス法がある。This press molding method generally includes a reheat press method and a direct press method.
リヒートプレス法は、予め溶融固化したガラス材料の必
要量を切断し、砂ずり等の方法により重量調整を施して
ガラス小塊とし、これを成形用型内に入れ、該ガラス小
塊と成形用型を同時に又は別々にプレス温度まで加熱し
た後、プレス成形して成形用型に形成した光学a艶面を
押圧転写して光学素子を成形する方法である。In the reheat press method, the necessary amount of glass material that has been melted and solidified in advance is cut, the weight is adjusted using methods such as sanding, and the resulting glass pellets are placed in a mold for molding. This is a method of molding an optical element by heating the molds simultaneously or separately to a pressing temperature, and then pressing and transferring the optical a glossy surface formed on the mold by press molding.
一方、ダイレクトプレス法は、溶融ガラス流出オリフィ
スより流出若しくは押出される溶融ガラス流の必要量を
切断刃により切断し、これを成形用型内に直接落下させ
るか又はシュートによって投入し、しかる後成形用型を
押圧して光学素子を成形する方法である。On the other hand, in the direct press method, the necessary amount of molten glass flowing out or extruded from a molten glass outflow orifice is cut by a cutting blade, and the cut is directly dropped into a mold or charged into a chute, and then molded. This is a method of molding an optical element by pressing a mold.
又、上記のリヒートプレス法において、切断及び砂ずり
等のような生産性の低い工程を経ずに上記のダイレクト
プレス法における如く、溶融ガラスを成形用型に入れて
プレス成形し、最終製品に近似した形状の予備成形品(
プリフォーム)を得た上で該プリフォームを最終製品の
形状及び面精度と同じか若しくはそれ以上に精度の高い
光学機濠面を有する成形用型に入れてプレス成形を行な
う方法がある。In addition, in the above reheat press method, molten glass is put into a mold and press-formed into a final product, as in the above direct press method, without going through low productivity steps such as cutting and sanding. Preformed products with similar shapes (
There is a method in which the preform is obtained and then press-molded by placing the preform in a mold having an optical moat surface that is as precise as or higher than the shape and surface precision of the final product.
(発明が解決しようとする問題点)
これらの成形方法により得られた光学素子は、良好な像
形成品質が得られるよう所定の面精度及び寸法精度が要
求され、又このため上記のいずれの方法においても最終
製品を得るためのプレス成形に供給されるガラス材料は
十分に重量調整がなされていなければならない。(Problems to be Solved by the Invention) Optical elements obtained by these molding methods are required to have predetermined surface accuracy and dimensional accuracy in order to obtain good image forming quality, and for this reason, neither of the above methods Also, the weight of the glass material supplied to press molding to obtain the final product must be sufficiently adjusted.
しかしながら、上記のガラス小塊を用いてプレス成形す
る方法では、ガラス小塊の重量調整を切断及び砂ずり等
により行なうため、成形品の表面に砂目が残留したり、
プレス成形前にガラス小塊を加熱する際、ガラスと加熱
用受皿との融着を防止するために塗布した離型法がプレ
ス時に成形品の表面に食い込んで該成形品の表面精度が
著しく悪化するという問題がある。However, in the above-mentioned method of press molding using small glass lumps, the weight of the small glass lumps is adjusted by cutting, sanding, etc., so that grains may remain on the surface of the molded product.
When heating small glass lumps before press molding, the mold release agent applied to prevent the glass and heating tray from fusing together bites into the surface of the molded product during pressing, significantly deteriorating the surface accuracy of the molded product. There is a problem with doing so.
又、直接溶融ガラスを用いてプレス成形する方法では、
切断刃による切断の際、成形品にシャーマークと称せら
れる切断痕が生じ、成形品の面精度が劣化するという問
題がある。又、このプレス成形法においては、成形品の
重量調整を溶融ガラス流の切断によって行なうため、こ
の溶融ガラス流の温度変化や切断タイミング或いはガラ
ス流の1派!JJ等により成形品に重量変動が生じ、所
定の寸法精度が得られないという問題点もある。In addition, in the method of press forming directly using molten glass,
When cutting with a cutting blade, cutting marks called shear marks are generated on the molded product, which causes a problem in that the surface precision of the molded product deteriorates. In addition, in this press molding method, the weight of the molded product is adjusted by cutting the molten glass flow, so the temperature change of the molten glass flow, the timing of cutting, or the type of glass flow! There is also the problem that weight fluctuations occur in the molded product due to JJ, etc., and predetermined dimensional accuracy cannot be obtained.
なお、特にシャーマークの発生を防止したプレス成形法
としては、特公昭41−9190号公報或いは特開昭6
1−132523号公報に記載されたものがある。In addition, as a press molding method that particularly prevents the occurrence of shear marks, Japanese Patent Publication No. 41-9190 or Japanese Patent Application Laid-open No. 6
There is one described in Publication No. 1-132523.
特公昭41−9190号公報に記載された成形方法では
、成形用型を溶融ガラスの流下方向に直角の方向に押圧
して型空所内に溶融ガラスを充填させてプレス成形する
方法であるが、成形用型の押圧時に型空所内の余剰ガラ
スが成形用型とこれに対向するアンビルとの間から流出
するという現象が生じる。この余剰ガラスは成形用型の
押圧動作が進行するに伴い、その流出抵抗を増大すると
ともに成形用型により冷却されて粘性を増し、これが成
形用型とこれに対向するアンビル間で完全に切取られな
いまま冷却されて成形品の外周にはみ出し部分を形成す
る。このため、プレス成形後においてこのはみ出し部分
の破断及び破断面を仕上げる作業が必要となる。又、溶
融ガラス流の大きさが変動することにより上記した成形
品とはみ出し部分との間のガラス厚さが変動して成形品
の厚さにバラツキが生じてしまい、重量調整が高精度に
行なえないという問題もある。In the molding method described in Japanese Patent Publication No. 41-9190, press molding is performed by pressing a mold in a direction perpendicular to the direction of flow of molten glass to fill the mold cavity with molten glass. When the mold is pressed, a phenomenon occurs in which excess glass in the mold cavity flows out from between the mold and the anvil facing the mold. As the pressing operation of the mold progresses, this excess glass increases its outflow resistance and is cooled by the mold, increasing its viscosity, until it is completely cut off between the mold and the opposing anvil. The molded product is cooled without being completely wet, and a protruding portion is formed on the outer periphery of the molded product. Therefore, after press forming, it is necessary to break the protruding portion and finish the broken surface. Furthermore, due to variations in the size of the molten glass flow, the glass thickness between the above-mentioned molded product and the protruding portion changes, causing variations in the thickness of the molded product, making it difficult to adjust the weight with high precision. There is also the problem of not having one.
一方、特開昭61−132523号公報に記載された成
形方法では、成形品の精度は流動するガラス体を打抜く
前の該ガラス体の大きさ等に依存しており高精度の寸法
形状を有するロッド又はガラスシートが必要となる。On the other hand, in the molding method described in JP-A No. 61-132523, the accuracy of the molded product depends on the size of the flowing glass body before punching it, and highly accurate dimensions and shapes can be produced. A rod or glass sheet is required.
本発明者等は、上述のような問題点を解決すべく、成形
品にシャーマーク等の表面欠陥がなく、寸法精度がすこ
ぶる良好な光学素子の製造方法について既に提案しであ
る。In order to solve the above-mentioned problems, the present inventors have already proposed a method for manufacturing an optical element in which the molded product is free from surface defects such as shear marks and has excellent dimensional accuracy.
本発明は、この製造方法に用いられる成形用型に軸ずれ
が生じることなく該成形用型の押圧動作を円滑に行なう
ことができ、得られる成形品の光軸精度を保障しうる成
形用型を提供することを目的とする。The present invention provides a mold that can smoothly perform the pressing operation of the mold used in this manufacturing method without causing axis misalignment, and can ensure optical axis precision of the molded product obtained. The purpose is to provide
(問題点を解決するための手段)
上述した従来の問題点を解決するために、本発明の光学
素子の成形用型は、ガラス流体を狭むように対向する各
々の成形面が該ガラス流体を略直角方向から押圧して被
成形部の機能面を形成するよう配置された一対の成形用
型部材と、該成形用型部材の外周に前記ガラス流体が通
過する開口部を有し、前記被成形部の外周側面の一部を
形成するとともに前記各々の型部材の押圧動作を案内す
るガイド部材と、前記開口部を遮断するよう動作して前
記被成形部のガイド部材により形成されなかった残りの
外周側面を切断するF)J断部材とを備えたことを特徴
とする。(Means for Solving the Problems) In order to solve the above-mentioned conventional problems, the mold for molding an optical element of the present invention is such that each of the molding surfaces facing each other so as to narrow the glass fluid substantially absorbs the glass fluid. A pair of mold members arranged to press from a right angle direction to form a functional surface of the part to be molded; and an opening through which the glass fluid passes on the outer periphery of the mold member; a guide member that forms a part of the outer circumferential side surface of the part and guides the pressing operation of each of the mold members; and a guide member that operates to block the opening and the remaining part that is not formed by the guide member of the molded part. F) J-cutting member for cutting the outer circumferential side surface.
