JPH11322349A - Molding of glass product - Google Patents

Molding of glass product

Info

Publication number
JPH11322349A
JPH11322349A JP13965398A JP13965398A JPH11322349A JP H11322349 A JPH11322349 A JP H11322349A JP 13965398 A JP13965398 A JP 13965398A JP 13965398 A JP13965398 A JP 13965398A JP H11322349 A JPH11322349 A JP H11322349A
Authority
JP
Japan
Prior art keywords
glass
temperature
molding
shape
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13965398A
Other languages
Japanese (ja)
Inventor
Isamu Shigyo
勇 執行
Masayuki Tomita
昌之 冨田
Tamakazu Yogo
瑞和 余語
Hiroyuki Kubo
裕之 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13965398A priority Critical patent/JPH11322349A/en
Publication of JPH11322349A publication Critical patent/JPH11322349A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • C03B40/04Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it using gas
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/10Cutting-off or severing the glass flow with the aid of knives or scissors or non-contacting cutting means, e.g. a gas jet; Construction of the blades used
    • C03B7/12Cutting-off or severing a free-hanging glass stream, e.g. by the combination of gravity and surface tension forces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/48Convex-concave
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/63Pressing between porous dies supplied with gas, i.e. contactless pressing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for molding a glass molded product simply by directly carrying out the press molding and fabrication of a glass product such as an optical element having a highly accurate shape and a high surface accuracy from a molten glass gob in a molten and softened state without using after processing such as grinding or polishing at all. SOLUTION: A molten glass gob is kept at a prescribed temperature for a required time in a temperature region for determining the shape of a glass product so as to provide a temperature difference between the interior and the surface of the glass within 5 deg.C and an applied pressure is increased just before completing the maintenance of the temperature to make the surface of the molten glass gob follow the shape of the molding and transferring surface. The applied pressure is then reduced to simultaneously start the cooling and the resultant shape obtained at the holding temperature is kept in a method for molding a glass molded product comprising press molding the molten glass gob through a gas jetting from the molding and transferring surface of a porous forming mold while maintaining the molten glass gob and the forming mold in a noncontact state, then cooling the press molded glass gob and providing the glass product.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、カメラや
ビデオカメラに用いられるレンズなどの高精度な光学ガ
ラス素子、その他のガラス製品を、主に、熱間加工にお
いてプレス成形して、得るための成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for obtaining high precision optical glass elements such as lenses used in cameras and video cameras, and other glass products by press forming mainly in hot working. And a method for molding the same.

【0002】[0002]

【従来の技術】従来から、レンズなどの光学ガラス製品
は、溶融されたガラスのブロックから最終の形状に近い
形状に切り出した素材や、溶融ガラスから直接に最終の
形状に近い形状にプレス成形した素材を、研削・研磨を
施すことにより得ていた。
2. Description of the Related Art Hitherto, optical glass products such as lenses have been cut out from a molten glass block into a shape close to the final shape, or directly pressed from a molten glass into a shape close to the final shape. The material was obtained by grinding and polishing.

【0003】また、近年、この研削・研磨によるガラス
製品の加工方法に代わり、表面欠陥の無い成形素材を加
熱軟化させ、それを成形型を用いて直接プレス成形する
方法が注目されて来ている。
In recent years, instead of the method of processing glass products by grinding and polishing, a method of heating and softening a molding material having no surface defects and directly press-molding the same using a molding die has attracted attention. .

【0004】通常、この種の成形には、胴型とその胴型
内で摺動する上下型よりなる成形用型部材を用いて、加
熱軟化状態にある成形素材をプレスし、前記型部材の成
形面に対応した機能面を前記成形素材に転写し、その後
冷却を行い、前記型部材から前記ガラス製品を取り出す
方法が用いられている。
Usually, in this type of molding, a molding material in a heated and softened state is pressed using a molding die member composed of a barrel die and an upper and lower die that slides in the barrel die, and the mold member is pressed. A method has been used in which a functional surface corresponding to a molding surface is transferred to the molding material, then cooled, and the glass product is removed from the mold member.