(作 用)
このように構成された光学素子の製造方法において、使
用される1対の成形用型を構成する各々の型部材を第1
の型部材及び第2の型部材とすると、これら型部材の各
成形面はガラス流体を挟んで互いに対向する如く配置さ
れる。このような成形用型の配置状況としては、ガラス
流体が例えば溶融炉からノズルを介して流出する溶融ガ
ラスである場合、該溶融ガラスの流下方向に対して略直
角方向に第1の型部材と第2の型部材の各成形面が対向
するように配置することができる。又、ガラス流体が既
に成形加工されたものを再加熱することにより流動性を
有するロッド或いはシート状の場合、上記のような配置
状況のほか、t5fの型部材と第2の型部材が各々上下
方向に対向するように配置することも可能である。(Function) In the method for manufacturing an optical element configured as described above, each mold member constituting the pair of molding molds used is
and a second mold member, the respective molding surfaces of these mold members are arranged so as to face each other with the glass fluid in between. When the glass fluid is, for example, molten glass flowing out from a melting furnace through a nozzle, the arrangement of such molding molds is such that the first mold member and The molding surfaces of the second mold member can be arranged to face each other. In addition, if the glass fluid is in the form of a rod or sheet that has fluidity by reheating an already molded product, in addition to the above-mentioned arrangement, the mold member of t5f and the second mold member are placed above and below, respectively. It is also possible to arrange them in opposite directions.
そこで、例えば流下する溶融ガラス流体に対して、本発
明における成形用型を構成すると、このガラス流体の流
れの方向に対して略直角方向から各々の型部材が互いに
押圧される構成となり、流下するガラス流体に対して各
々の型部材の押圧のタイミングを[Eすることにより、
ガラス流体の先端部即ち切断跡を避けて被成形部を形成
することができる。Therefore, for example, when a mold according to the present invention is constructed for a flowing molten glass fluid, each mold member is pressed against each other from a direction substantially perpendicular to the direction of flow of the glass fluid, and the mold members are pressed against each other from a direction substantially perpendicular to the direction of flow of the glass fluid. By adjusting the timing of pressing each mold member against the glass fluid,
The molded part can be formed while avoiding the tip of the glass fluid, that is, the cutting trace.
被成形部の肉厚は成形用型のキャビティを予め設定する
ことにより決まる。このキャビテイは、プレス成形時の
各々の型部材の成形面間隔により設定することができる
。各型部材の押圧時に生じる余剰ガラスは成形面の外方
に自由に流出し、成形品の肉厚はガラス流の大きさ等に
影響されることなく上記成形用型のキャビティにより決
まる。The wall thickness of the part to be molded is determined by setting the cavity of the mold in advance. This cavity can be set by the interval between molding surfaces of each mold member during press molding. Excess glass generated when pressing each mold member freely flows out of the molding surface, and the thickness of the molded product is determined by the cavity of the mold without being affected by the size of the glass flow.
さらに、本発明においては、型部材の外周に設けられた
ガイド部材が型部材の押圧動作を案内する4R成とされ
ている。Further, in the present invention, the guide member provided on the outer periphery of the mold member has a 4R configuration for guiding the pressing operation of the mold member.
この種の成形用型においては、対向する各々の型部材の
温度分布、熱膨張の変化或は長期の使用により各型部材
にガタが生じてこれら型部材に軸ずれが生じ、得られた
成形品の光軸精度にくるいが生じることがある0本発明
におけるガイド部材は、この軸ずれを防止して所定の光
軸精度を有する光学素子の製造を可能としている。In this type of mold, play occurs in each mold member due to changes in the temperature distribution, thermal expansion, or long-term use of the opposing mold members, resulting in misalignment of the axis of the mold members, resulting in the resulting molding being The guide member of the present invention prevents this axis deviation and makes it possible to manufacture an optical element having a predetermined optical axis accuracy.
又、このガイド部材は、各成形面間に供給されるガラス
流体が該ガイド部材に設けられた開口部を通過する構成
とされるとともにプレス成形時において被成形部の外周
側面の一部を形成する機能を有している。従って、この
ガイド部材の外周側面の形成面を所定の面精度に仕上げ
ておけば、成形品の外周側面の一部を高精度の光学機能
面として使用することができる。Further, this guide member is configured such that the glass fluid supplied between each molding surface passes through an opening provided in the guide member, and also forms a part of the outer peripheral side surface of the part to be molded during press molding. It has the function of Therefore, if the forming surface of the outer circumferential side surface of this guide member is finished to a predetermined surface accuracy, a part of the outer circumferential side surface of the molded product can be used as a highly accurate optical functional surface.
さらに、本成形用型は、上記開口部を遮断するよう動作
して上記被成形部のうちガイド部材により形成されなか
った残りの外周側面を切断する切断部材を備え、この切
断部材の切断動作により上記ガイド部材により形成され
なかった残りの外周側面が形成される。Furthermore, the present molding mold includes a cutting member that operates to block the opening and cuts the remaining outer peripheral side surface of the part to be molded that was not formed by the guide member, and the cutting operation of the cutting member The remaining outer peripheral side surface not formed by the guide member is formed.
しかして、ガラス流体を各型部材で押圧することにより
被成形部の機能面を形成し、ガイド部材により被成形部
の外周側面の一部を形成した後、切断部材により上記ガ
イド部材により形成されなかった残りの外周側面を切断
すると、被成形部がガラス流体と切断分離され、該被成
形部の外周形状が形成される。After forming the functional surface of the molded part by pressing the glass fluid with each mold member and forming a part of the outer peripheral side surface of the molded part with the guide member, the cutting member forms the functional surface of the molded part with the guide member. When the remaining outer peripheral side surface is cut, the molded part is cut and separated from the glass fluid, and the outer peripheral shape of the molded part is formed.
かくして得られた成形品は上記のようにカラス流体の切
断跡を含まない部分から形成されたものであるからシャ
ーマーク等の表面欠陥がない。The molded product thus obtained is free from surface defects such as shear marks, since it is formed from a portion that does not contain cut marks of glass fluid, as described above.
又、予め設定されたキャビティ、ガイド部材及び切断部
材による被成形部の外周形成により形状精度及び重量精
度の高い成形品が得られる。Further, by forming the outer periphery of the molded part using the preset cavity, guide member, and cutting member, a molded product with high shape accuracy and weight accuracy can be obtained.
この成形品の機’l1js面は各型部材の成形面が転写
されることにより形成されるから、各々の成形面の表面
性状を所望する成形品の表面性状と同等かそれ以上に高
精度なものに仕上げてプレス成形することにより、高精
度表面を有する成形品が得られる。The machine surface of this molded product is formed by transferring the molding surface of each mold member, so the surface texture of each molding surface can be made with high precision equal to or higher than that of the desired molded product. By finishing the product and press-molding it, a molded product with a high-precision surface can be obtained.
なお、本発明におけるガラス流体の粘度は、10〜10
7ボアズが好適する。このガラス粘度が10ポアズより
低くなるとガラス流は糸状になって成形用型のキャビテ
ィ内で必要とされるガラス容量が不足してしまう、一方
、ガラス粘度が101ポアズよりも高くなると、プレス
成形後のガラスの切断が困難となる。なお、これらのガ
ラス流体の粘度は103〜105ポアズが最適する。Note that the viscosity of the glass fluid in the present invention is 10 to 10
7 boads is preferred. If the glass viscosity is lower than 10 poise, the glass flow becomes filamentous and the required glass capacity within the mold cavity becomes insufficient. It becomes difficult to cut the glass. Note that the optimum viscosity of these glass fluids is 103 to 105 poise.
又、本発明における軟化ガラス流体としては、上述のよ
うに、溶融ガラスのほか、予め成形加工されたガラスロ
ンド或いはシート状のものを再加熱することにより得た
ものでもよい。なお、これらのガラス流体の粘度は10
3〜105ポアズが最適する。Further, as the softened glass fluid in the present invention, as described above, in addition to molten glass, it may be obtained by reheating a previously formed glass rond or sheet. Note that the viscosity of these glass fluids is 10
3 to 105 poise is optimal.
又、成形用型の温度は、ガラス粘度で108ポアズに相
当する温度からガラス転移点(以下、Tgと称する。ガ
ラス粘度で約1013に相当する。)よりも100℃低
い温度(Tg−100℃)の範囲内に設定する必要があ
る。該型温が108ポアズに相当する温度を超えるとプ
レス成形後から切断までの間に成形された被成形部にお
けるガラス表面の硬度変化が遅く、被成形部の外周を切
断して形成する際、所定の形状精度及び表面精度が得ら
れなくなる。又、カラスと型の成形面が融着を生じ易く
なり、好ましくない。一方、型温がTg−ioo″Cよ
り低いと被成形部の外周を切断する際、切断が困難にな
るばかりか切断部分からヒビ割れを生じるおそれがある
。In addition, the temperature of the molding die ranges from a temperature corresponding to 108 poise in terms of glass viscosity to a temperature 100 degrees Celsius lower than the glass transition point (hereinafter referred to as Tg, which corresponds to approximately 1013 in terms of glass viscosity) (Tg - 100 degrees Celsius). ) must be set within the range. If the mold temperature exceeds a temperature corresponding to 108 poise, the hardness of the glass surface in the molded part after press molding until cutting is slow, and when the outer periphery of the molded part is cut and formed, Predetermined shape accuracy and surface accuracy cannot be obtained. Furthermore, the molding surfaces of the crow and the mold tend to be fused together, which is undesirable. On the other hand, if the mold temperature is lower than Tg-ioo''C, cutting the outer periphery of the part to be molded will not only be difficult, but may also cause cracks at the cut portion.
切断部材及びガイド部材の温度は、ガラスの温度変化の
影響を成形用型におけると同様にするため、成形用型の
型温と同等にするのが好ましい。The temperatures of the cutting member and the guide member are preferably equal to the mold temperature of the mold, so that the influence of temperature changes on the glass is similar to that of the mold.
さらに成形品の取出しの際の粘度は、この成形品をリヒ
ートプレス用のプリフォームとして用いる場合、108
ポアズ以上の粘度になるまで冷却すれば十分であるが、
そのまま光学レンズ等に用いる場合、成形用型内で圧力
を加えたまま冷却して1QI4.5ポアズ程度の粘度に
なったところで取出すようにすれば形状精度及び表面精
度の良好な光学素子として使用することができる。Furthermore, the viscosity when taking out the molded product is 108 when this molded product is used as a preform for reheat press.
It is sufficient to cool it until the viscosity reaches Poise or higher, but
When used as is for optical lenses, etc., it can be used as an optical element with good shape accuracy and surface accuracy by cooling it in a mold while applying pressure and taking it out when it reaches a viscosity of about 1QI 4.5 poise. be able to.
なお、本発明におけるプレス成形及びその後の切断処理
等は、成形用型や切断部材の寿命を保持するため、非酸
化雰囲気中で行なうことが望ましい。Note that the press molding and subsequent cutting treatment in the present invention are preferably performed in a non-oxidizing atmosphere in order to maintain the life of the mold and cutting member.
(実施例)
以下1本発明の実施例について図面を参照しながら説明
する。(Example) An example of the present invention will be described below with reference to the drawings.
第1図は本発明の実施例に用いられるプレス成形装首の
概略断面図である。ただし、この図面には後述するガイ
ド部材が省略されている。第7図(a)及び(b)は上
記ガイド部材を含む成形用型の周辺を示す斜視図である
。ただし、a図には大型レンズの成形用型が示してあり
、b図には角型レンズの成形用型が示しである。FIG. 1 is a schematic cross-sectional view of a press-formed neck brace used in an embodiment of the present invention. However, a guide member, which will be described later, is omitted from this drawing. FIGS. 7(a) and 7(b) are perspective views showing the periphery of a mold including the guide member. However, Figure A shows a mold for molding a large lens, and Figure B shows a mold for molding a rectangular lens.
第1図において、lは不図示の溶融炉から溶融ガラスを
流出するノズルであり、2はこのノズルから流出したガ
ラス流体であり、3はガラス流体2の先端に生じた切断
跡である。4はノズル1の下方に設けられ、不図示の駆
動製者により開閉動作を行なうことによりガラス流体2
を切断する切断刃である。この切断刃4が作動してガラ
ス流体2が途中で切断されることにより切断gA3が発
生する。In FIG. 1, 1 is a nozzle through which molten glass flows out from a melting furnace (not shown), 2 is a glass fluid flowing out from this nozzle, and 3 is a cut mark produced at the tip of the glass fluid 2. 4 is provided below the nozzle 1, and the glass fluid 2 is opened and closed by a driver (not shown).
It is a cutting blade that cuts. The cutting blade 4 operates to cut the glass fluid 2 midway, thereby generating a cutting gA3.
本実施例に示すプレス成形装置は、ガラス流体2がノズ
ル1から流下する形式のものに対して構成さており、1
対の成形用型を構成する第1の型部材5と第2の型部材
6とがガラス流体2を略直角方向から狭むように互いに
対向した状態で配置しである。各々の型部材5.6は、
対向する夫々の面に鏡面加工が施された成形面5a、6
aを有している。The press molding apparatus shown in this embodiment is configured for a type in which the glass fluid 2 flows down from a nozzle 1.
A first mold member 5 and a second mold member 6 constituting a pair of molding molds are arranged to face each other so as to narrow the glass fluid 2 from a substantially right angle direction. Each mold member 5.6 is
Molding surfaces 5a and 6 whose opposing surfaces are mirror-finished
It has a.
第1の型部材5はスライダー14に保持され、このスラ
イダー14はスライドシャフト18に摺動可能に支持さ
れている。16はスライダー14を駆動するシリンダー
であり、このシリンダー16の作動によりスライダー1
4はスライドシャフト18の摺動方向に移動して第1の
型部材5の押圧動作が行なわれる。The first mold member 5 is held by a slider 14, which is slidably supported by a slide shaft 18. 16 is a cylinder that drives the slider 14, and the operation of this cylinder 16 causes the slider 1 to move.
4 moves in the sliding direction of the slide shaft 18 to press the first mold member 5.
一方、第2の型部材6はアダプター12を介してシリン
ダー13に連結され、このシリンダー13の作動により
第2の型部材6の押圧動作が行なわれる。On the other hand, the second mold member 6 is connected to a cylinder 13 via an adapter 12, and the operation of the cylinder 13 causes the second mold member 6 to be pressed.
これら型部材5.6の各成形面5a、6aにより形成さ
れるキャビティは、各シリンダー13゜16のストロー
クにより設定することができる。The cavity formed by each molding surface 5a, 6a of these mold parts 5.6 can be defined by the stroke of each cylinder 13.16.
又、第7図(a)及び(b)に示すように、第2の型部
材6の外周には、水平方向について両側から該型部材6
を挟持するように断面弧状の一対のガイド部材24が嵌
装されている。このガイド部材24はノズルlに対する
相対位置を変えないように固設してあり、又型部材5.
6のプレス成形時には型部材6の成形面6aよりやや突
出するように構成されている。この成形面6aより突出
する部分の幅は所望の成形品の肉厚よりやや大きく採り
、型部材5.6のプレス成形時に型部材5の成形面5a
の周縁に設けられた案内溝25にガイド部材24の先端
部分が嵌合されるようにしである。このような構成によ
り、型部材6のプレス成形時には該型部材6はガイド部
材24に案内されて移動することができ、又ガイド部材
24の先端部が型部材5の案内溝25に嵌合され、各型
部材5.6の軸ずれが防止される。Further, as shown in FIGS. 7(a) and (b), the outer periphery of the second mold member 6 is provided with a second mold member 6 from both sides in the horizontal direction.
A pair of guide members 24 having an arcuate cross section are fitted so as to sandwich them. This guide member 24 is fixed so as not to change its relative position with respect to the nozzle l, and the mold member 5.
During press molding of No. 6, the mold member 6 is configured to slightly protrude from the molding surface 6a of the mold member 6. The width of the portion protruding from the molding surface 6a is set to be slightly larger than the thickness of the desired molded product, and the molding surface 5a of the mold member 5 is selected during press molding of the mold member 5.6.
The tip portion of the guide member 24 is fitted into a guide groove 25 provided on the periphery of the guide member 24 . With such a configuration, during press molding of the mold member 6, the mold member 6 can be guided by the guide member 24 and moved, and the tip of the guide member 24 is fitted into the guide groove 25 of the mold member 5. , misalignment of each mold member 5.6 is prevented.
さらに、型部材6の外周にはガイド部材24を介して切
断部材7が設けられ、該切断部材7のガイド部材24が
設けられていない部分は切断部材7が型部材6の外周に
沿って摺動するよう形成され、この部分の先端にはエツ
ジ状の打抜き刃7aが設けられている。Further, a cutting member 7 is provided on the outer periphery of the mold member 6 via a guide member 24, and the cutting member 7 slides along the outer periphery of the mold member 6 in a portion of the cutting member 7 where the guide member 24 is not provided. It is formed to move, and an edge-shaped punching blade 7a is provided at the tip of this portion.