【0005】また、特公昭48−22977号、特開昭
59−19554号、特公昭54−39846号などの
公報には、型材料として多孔質材を用いたり、あるい
は、超音波振動を用いて、型表面にガス膜を作り、その
膜を介して、成形型と成形素材である軟化ガラス塊とを
非接触の状態で保持し、その状態のまま、レンズなどの
プレス成形を行う技術が開示されている。
In Japanese Patent Publication Nos. 48-22977, JP-A-59-19554 and JP-B-54-39846, a porous material is used as a mold material, or ultrasonic vibration is used. Discloses a technique for forming a gas film on the surface of a mold, holding the molding die and the softened glass lump as a molding material in a non-contact state through the film, and performing press molding of a lens or the like in that state. Have been.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
研削・研磨による方法では、ガラスブロックを切り出し
た後に、最終製品に近似する形状へと研削する工程や、
プレス成形されたガラス素材の表層近くの数々の欠陥を
除去するために、ガラス素材(成形ガラス塊)の表面外
周を大きく除去する研削工程が必要であり、その後、最
終製品の形状へと、更に精研削・研磨により、ガラス素
材の表面を磨き上げる工程が必要であった。
However, in the conventional grinding / polishing method, after a glass block is cut out, a step of grinding the glass block into a shape similar to a final product,
In order to remove many defects near the surface layer of the pressed glass material, it is necessary to perform a grinding process to largely remove the outer periphery of the glass material (molded glass lump), and then to the final product shape. A step of polishing the surface of the glass material by fine grinding and polishing was required.

【0007】この研削・研磨では、通常、最低でも0.
5mm以上の深さまで研削、除去する必要があり、精研
削で50μm、研磨で10μm程度の最終的な除去、加
工が必要である。そのために、製品が出来上がるまでの
工程が多く、時間がかかると共に、切り出しや形状作製
のための研削によるガラススラッジが多量に発生し、環
境保護のために、その処理に多大の労力が必要となる。
[0007] In this grinding and polishing, usually, at least 0.
It is necessary to grind and remove to a depth of 5 mm or more, and final removal and processing of about 50 μm by fine grinding and about 10 μm by polishing are required. Therefore, many steps are required until the product is completed, it takes time, and a large amount of glass sludge is generated due to cutting and grinding for forming a shape, and a great deal of labor is required for the processing for environmental protection. .

【0008】また、上記の成形型を用いてプレス成形す
る従来の方法でも、表面欠陥の無い成形素材を得るため
に、場合によっては、上述同様の問題が生じることがあ
り、また、プレス成形時において、加熱された成形型と
成形素材が直接に接触するために、成形素材と型との間
に融着が発生したり、成形素材であるガラスと成形型と
の接触によるガラスと型材との反応や、型の表面の摩耗
など、成形型の劣化が発生する原因を生じてしまう。ま
して、高温の溶融ガラスから直接にレンズのような精密
なガラス製品を成形しようとすると、これらの問題が顕
著化し、実質上このような成形方法を採用することは困
難となる。
[0008] Even in the conventional method of press-molding using the above-described mold, the same problem as described above may occur in some cases in order to obtain a molding material without surface defects. Since the heated mold and the molding material come into direct contact with each other, fusion occurs between the molding material and the mold, or the glass and the molding material come into contact with the molding material glass and the molding die. This may cause deterioration of the mold such as reaction and wear of the mold surface. Furthermore, when a precision glass product such as a lens is directly molded from a high-temperature molten glass, these problems become remarkable, and it becomes substantially difficult to employ such a molding method.

【0009】上記のような問題を避けるために、前述の
特公昭48−22977号や特開昭59−19554号
に所載の発明では、成形型と成形素材であるガラスとを
接触させないで、成形する技術が提唱されている。この
ようにガラスと成形型とを非接触の状態に保持したま
ま、成形することは理想的であり、融着防止など、その
成形品の表面状態に対しての効果はあるが、軟化状態に
ある温度の高い成形素材を成形し、冷却するだけである
と、冷却中に成形品の内部に温度分布が発生し、冷却中
の熱収縮が均等に起こらずに、収縮が温度の比較的高い
部分に集中するため、冷却後にその部分がくぼんだ状態
に変形してしまう、所謂、ヒケと呼ばれる現象が生じ、
本来の目的とする最終の成形品の形状と大きくかけ離れ
てしまうという問題があった。
In order to avoid the above-mentioned problems, in the inventions described in Japanese Patent Publication No. 48-22977 and Japanese Patent Application Laid-Open No. 59-19554, a molding die is not brought into contact with glass as a molding material. A molding technique has been proposed. It is ideal to mold the glass while keeping the glass and the mold in a non-contact state, and it has an effect on the surface state of the molded article, such as prevention of fusion, but it has a softened state. If only a high temperature molding material is molded and cooled, a temperature distribution occurs inside the molded product during cooling, and heat shrinkage during cooling does not occur evenly, and shrinkage is relatively high Because it concentrates on the part, after cooling, the part deforms into a concave state, a phenomenon called so-called sink occurs.
There is a problem that the shape of the final molded product is largely different from the original shape of the final product.