そして、切断部材7はスライドシャフト18に摺動可能
に支持されたスライダー15に連結され、さらにスライ
ダー15はシリンダー17に連結され、このシリンダー
17の作動により、切断部材7は第2の型部材6及びガ
イド部材24とは独立した動作で該第2の型部材6及び
ガイド部材24の外周部分を摺動することができる。The cutting member 7 is connected to a slider 15 that is slidably supported on a slide shaft 18, and the slider 15 is further connected to a cylinder 17, and when the cylinder 17 is actuated, the cutting member 7 is moved to the second mold member 6. The second mold member 6 and the outer peripheral portions of the guide member 24 can be slid in an operation independent of the guide member 24.
各型部材5,6の内部にはヒーター8,9が設けられて
いる。10.11は夫々のヒーターに接続された導線で
ある。19は本装置全体のベースであり、シリンダー1
3.16.17及びスライドシャフト18を堅固に支持
している。Heaters 8 and 9 are provided inside each mold member 5 and 6. 10 and 11 are conductive wires connected to each heater. 19 is the base of the entire device, cylinder 1
3.16.17 and the slide shaft 18 are firmly supported.
次に本装置の動作について第2〜6図、第7図及び第8
図を用いて説明する。第2図〜6図は、本装置の各工程
順における作動状態を示す要部断面図である。ただし、
説明の便宜上、この図に示す一点鎖線の上側は、切断部
材7の動作が明示されるような縦断面図を示し、又同下
側は、ガイド部材24の動作が明示されるような横断面
図を示しである。第8図は本装置における作動部、即ち
第1の型部材5.第2の型部材6、切断刃4及び切断部
材7の各部作動タイミングを示すタイミングチャートで
あり、横軸は時間Tを示す、これら作動部の作動タイミ
ングは、各作動部を接続した不図示のコントローラーに
より制御することができる。Next, the operation of this device is shown in Figures 2 to 6, Figure 7, and Figure 8.
This will be explained using figures. FIGS. 2 to 6 are sectional views of essential parts showing the operating state of the present apparatus in each process order. however,
For convenience of explanation, the upper side of the dashed-dotted line shown in this figure shows a vertical cross-sectional view that clearly shows the operation of the cutting member 7, and the lower side of the same shows a cross-sectional view that clearly shows the operation of the guide member 24. The figure is shown below. FIG. 8 shows the operating part of this device, that is, the first mold member 5. It is a timing chart showing the operation timing of each part of the second mold member 6, the cutting blade 4, and the cutting member 7, and the horizontal axis shows time T. It can be controlled by a controller.
第2図はプレス成形直前の状態である。ガイド部材24
は、その先端がノズル1の下方よりやや型部材5側より
の状態となるように構成しである。このようなガイド部
材24の開口部26に対しノズル1からガラス流体2が
流下している。このガラス流体2の先端、即ち切断跡3
が対向する各成形面5a、6aより下方に流下した時点
で、第2図に示すように、第1の型部材5及び第2の型
部材6の押圧動作を開始する。この押圧動作において、
ガイド部材24は、そのままノズル1に対する相対位置
を維持し、両型部材が互いに移動して接近する。この際
、型部材5.6に多少の軸ずれがあっても型部材6はガ
イド部材24に案内され、又型部材5の案内溝25がガ
イド部材の先端部に嵌合されて各成形面5a、6aの軸
ずれが矯正される。FIG. 2 shows the state immediately before press molding. Guide member 24
is configured such that its tip is located slightly closer to the mold member 5 than below the nozzle 1. The glass fluid 2 is flowing down from the nozzle 1 into the opening 26 of the guide member 24 . The tip of this glass fluid 2, that is, the cut mark 3
When the molding material flows downward from the opposing molding surfaces 5a and 6a, as shown in FIG. 2, the pressing operation of the first mold member 5 and the second mold member 6 is started. In this pressing operation,
The guide member 24 maintains its relative position with respect to the nozzle 1, and both mold members move toward each other. At this time, even if there is some axis misalignment in the mold member 5.6, the mold member 6 is guided by the guide member 24, and the guide groove 25 of the mold member 5 is fitted into the tip of the guide member, so that each molding surface The axis misalignment between 5a and 6a is corrected.
第8図においてT=Oはこの両型部材5.6の作動開始
時期を示す、これら型部材5.6の作動開始時期は双方
において同時でよいが、型部材5.6のガラス流体2に
対する押圧動作終了時期T2は双方において同時か多く
とも±0.05sの誤差に収めるのが好ましい、この誤
差が大きいと型部材5,6の片方のみがガラス流体2に
衝突して該ガラス流体2に横プレが生じ好ましくない、
その後、型部材5,6は、第4図に示すように、ガラス
流体2の被成形部21を押圧したままの状態を所定時間
(T2〜T6)保ち、この間被成形部21の両表面に対
して夫々の成形面5a。In FIG. 8, T=O indicates the start time of operation of both mold members 5.6. Although the start time of operation of both mold members 5.6 may be the same, It is preferable that the pressing operation end timing T2 be at the same time on both sides or within an error of at most ±0.05 seconds. If this error is large, only one of the mold members 5 and 6 will collide with the glass fluid 2, causing the glass fluid 2 to fall into the glass fluid 2. Lateral play occurs, which is undesirable.
Thereafter, as shown in FIG. 4, the mold members 5 and 6 keep pressing the molded part 21 of the glass fluid 2 for a predetermined period of time (T2 to T6), and during this period, both surfaces of the molded part 21 are pressed. On the other hand, each molding surface 5a.
6aによる押圧転写が行なわれる。Pressure transfer by 6a is performed.
切断刃4の作動開始時期は、型部材5,6の作動開始時
期T=Oと同時であってよいが、この切断刃4によるガ
ラス流体2の切断終了時期T2は型部材5.6がガラス
流体2を保持すると同時か少なくとも保持した後でなけ
ればならない。The operation start time of the cutting blade 4 may be the same as the operation start time T=O of the mold members 5 and 6, but the time T2 when the cutting blade 4 finishes cutting the glass fluid 2 is when the mold members 5 and 6 are made of glass. It must be at the same time as or at least after holding fluid 2.
その後、切断刃4は元の状態に復帰せしめられる。第8
図には、この切断刃4の復帰開始時期をT4とし、復帰
終了時期をT5として示しである。好ましくは、切断刃
4の作動開始時期T=0から切断終了時期T2までに要
する時間を0.3〜0.45とする。Thereafter, the cutting blade 4 is returned to its original state. 8th
In the figure, the return start time of the cutting blade 4 is shown as T4, and the return end time is shown as T5. Preferably, the time required from the operation start time T=0 of the cutting blade 4 to the cutting end time T2 is set to 0.3 to 0.45.
切断部材7の作動開始時期T、は、第5図に示すように
、少なくとも切断部材7による被成形部21の外周切断
終了(T3)前に切断刃4によるガラス流体2の切断が
終了(T2)した状態となるように設定する必要がある
。こうすることにより、切断部材7の切断動作が完了し
た時点においてガラス流体2は切断刃4により既に切り
離された状態にあり、切断部材7で切取られた切断片2
2は容易に第1の型部材5の外方に移動することができ
る。As shown in FIG. 5, the operation start timing T of the cutting member 7 is such that the cutting of the glass fluid 2 by the cutting blade 4 is completed (T2) at least before the cutting member 7 finishes cutting the outer periphery of the part to be formed 21 (T3). ). By doing this, when the cutting operation of the cutting member 7 is completed, the glass fluid 2 is already cut off by the cutting blade 4, and the cut piece 2 cut by the cutting member 7 is
2 can be easily moved to the outside of the first mold member 5.
なお、第4゛図は切断部材7の作動開始前のガラス流体
の状15を被成形部21の機能面側から見た正面図であ
る。この図に示すように、被成形部21の外周側面のう
ちガイド部材24に当接する部分は、上記のプレス成形
時に、該ガイド部材24により外形形状が形成される。Note that FIG. 4 is a front view of the glass fluid state 15 before the cutting member 7 starts operating, as seen from the functional side of the molded part 21. As shown in this figure, the outer shape of the portion of the outer circumferential side surface of the part to be molded 21 that comes into contact with the guide member 24 is formed by the guide member 24 during the above-mentioned press molding.
そして、図中点線で示す外周部分がガイド部材24で形
成されない外周側面に相当し、ここが切断部材7で切断
分離せしめられて当該部分の外周形状が形成される。又
1図からも理解できるように、この切断終了後は被成形
部21の下方及び上方の切断片22は該成形部21から
バラバラに分離され自然落下する。The outer circumferential portion indicated by the dotted line in the figure corresponds to the outer circumferential side surface not formed by the guide member 24, and is cut and separated by the cutting member 7 to form the outer circumferential shape of the portion. As can be understood from FIG. 1, after the cutting is completed, the cut pieces 22 on the lower and upper sides of the molded part 21 are separated from the molded part 21 and fall naturally.
かくして、切断部材7は第2の型部材6の外周に沿って
摺動しつつ被成形部21の外周を切断し、該被成形部2
1のガイド部材24により形成されなかった外周側面の
形状を形成する。Thus, the cutting member 7 cuts the outer periphery of the molded part 21 while sliding along the outer periphery of the second mold member 6, and the molded part 2
The shape of the outer peripheral side surface that was not formed by the first guide member 24 is formed.
その後、切断部材7は切断終了時(T3)の状態を維持
し、ガイド部材被成形部21の外周側面を保持したまま
その温度差により被成形部21を外周から冷却し、該被
成形部21の外周付近は粘度を増してその形状が定着す
る。一方、型部材5.6による押圧後、該型部材と被成
形部21の温度差により該被成形部21は両表面から冷
却されて粘度を増し、表面形状が安定化する。Thereafter, the cutting member 7 maintains the state at the end of cutting (T3), and cools the molded part 21 from the outer periphery due to the temperature difference while holding the outer peripheral side surface of the guide member molded part 21. The viscosity increases near the outer periphery and the shape is fixed. On the other hand, after being pressed by the mold member 5.6, the molded part 21 is cooled from both surfaces due to the temperature difference between the mold member and the molded part 21, increasing its viscosity and stabilizing its surface shape.
次いで、第6図に示すように、第1の型部材5を元の状
態に復帰する。この作動開始時期をT6とし、作動終了
時期をT7とし、切断部材7の元の状態に作動する開始
時期を第1の型部材5の復帰終了時期T7と同時かその
終了後とすると、切断部材7の作動開始前において被成
形部21は該切断部材7及びガラス部材24により保持
された状態にあり、自然に落下することがない。Next, as shown in FIG. 6, the first mold member 5 is returned to its original state. Assuming that the operation start time is T6, the operation end time is T7, and the start time for returning the cutting member 7 to its original state is at the same time as or after the return end time T7 of the first mold member 5, the cutting member Before the operation of step 7 starts, the part to be formed 21 is held by the cutting member 7 and the glass member 24, and does not fall off naturally.
そして、切断部材7の復帰終了時期T8と同時に、被成
形部即ち成形品23を増出す、これは、周知の吸着ハン
ド等を用いて行なうことができる。この取出し作業の終
了後、第2の型部材6を元の状態に復帰せしめる。第8
図には、この第2の型部材6の復帰開始時期をT9とし
、復帰終了時期をTIOとしである。Then, at the same time as the return completion time T8 of the cutting member 7, the number of parts to be molded, that is, the molded product 23 is increased.This can be done using a well-known suction hand or the like. After this removal operation is completed, the second mold member 6 is returned to its original state. 8th
In the figure, the return start time of the second mold member 6 is shown as T9, and the return end time is shown as TIO.
以上のよ一うな動作において、成形用型5.6によるプ
レス成形は、ガラス流体2の先端即ち切断跡3を除いた
部分に対して行なわれるため、得られた成形品23にシ
ャーマーク等の表面欠陥が生じない。In the above-mentioned operation, press forming using the molding die 5.6 is performed on the tip of the glass fluid 2, that is, the portion excluding the cut mark 3, so that the resulting molded product 23 may have shear marks, etc. No surface defects occur.
又、成形用型5,6により形成されるキャビティは、各
シリンダー13.16のストロークにより設定すること
ができる。即ち、設定されたシリンダー13.16のス
トロークによって、押圧終了時期T2における成形用型
5,6の成形面間隔が決まる。成形品23の肉厚はこの
成形面間隔により決定されるものであるから、シリンダ
ー13.16のストロークを製造すべき成形品23の肉
厚に応じて設定することにより常に所定の肉厚を有する
成形品が得られる。Also, the cavity formed by the molds 5, 6 can be set by the stroke of each cylinder 13, 16. That is, the distance between the molding surfaces of the molding dies 5 and 6 at the pressing end time T2 is determined by the set stroke of the cylinder 13, 16. Since the wall thickness of the molded product 23 is determined by this molding surface spacing, by setting the stroke of the cylinder 13, 16 according to the wall thickness of the molded product 23 to be manufactured, a predetermined wall thickness can always be maintained. A molded product is obtained.
又、成形品23の表面形状及び性状は各成形部材5,6
の夫々の成形部5a、6aにより決まる。In addition, the surface shape and properties of the molded product 23 are different from each molded member 5, 6.
It is determined by the respective molded parts 5a and 6a.
さらに、成形品23の外周形状はガイド部材24及び切
断部材7の内周形状により決まり、該切断部材7の切断
動作と同時に成形品21の外周が最終的に形成される。Further, the outer peripheral shape of the molded product 23 is determined by the inner peripheral shapes of the guide member 24 and the cutting member 7, and the outer periphery of the molded product 21 is finally formed simultaneously with the cutting operation of the cutting member 7.
又、上述したように、成形用型に軸ずれが生じていたと
しても、該軸ずれを矯正して成形品の光軸精度を上げる
ことができる。Further, as described above, even if an axis misalignment occurs in the mold, the optical axis precision of the molded product can be improved by correcting the axis misalignment.
角型レンズを製造する場合は、第7図(b)に示すよう
な成形面が方形に形成された成形用型を構成すればよい
、なお、第7図(b)において、第7図(a)と同様の
部分には同様の符号が付しである。このような角型レン
ズは一般に熱変形が複雑であってヒケ等の欠陥が生じや
すく成形が困難であるが、未実施例のようにガイド部材
24、切断部材7というように別々の構成とすることに
より変形が生じにくくなり、容易に成形可能となる。When manufacturing a rectangular lens, it is sufficient to construct a molding mold having a rectangular molding surface as shown in FIG. 7(b). The same parts as in a) are given the same reference numerals. Generally, such a square lens undergoes complicated thermal deformation and is prone to defects such as sink marks, making it difficult to mold. This makes it difficult for deformation to occur, making it easier to mold.
このような外周形状の形成方法においては、ガイド部材
24で形成した部分は、切断部材7で形成した側面より
も高精度な面性状を有することができる。In such a method of forming the outer circumferential shape, the portion formed by the guide member 24 can have a more accurate surface texture than the side surface formed by the cutting member 7.
なお、以上説明したプレス成形装置に適用されるガラス
流体として、溶融炉からノズルを介して流出する溶融ガ
ラスが用いであるが、既に成形加工されたロッド或いは
シート状のガラス材料を再加熱することにより流動性を
有するようにされた軟化ガラス材料を成形用型の間に挿
入することにより使用することもできる。Although the glass fluid applied to the press forming apparatus described above is molten glass flowing out from a melting furnace through a nozzle, it is also possible to reheat a glass material in the form of a rod or sheet that has already been formed. It is also possible to use a softened glass material made fluid by inserting it between molds.
次に、上述のようなプレス成形法を用いた具体的実施例
について第1図〜第8図を参照しながら説明する。Next, a specific example using the press molding method as described above will be described with reference to FIGS. 1 to 8.
(実施例1)
通常カメラレンズ等に使用される光学ガラスSF8 (
Tg=443℃、比重4.22)を用いて、外径20m
m、中心肉厚2.7 Ilm、コバ厚1.23厘組曲率
RI=201層、R2=40IIm、 ガラス容量0
.638cc、重i2.68gの凸メニスカス形状のリ
ヒートプレス用プリフォームの成形を行なった。 型部
材5.6は5US420Jから形成し、夫々の成形面5
a、6aは光学鏡面に研磨しである。この型部材5,6
の型温が400℃(SF8のTg=443℃より43℃
低い温If)となるよラヒーター8.9で加熱する。又
、シリンダー13゜16のストロークを各々の型部材5
,6の押圧動作時における最大接近幅が2.7 m璽と
なるように調整し、所望の肉厚が得られるようにしであ
る。(Example 1) Optical glass SF8 (
Tg=443℃, specific gravity 4.22), outer diameter 20m
m, center thickness 2.7 Ilm, edge thickness 1.23 m, curvature RI = 201 layers, R2 = 40 IIm, glass capacity 0
.. A convex meniscus preform for reheat press with a volume of 638 cc and a weight of 2.68 g was molded. The mold members 5.6 are formed from 5US420J, and each molding surface 5.
a and 6a are polished to optical mirror surfaces. This mold member 5, 6
mold temperature is 400℃ (43℃ from Tg of SF8 = 443℃)
Heat it with a heater 8.9 until it reaches a low temperature (If). Also, the stroke of the cylinder 13°16 is adjusted to each mold member 5.