【0010】同様に、前述の特公昭54−39846号
公報に所載の成形方法では、非接触状態で溶融ガラスを
受け型(下型)に受け、溶融ガラス塊が無垢の表面との
接触によっても表面に損傷を受けることなく成形され得
る状態となるような温度に、前記溶融ガラス塊を冷却
し、成形型の、無垢の面(成形転写面)との間で接触す
ることにより、調質された溶融ガラス塊をプレス成形す
るが、その際に、前述のヒケの回避のため、冷却後に、
ほぼ平坦形状になるように、接触成形させてガラス塊の
平面を成形するためのプランジャーの形状を、単純な平
面でなく、円錐形状に補正を施すのである。
[0010] Similarly, in the molding method described in Japanese Patent Publication No. 54-39846, the molten glass is received in a receiving mold (lower mold) in a non-contact state, and the molten glass lump is brought into contact with a solid surface. The molten glass ingot is cooled to a temperature at which the molten glass ingot can be formed without any damage to the surface, and is brought into contact with a solid surface (mold transfer surface) of the mold so as to be refined. Press-formed the molten glass lump, at that time, in order to avoid the above-mentioned sink, after cooling,
The shape of the plunger for forming the plane of the glass block by contact molding so as to have a substantially flat shape is corrected not to a simple plane but to a conical shape.

【0011】しかしながら、その実施例にも記載されて
いるように、この従来の技術では、プレス成形後に、更
に研磨などの工程が必要であり、また、溶融ガラス塊を
上面が解放された下型で受け、ガラスがある程度固化し
た後に、プレス成形するために、片面が平面に近い形状
のガラス素材しか、プレス成形の対象にできないなどの
制約があり、更に、供給される溶融ガラス塊の温度及び
温度分布や、冷却による成形品の温度分布が不均一であ
ったりすると、ヒケの発生量や発生場所が一定となら
ず、高精度の製品を作り出すのが非常に困難である。
However, as described in the embodiment, in this conventional technique, a step such as polishing is required after press molding, and the molten glass lump is placed in a lower mold having an open upper surface. After the glass is solidified to some extent, in order to press-mold, there is a restriction that only one side of the glass material having a shape close to a plane can be subjected to press molding, and further, the temperature and temperature of the supplied molten glass mass If the temperature distribution or the temperature distribution of the molded product due to cooling is not uniform, the amount and location of sink marks will not be constant, and it will be very difficult to produce a highly accurate product.

【0012】本発明は、上記事情に基づいてなされたも
ので、その第1の目的とするところは、溶融軟化状態に
ある溶融ガラス塊から直接に高精度な形状及び面精度を
有する光学素子などのガラス製品を、研削・研磨などの
後加工を全く用いずに、加圧成形加工のみにより、得ら
れるガラス成形品の成形方法を提供するにある。
The present invention has been made based on the above circumstances, and a first object of the present invention is to provide an optical element having a high-precision shape and surface precision directly from a molten glass mass in a molten softened state. An object of the present invention is to provide a method for forming a glass molded product obtained by subjecting the glass product to a pressure molding process without using any post-processing such as grinding and polishing.

【0013】また、本発明の第2の目的とするところ
は、溶融軟化状態にある溶融ガラス塊から、高精度な形
状及び面精度を有する光学素子などのガラス製品を、研
削加工で、スラッジを多量に発生させることなく、特
に、その研削で発生する表面の除去加工量を、従来の1
/10以下とすることができるガラス製品の成形方法を
提供するにある。
A second object of the present invention is to form a glass product such as an optical element having a high-precision shape and surface accuracy from a molten glass lump in a molten softened state by grinding to remove sludge. In particular, the amount of removal of the surface generated by the grinding can be reduced by the conventional one without causing a large amount.
It is an object of the present invention to provide a method for forming a glass product which can be set to / 10 or less.

【0014】[0014]