, 6 is adjusted so that the maximum approach width during the pressing operation is 2.7 m, so that the desired wall thickness can be obtained.
まず、不図示の溶融炉で溶融したガラスをカラス流体2
の粘度が約104・6ボアズ(815°±5°C)とな
るように調整し、ノズル1より流出させた。次に、第2
図及び第3図に示すように、ガラス流体2の先端の切断
跡3が型部材5,6の各成形面5a、6aより下方に流
下した時点でシリンダー13.16を作動させ、これと
同時に切断刃4も作動させた。このシリンダー13.1
6(7)作動圧力は夫々120kg、300kgであり
、作動速度は双方とも200 IIm/ sとしである
。First, glass melted in a melting furnace (not shown) is heated to a glass fluid 2.
The viscosity of the solution was adjusted to about 104.6 bores (815°±5°C), and the solution was discharged from nozzle 1. Next, the second
As shown in the figure and FIG. 3, when the cut mark 3 at the tip of the glass fluid 2 flows down from the molding surfaces 5a and 6a of the mold members 5 and 6, the cylinders 13 and 16 are actuated, and at the same time Cutting blade 4 was also activated. This cylinder 13.1
6(7) The working pressures are 120 kg and 300 kg, respectively, and the working speeds are both 200 IIm/s.
そして、第3図に示すように、型部材5,6のガラス流
体2に対する押圧動作が開始された後、切断部材7を作
動させる。なお、この切断部材7はSK3より形成され
、予め型部材5,6の押圧動作が完了した時点から切断
部材7による切断が完了するまでの時間を0.25とな
るよう不図示のコントローラーで各シリンダー13.1
6.17の作動タイミングを調整しておく、この切断部
材7を駆動するシリンダー17の作動圧力は100kg
であり、作動速度は200+*m/Sとしである。Then, as shown in FIG. 3, after the pressing operation of the mold members 5 and 6 against the glass fluid 2 is started, the cutting member 7 is activated. The cutting member 7 is made of SK3, and is controlled in advance by a controller (not shown) so that the time from the time when the pressing operation of the mold members 5 and 6 is completed until the cutting by the cutting member 7 is completed is 0.25. cylinder 13.1
The operating pressure of the cylinder 17 that drives this cutting member 7, which adjusts the operating timing of 6.17, is 100 kg.
The operating speed is 200+*m/S.
又、第5図に示すように、切断部材7による切断動作が
完了した時点では、切断刃4によるガラス流2の切断も
完了する。さらに同図に示すように、切断部材7の切断
動作により、被成形部21のガイド部材24で形成され
ない外周側面が形成されると同時にこの被成形部21と
切断片22とが分離される。Further, as shown in FIG. 5, when the cutting operation by the cutting member 7 is completed, the cutting of the glass flow 2 by the cutting blade 4 is also completed. Furthermore, as shown in the figure, the cutting operation of the cutting member 7 forms the outer peripheral side surface of the part to be formed 21 that is not formed by the guide member 24, and at the same time, the part to be formed 21 and the cut piece 22 are separated.
なお、第5図においては、第1の型部材5と切断部材7
はかみ合った状態になっているが、双方が接触するだけ
の状態でも切断状況は良好であった。In addition, in FIG. 5, the first mold member 5 and the cutting member 7
Although they were in an interlocking state, the cutting condition was good even when the two sides were just in contact.
次に、シリンダー13.16に圧力を加えたまま、成形
品23の温度が型部材5,6の温度(400℃)と略等
しくなるまで約10秒間第5図の状態を保持し、しかる
後、第6図に示すように、シリンダー16のみを作動さ
せ、第1の型部材5を成形品23から引き離した。この
時、成形品23は切断部材7及びガイド部材24に保持
された状態を保ち勝手に落下しない0次いで、シリンダ
ー17を作動させて切断部材7を引き戻すと同時に、不
図示のハンド部材装置により成形品23を取り出し、シ
リンダー13を作動させて第1の型部材6を元の位置に
戻す。そして、切断片22を不図示の切断片排除装置に
より取り除く。Next, while applying pressure to the cylinders 13 and 16, the state shown in FIG. As shown in FIG. 6, only the cylinder 16 was operated and the first mold member 5 was separated from the molded product 23. At this time, the molded product 23 is held by the cutting member 7 and the guide member 24 so that it does not fall off by itself.Next, the cylinder 17 is activated to pull back the cutting member 7, and at the same time, the molded product 23 is molded by a hand member device (not shown). The product 23 is removed and the cylinder 13 is actuated to return the first mold member 6 to its original position. Then, the cut piece 22 is removed by a cut piece removing device (not shown).
かくして、この実施例により得られた成形品23は、所
望成形品に対して外径精度で±0.0051111、中
心肉厚で±0.01m履、重量で0.02g (±0.
7%)以内のバラツキに収まり、シャーマークはもとよ
り有害な表面欠陥は生じておらず、又ヒケも各型部材5
.6の形状に対して最大で10pm以内に収るものであ
り、リヒートプレス用プリフォームとしてだけではなく
、あまり精度を要求されない光学レンズとして十分使用
できるものであった。Thus, the molded product 23 obtained in this example has an outer diameter accuracy of ±0.0051111, a center wall thickness of ±0.01 m, and a weight of 0.02 g (±0.
7%), no harmful surface defects such as shear marks occurred, and sink marks were also within 5% of each mold member.
.. It was within 10 pm at maximum with respect to the shape of No. 6, and could be used not only as a preform for reheat press but also as an optical lens that does not require much precision.
第9図は、本実施例における第1の型部材5゜第2の型
部材6及び被成形材料であるガラスの温度の時間的変化
を示すグラフである。なお、この説明にあたり、第8図
の時間Tが用いである。FIG. 9 is a graph showing temporal changes in temperature of the first mold member 5, the second mold member 6, and glass as the material to be molded in this example. Incidentally, in this explanation, the time T shown in FIG. 8 is used.
当初(第8図においてT=O)、第1及び第2の型部材
5,6は、ガラス材料のガラス転移点Tg(SR8のT
g=443℃)より43℃低い400℃に調整された。Initially (T=O in FIG. 8), the first and second mold members 5, 6 are set at the glass transition point Tg of the glass material (T of SR8).
g = 443°C) was adjusted to 400°C, which is 43°C lower.
又、第2図に示すノズル1から流化するガラス流体2の
粘度は約!046ボアズ(815°±5℃)となるよう
に調整された。上記型部材5,6の押圧動作終了時期T
2から復帰動作開始時期T6までの成形期間(約10秒
間)において、被成形部21のJラスは、型部材5,6
の温度差により急激に冷却され、粘度は1046ボアズ
から1QI4.5ポアズ以上となる。本実施例において
は、型部材5.6は押圧終了時まで400℃に保持され
るよう夫々ヒーター8.9により加熱され、この時成形
品23のガラス温度はこの型部材5,6と略同温となる
。Also, the viscosity of the glass fluid 2 flowing from the nozzle 1 shown in FIG. 2 is approximately! The temperature was adjusted to 046 bores (815°±5°C). End time T of pressing operation of the mold members 5 and 6
During the molding period (approximately 10 seconds) from 2 to return operation start time T6, the J lath of the molded part 21
It is rapidly cooled due to the temperature difference, and the viscosity increases from 1046 boazz to 1QI4.5 poise or more. In this embodiment, the mold members 5.6 are heated by heaters 8.9 so as to be maintained at 400° C. until the end of pressing, and at this time the glass temperature of the molded product 23 is approximately the same as that of the mold members 5, 6. It becomes warm.
(実施例2)
この実施例においては、光学ガラスF8(Tg=445
℃、比重3.36)の溶融ガラスを用い、実施例1と同
様の方法で外径6mm、中心肉厚Arx組コバ厚3.0
8厘層、曲率がR1= R2= 10m+g、ガラス容
fiO,100cc 、重% 337 m gの両凸形
状のリヒートプレス用プリフォームの成形を行なった。(Example 2) In this example, optical glass F8 (Tg=445
℃, specific gravity 3.36), the outer diameter is 6 mm, the center wall thickness is Arx, and the edge thickness is 3.0 using the same method as in Example 1.
A double-convex preform for reheat press was molded with 8 layers, a curvature of R1=R2=10 m+g, a glass volume fiO of 100 cc, and a weight percentage of 337 mg.
この実施例では、型部材5,6として実施例1と同様の
ものを使用し、型温が375℃(R8の7g445℃よ
り70℃低い温度)となるようヒーター8.9の調整を
行なった。In this example, the same mold members 5 and 6 as in Example 1 were used, and the heater 8.9 was adjusted so that the mold temperature was 375°C (70°C lower than R8's 7g445°C). .
又、不図示の溶融炉にて溶融されたガラスをガラス流体
2の粘度が10295〜1031ポアズ(1080℃〜
1050℃)となるように調整した。 そして、各シリ
ンダー13.16.17の作動圧力を夫々50kg、
200kg、 50kgに設定し、実施例1と同様の方
法でプレス成形及び切断処理を行ない、成形品23の内
部粘度が109ポアズ(約540℃)になったところで
ff12の型部材6かも取り出したところ、得られた成
形品23は、所望の成形品に対して外径精度で±0.0
15m、中心肉厚で±0.021重量で±3mg(±0
.3%)のバラツキ内に収り、表面中心部のヒケも平均
40gm程度のものであり1表面状態も良好なリヒート
プレス用プリフォームとして十分使用できる精度のもの
であった。Further, the glass fluid 2 melted in a melting furnace (not shown) has a viscosity of 10295 to 1031 poise (1080°C to
The temperature was adjusted to 1050°C. Then, the operating pressure of each cylinder 13, 16, 17 is 50 kg, respectively.
200 kg and 50 kg, press molding and cutting were performed in the same manner as in Example 1, and when the internal viscosity of the molded product 23 reached 109 poise (approximately 540°C), the mold member 6 of FF12 was also taken out. , the obtained molded product 23 has an outer diameter accuracy of ±0.0 with respect to the desired molded product.
15m, center thickness: ±0.021 Weight: ±3mg (±0
.. 3%), and the sink mark at the center of the surface was about 40 gm on average, and the surface condition was good enough to be used as a preform for reheat press.
(実施例3)
この実施例においては、実施例1と同様の光学ガラスS
F8の丸棒を用い、外径20III1.中心肉厚3 a
m、コバ厚り、S mm、曲率がR1=32mm、ガラ
ス容io、893cc 、重量2.92gの凸形状のレ
ンズ成形を非酸化雰囲気中で行なった。(Example 3) In this example, the same optical glass S as in Example 1 was used.
Using an F8 round bar, the outer diameter is 20III1. Center thickness 3a
A convex lens with m, edge thickness, S mm, curvature R1 = 32 mm, glass volume io, 893 cc, and weight 2.92 g was molded in a non-oxidizing atmosphere.
SF8から成る丸棒は直径10mm±1m鳳のもので、
表面のキズやゴミを除去した上で、不図示の加熱炉で1
05ポアズ(約775℃)程度の粘度となるように加熱
した。The round bar made of SF8 has a diameter of 10mm±1m,
After removing scratches and dirt from the surface, heat it in a heating furnace (not shown).
The mixture was heated to a viscosity of approximately 0.05 poise (approximately 775°C).
又、型部材5,6は炭化タングステンから成るものを用
い、成形面5a、6aを光学鏡面とし。The mold members 5 and 6 are made of tungsten carbide, and the molding surfaces 5a and 6a are optical mirror surfaces.
型温か510℃(ガラス粘度で約109ポアズに相当す
る)となるようヒーター8,9により加熱した。又、切
断部材も型部材5,6と同様炭化タングステンから成る
ものを用い、この切断部材7を不図示の外部ヒータで4
00℃となるように加熱した。Heaters 8 and 9 were used to heat the mold to a temperature of 510° C. (corresponding to about 109 poise in terms of glass viscosity). Also, the cutting member 7 is made of tungsten carbide like the mold members 5 and 6, and the cutting member 7 is heated by an external heater (not shown).
It was heated to 00°C.
又、本実施例においては、成形を非酸化雰囲気中で行な
うため、装置全体をカバーでおおい、アルゴンガスで置
換した。Further, in this example, since the molding was performed in a non-oxidizing atmosphere, the entire apparatus was covered with a cover and the atmosphere was replaced with argon gas.
そして、各シリンダー13.16.17の作動圧力を夫
々170kg、 350kg、 150kgに設定し、
実施例1と同様の方法でプレス成形及び切断処理を行っ
た。ただし、本実施例においては、溶融ガラス流の代わ
りに先端付近を上記した粘度にまで軟化したガラス棒を
使用した。Then, the working pressures of each cylinder 13, 16, and 17 were set to 170 kg, 350 kg, and 150 kg, respectively.
Press molding and cutting were performed in the same manner as in Example 1. However, in this example, instead of the molten glass flow, a glass rod whose tip portion had been softened to the above-mentioned viscosity was used.
プレス成形及び切断完了後、各シリンダー13゜16.
17は圧力を加えたままの状態で、ヒーター8,9及び
切断部材加熱用の外部ヒーターの出力を徐々に弱め、型
部材5,6と成形品22の温度が400℃(ガラス粘度
で約IQ+4.5ポアズ以上)になるまで冷却した後、
成形品23を実施例1と同様の方法で第2の型部材6か
ら取り出した。得られた成形品は、所望の成形品に対し
て外径精度で±0.005+*m 、中心肉厚で十〇、
O1+sm 重量で±0.025 g (±0.85
%)以内のバラツキに収まり、表面状態も良好で、ヒケ
による面食形もほとんど見られず、特に高精度を要求さ
れないレンズとしてこのままで十分使用できる状態であ
った。After press forming and cutting are completed, each cylinder 13° 16.
17, while keeping the pressure applied, gradually weaken the output of the heaters 8, 9 and the external heater for heating the cutting member, until the temperature of the mold members 5, 6 and the molded product 22 reaches 400°C (approximately IQ + 4 in terms of glass viscosity). After cooling to .5 poise or higher),
The molded product 23 was taken out from the second mold member 6 in the same manner as in Example 1. The obtained molded product has an outer diameter accuracy of ±0.005+*m and a center wall thickness of 100, relative to the desired molded product.
O1+sm Weight: ±0.025 g (±0.85
%), the surface condition was good, and there was almost no surface erosion due to sink marks, and the lens could be used as it is without particularly requiring high precision.
(発明の効果)
以上説明したように、本発明によれば1次のような効果
が生じる。(Effects of the Invention) As explained above, according to the present invention, the following effects are produced.
(1)成形品表面にシャーマーク等の表面欠陥がなく、
寸法精度及び重量精度の高い光学レンズ或いはリヒート
プレス用プリフォーム等の光学素子をプレス成形後の研
削、研摩等の後加工を一切必要とせずに製造することが
できる。(1) There are no surface defects such as shear marks on the surface of the molded product.
Optical elements such as optical lenses or reheat press preforms with high dimensional and weight accuracy can be manufactured without any post-processing such as grinding or polishing after press molding.
(2)成形に用いるガラス流体の精度があまり要求され
ないため、溶融ガラス等の流出装置が安価なものでよく
、高い技術を必要としない。又、溶融炉のガラス液面変
動による流出ガラスの流量、温度変化に対して柔軟性が
あるため、溶融炉も安価なものでよい。(2) Since the glass fluid used for molding does not require much precision, the device for discharging molten glass or the like may be inexpensive and does not require high technology. Furthermore, since the melting furnace is flexible in response to changes in the flow rate and temperature of the outflowing glass due to fluctuations in the glass liquid level in the melting furnace, the melting furnace may also be inexpensive.
(3)成形に用いるガラス材料は、溶融ガラスのほかガ
ラス棒或いはシート状のものでも差し支えなく、又これ
らの精度もさほど要求されない。(3) In addition to molten glass, the glass material used for molding may be in the form of a glass rod or sheet, and the accuracy of these materials is not particularly required.
(4)ガラス流体に対して直接プレス成形及び切断処理
をするため、従来プレス成形が困難であった小型で薄い
成形品も高精度かつ容易に製造できる。(4) Since the glass fluid is directly press-molded and cut, small and thin molded products, which were conventionally difficult to press-form, can be easily manufactured with high precision.
特に、本発明によれば成形用型の軸ずれをガイド部材に
より矯正して成形品の光軸精度を向上することができる
。又1本発明のガイド部材により形成された成形品の外
周側面は、切断部材により切断して形成したものと違い
、必要に応じて高精度の面性状に仕上ることができるか
ら、この部分を光学機能面として積極的に使用すること
もできる。In particular, according to the present invention, the optical axis precision of the molded product can be improved by correcting the axis misalignment of the mold using the guide member. In addition, the outer peripheral side surface of the molded product formed by the guide member of the present invention can be finished with a highly accurate surface texture as required, unlike those formed by cutting with a cutting member. It can also be actively used for functionality.