【課題を解決するための手段】(発明の本質的部分)こ
のため、本発明では、多孔質の成形型の成形転写面から
噴出するガスを介して、溶融ガラス塊と成形型とを非接
触の状態に保持したまま、前記溶融ガラス塊を加圧成形
し、また、その後に冷却し、ガラス製品を得るガラス成
形品の成形方法において、そのガラス製品の形状を決定
する温度領域で、ガラス内部と表面との温度差が5℃以
内になるように、所要時間、所定温度に保持すると共
に、その温度保持の完了直前に、加圧力を増して、成形
転写面の形状に溶融ガラス塊の表面を倣わせ、その後、
加圧力を減じると同時に冷却を開始し、前記保持温度で
得られた形状を保つようにしたことを特徴とする。
Means for Solving the Problems (Essential part of the invention) For this reason, in the present invention, the molten glass block and the molding die are brought into non-contact with each other via a gas ejected from the molding transfer surface of the porous molding die. The molten glass ingot is pressure-formed while being held in the state described above, and then cooled, and in a method of forming a glass molded product to obtain a glass product, the temperature inside the glass is determined in a temperature range that determines the shape of the glass product. The temperature is maintained at a predetermined temperature for a required time so that the temperature difference between the surface and the surface is within 5 ° C. Immediately before the completion of the temperature holding, the pressing force is increased, and the surface of the molten glass block is formed into the shape of the molding transfer surface. And then
The cooling is started at the same time as the pressing force is reduced, and the shape obtained at the holding temperature is maintained.

【0015】また、本発明では、多孔質の成形型の成形
転写面から噴出するガスを介して、溶融ガラス塊と成形
型とを非接触の状態に保持したまま、前記溶融ガラス塊
を加圧成形し、また、その後に冷却し、ガラス製品を得
るガラス成形品の成形方法において、そのガラス製品の
形状を決定する温度領域で、ガラス内部と表面との温度
差が5℃以内になるように、所要時間、所定温度に保持
すると共に、その温度保持の完了直前に、加圧力を増し
て、成形転写面の形状に溶融ガラス塊の表面を倣わせ、
その後、加圧力を減じると同時に冷却を開始して、前記
保持温度で得られた形状を保つと共に、このようにして
得られたガラス素材の表層を、精研削・研磨加工により
除去し、ガラス製品を得ることを特徴とする。
[0015] In the present invention, the molten glass lump is pressurized while maintaining the molten glass lump and the molding die in a non-contact state through a gas ejected from the molding transfer surface of the porous molding die. In a method for molding a glass molded product, which is molded and then cooled to obtain a glass product, the temperature difference between the inside and the surface of the glass is within 5 ° C. in a temperature range that determines the shape of the glass product. , Required time, while holding at a predetermined temperature, just before the completion of the temperature holding, increasing the pressing force, so that the surface of the molten glass block follows the shape of the molding transfer surface,
Thereafter, cooling is started at the same time as the pressing force is reduced, the shape obtained at the holding temperature is maintained, and the surface layer of the glass material thus obtained is removed by fine grinding / polishing to remove the glass product. It is characterized by obtaining.

【0016】これによって、冷却完了後のガラス成形品
の形状が常に一定となるように、ヒケの発生を抑えるこ
とができ、また、仮にヒケが発生しても、その発生量や
発生位置を正確に把握することで、その再現性に合わせ
て、最小の精研削・研磨加工で完成品にすることができ
る。
This makes it possible to suppress the occurrence of sink marks so that the shape of the glass molded article after the completion of cooling is always constant. Even if sink marks occur, the amount and position of the occurrence of sink marks can be accurately determined. In accordance with the reproducibility, a finished product can be obtained with minimum precision grinding and polishing.

【0017】この場合、上記工程中の溶融ガラス塊の温
度が、成形型の成形転写面から噴出するガスの温度で調
整されること、特に、温度保持の工程において、噴出す
るガスの温度を任意に上げ下げすることで、溶融ガラス
塊の温度を所望の温度にすることとし、その時の保持温
度が、成形されるガラスの粘度で106 〜1010dPa
・sに相当する温度であることは、本発明の実施の形態
として好ましい。
In this case, the temperature of the molten glass ingot in the above step is adjusted by the temperature of the gas ejected from the molding transfer surface of the molding die. In particular, in the temperature holding step, the temperature of the ejected gas is set to an arbitrary value. The temperature of the molten glass lump is set to a desired temperature by raising and lowering the temperature, and the holding temperature at that time is 10 6 to 10 10 dPa in terms of the viscosity of the glass to be formed.
A temperature corresponding to s is preferred as an embodiment of the present invention.

【0018】(発明の付帯的部分)以下に、上述の発明
の本質的部分に付帯する部分を説明しておく。本発明に
おいて、ガラス製品の形状を決定する少なくとも一対の
上下型より構成される多孔質からなる成形型に溶融軟化
されたガラス塊を供給し、型を途中まで閉じ、最終形状
に近い形状にガラスを成形させる場合、成形型に供給さ
れる溶融ガラス塊の粘度は10〜105 dPa・sの範
囲であることが望ましい。これは、この時の成形型に供
給された溶融ガラス塊の成形は、加圧力により強制的に
変形させるというより、寧ろ非常に軟らかい状態の流動
性のあるガラスに成形型を近づけて、その成形転写面か
らの噴出ガスによるガス膜を介して、成形型の成形転写
面の形状に倣らさせることができるからである。
(Parts Attached to the Invention) The parts accompanying the essential parts of the invention will be described below. In the present invention, the melt-softened glass lump is supplied to a porous mold including at least a pair of upper and lower molds that determine the shape of the glass product, the mold is closed halfway, and the glass is shaped into a shape close to the final shape. When molding is used, the viscosity of the molten glass lump supplied to the molding die is preferably in the range of 10 to 10 5 dPa · s. This is because the molding of the molten glass mass supplied to the molding die at this time is not forced to be deformed by the pressing force, but rather, the molding die is brought close to a very soft fluid glass and the molding is performed. This is because the shape of the molding transfer surface of the mold can be imitated via the gas film formed by the gas ejected from the transfer surface.

【0019】因みに、ここで溶融ガラス塊が硬いと、溶
融ガラスを成形型(下型)の上に供給する時に、そのガ
ラス塊がガス膜の圧力で変形せず、そのガス膜を突き破
り、直接に成形型の成形転写面と接触してしまう。ま
た、溶融ガラス塊を成形型の成形転写面の形状に倣らさ
せる時には、その溶融ガラス塊が、大きく変形できる必
要がある反面、溶融ガラス塊と成形型の成形転写面の形
状とが一致していない時における変形であるために、前
述のガス膜が破れ易い条件にあり、溶融ガラス塊と成形
型とが接触し、それが原因で、後に、ガラス成形品の上
に有害な欠陥を残してしまう畏れもある。従って、その
ために、上述のような粘度で、溶融ガラスを供給する必
要が生じるのである。
Incidentally, if the molten glass lump is hard here, when the molten glass is supplied onto a forming die (lower die), the glass lump does not deform due to the pressure of the gas film, but breaks through the gas film and directly. Contact with the molding transfer surface of the mold. Also, when the molten glass lump is to be shaped according to the shape of the molding transfer surface of the molding die, the molten glass lump must be able to be greatly deformed, but the shape of the molten glass lump matches the shape of the molding transfer surface of the molding die. Because the gas film is easily deformed when it is not deformed, the above-mentioned gas film is easily broken, and the molten glass lump comes into contact with the mold, which causes harmful defects on the glass molded article later. There is also a fear that it will. Therefore, for that purpose, it is necessary to supply molten glass with the above-mentioned viscosity.

【0020】更に、溶融炉より流出する溶融ガラス流か
ら必要な量の溶融ガラス塊を成形型上に供給する際に、
103 dPa・s以下の粘度であると、溶融ガラス塊の
表面張力を利用することにより、ガラス流からの分離に
切断刃などの切断手段を用いなくても、容易に所要量の
溶融ガラス塊に分離、供給することが可能となる。この
場合に、上述のように、流動性が過剰に高い溶融ガラス
を、直接、成形型に供給すると、溶融ガラス塊がガス膜
をすり抜けて、直接、成形型の成形転写面に接触してし
まう畏れがあり、このため、溶融ガラスの成形型に最初
に接触する部分のごく表層を、予め、所要の粘度になる
ように冷却するなどして、内部より若干硬めに調整する
ことが、供給初期における溶融ガラス塊の、成形型への
接触を防止する上で必要である。
Further, when supplying a required amount of molten glass lump from a molten glass stream flowing out of a melting furnace onto a mold,
When the viscosity is 10 3 dPa · s or less, the required amount of molten glass ingot can be easily obtained by utilizing the surface tension of the molten glass ingot without using a cutting means such as a cutting blade for separation from the glass flow. Separated and supplied. In this case, as described above, when the molten glass having an excessively high fluidity is directly supplied to the molding die, the molten glass lump passes through the gas film and directly contacts the molding transfer surface of the molding die. For this reason, it is necessary to adjust the surface of the very surface layer, which first comes into contact with the molten glass forming mold, to be slightly harder than the inside by cooling it to a required viscosity in advance. Is necessary to prevent the molten glass lump from contacting the mold.

【0021】また、この時点での成形途中の成形品の厚
みは、最終的に得られる成形品の厚みの1〜5%程厚い
ことが望まれる。これは、この後の工程での変形代を残
しておくためのものであり、この後に続いて行われる、
所定温度状態の保持で発生する、成形型に対するガラス
の収縮などによる変形を補正することが可能な量であれ
ば良い。また、この温度状態の保持の直後に行われる工
程での、最