第1図は本発明の実施例を示すプレス成形装置の概略的
断面図である。第2図〜第6図は第1図に示す装置の要
部断面図であり、同装置の工程順の作動状態が示しであ
る。第7図(a)及び(b)は成形用型の周辺を示す斜
視図である。第8図は第1図に示すプレス成形装置の各
作動部のタイミングチャートを示す図である。第9図は
第1実施例におけるプレス成形時の型部材及びガラスの
温度の時間的変化を示すグラフである。
1・・・ノズル
2・・・ガラス流体
3・・・切断跡
4・・・切断刃
5・・・第1の型部材
6・・・第2の型部材
7・・・切断部材
21・・・被成形部
22・・・切断片
23・・・成形品
24・・・ガイド部材
25・・・案内溝
代理人 弁理士 山 下 積 子
箱1図
第5図
第8図
TI T2 T3 T4 T5
第9図
カラスと仄廿シ用1の持角ス間11・時事月手続ネ市正
書(力°ヱ0
昭和63年 2月26E1
特許庁長官 小 川 邦 夫 殿1、事件の
表示
特願昭62−304571号
2、発明の名称
光学素子の成形用型
3、補正をする者
事件との関係 特許出願人
名称 キャノン株式会社
4、代理人
住所 東京都港区虎)門五丁目13番1号虎ノ門4o
森ビル6、補正の対象
明細書の発明の詳細な説明の欄、図面の簡単な説明の欄
および図面7、補正の内容
(+)明細書第20頁3行目の「第4図」を「第4図(
a)」と訂+Tユする。
(2)明細書箱21頁9行目の「第4゛図」を「第4図
(b)」と::1正する。
(3)明細書筒35頁5行目の「作動状態が示しである
。jを「作動状態、ただし第4図(b)においては第4
図(a)の断面状態が示しである。」と訂正する。
(4)図面の第4図を第4図(a)、第4°図を第4図
(b)と夫々別紙の通り訂正する。
第4 図
(a)
第4図
(b)FIG. 1 is a schematic sectional view of a press molding apparatus showing an embodiment of the present invention. FIGS. 2 to 6 are sectional views of essential parts of the apparatus shown in FIG. 1, and show the operating state of the apparatus in the order of steps. FIGS. 7(a) and 7(b) are perspective views showing the periphery of the mold. FIG. 8 is a diagram showing a timing chart of each operating section of the press molding apparatus shown in FIG. 1. FIG. 9 is a graph showing temporal changes in temperature of the mold member and glass during press molding in the first example. 1... Nozzle 2... Glass fluid 3... Cutting mark 4... Cutting blade 5... First die member 6... Second die member 7... Cutting member 21...・Molded part 22...Cut piece 23...Molded product 24...Guide member 25...Guide groove agent Patent attorney Yamashita Seki Box 1 Figure 5 Figure 8 TI T2 T3 T4 T5 Fig. 9 Between the crow and the angle of 1 11 Current affairs month procedure Nei City official document (Power°ヱ0 February 26, 1986 E1 Kunio Ogawa, Commissioner of the Patent Office 1, Patent application for indication of the incident No. 62-304571 No. 2, Name of the invention: Mold for molding optical elements 3, Relationship to the amended case Patent applicant name: Canon Co., Ltd. 4, Agent address: 5-13-1 Tora-mon, Minato-ku, Tokyo No. Toranomon 4o
Mori Building 6, Detailed description of the invention column, Brief description of drawings column, Drawing 7, Contents of amendment (+) "Figure 4" on page 20, line 3 of the specification of the specification to be amended. "Figure 4 (
a)” and correct + Tyu. (2) Correct ``Figure 4'' on page 21, line 9 of the specification box to ``Figure 4 (b)'' by ::1. (3) The ``operating state'' on page 35 line 5 of the specification cylinder is indicated.
The cross-sectional state in Figure (a) is shown. ” he corrected. (4) Figure 4 of the drawings has been corrected as Figure 4(a) and Figure 4° has been revised as Figure 4(b), respectively, as shown in the attached sheets. Figure 4 (a) Figure 4 (b)
Claims (6)
該ガラス流体を略直角方向から押圧して被成形部の機能
面を形成するよう配置された一対の成形用型部材と、該
成形用型部材の外周に前記ガラス流体が通過する開口部
を有し、前記被成形部の外周側面の一部を形成するとと
もに前記各々の型部材の押圧動作を案内するガイド部材
と、前記開口部を遮断するよう動作して前記被成形部の
ガイド部材により形成されなかった残りの外周側面を切
断する切断部材とを備えたことを特徴とする光学素子の
成形用型。(1) A pair of mold members for molding arranged so that the molding surfaces facing each other so as to narrow the glass fluid press the glass fluid from a substantially perpendicular direction to form a functional surface of the molded part; A guide member having an opening through which the glass fluid passes on the outer periphery of the mold member, forming a part of the outer peripheral side surface of the molded part and guiding the pressing operation of each of the mold members; A mold for molding an optical element, comprising: a cutting member that operates to cut off the remaining outer peripheral side surface of the portion to be molded that is not formed by the guide member.
するように対を成して組合わされることにより前記成形
用型部材の外周を構成することを特徴とする特許請求の
範囲第1項記載の光学素子の成形用型。(2) The outer periphery of the mold member is configured by combining the guide member and the cutting member in pairs so as to face each other. A mold for molding optical elements.
有することを特徴とする特許請求の範囲第1項記載の光
学素子の成形用型置。(3) The mold for molding an optical element according to claim 1, wherein the glass fluid has a viscosity of 10 to 10^7 poise.
流下する溶融ガラス流であることを特徴とする特許請求
の範囲第2項記載の光学素子の成形用型置。(4) The mold for molding an optical element according to claim 2, wherein the glass fluid is a molten glass flow flowing down from an outflow nozzle of a glass melting furnace.
状のガラス材料から成ることを特徴とする特許請求の範
囲第2項記載の光学素子の成形用型。(5) The mold for forming an optical element according to claim 2, wherein the glass fluid is made of a reheated rod or sheet-like glass material.
相当する温度とガラス転移点(ガラス粘度で約10^1
^3ポアズに相当する)より100℃低い温度の範囲内
の成形用型で加圧成形することを特徴とする特許請求の
範囲第2項記載の光学素子の成形用型。(6) The glass fluid is heated at a temperature corresponding to a glass viscosity of 10^8 poise and a glass transition point (about 10^1 in glass viscosity).
3. The mold for forming an optical element according to claim 2, wherein the mold is press-molded at a temperature 100° C. lower than 3 poise.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30457187A JPH0791076B2 (en) | 1987-12-03 | 1987-12-03 | Mold for optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30457187A JPH0791076B2 (en) | 1987-12-03 | 1987-12-03 | Mold for optical element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01148715A true JPH01148715A (en) | 1989-06-12 |
JPH0791076B2 JPH0791076B2 (en) | 1995-10-04 |
Family
ID=17934595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30457187A Expired - Fee Related JPH0791076B2 (en) | 1987-12-03 | 1987-12-03 | Mold for optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0791076B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5322541A (en) * | 1991-03-28 | 1994-06-21 | Matsushita Electric Industrial Co., Ltd. | Method of producing glass blank |
-
1987
- 1987-12-03 JP JP30457187A patent/JPH0791076B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5322541A (en) * | 1991-03-28 | 1994-06-21 | Matsushita Electric Industrial Co., Ltd. | Method of producing glass blank |
Also Published As
Publication number | Publication date |
---|---|
JPH0791076B2 (en) | 1995-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01133948A (en) | Manufacture of optical element | |
JP4368368B2 (en) | Manufacturing method of glass lump, manufacturing apparatus thereof, and manufacturing method of optical element | |
JPH01148717A (en) | Forming device of optical element | |
JPH0419172B2 (en) | ||
JPH01148715A (en) | Die for forming optical element | |
JP4289716B2 (en) | Glass element molding method | |
JP2008074636A (en) | Method and device for producing optical element | |
JPH01153539A (en) | Molding device for optical element | |
JP2662300B2 (en) | Manufacturing method and apparatus for glass molded product | |
JPH0445454B2 (en) | ||
JPH0445459B2 (en) | ||
JP2504802B2 (en) | Method and apparatus for press-molding optical molded body | |
JP2501585B2 (en) | Optical element molding method | |
JPH01212240A (en) | Method for molding optical element | |
JP3068281B2 (en) | Optical element molding equipment | |
JPH01153538A (en) | Production of optical element | |
JPH01138144A (en) | Production of optical element | |
JPH0629147B2 (en) | Optical element molding method | |
JPH01153540A (en) | Production of optical element | |
JP2008074637A (en) | Manufacturing process and apparatus of optical device | |
JP2746450B2 (en) | Optical element molding method | |
JPH0372016B2 (en) | ||
JPH01212241A (en) | Method for molding optical element | |
JP2019059228A (en) | Production method of prism, prism, and mold | |
JPH0445460B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |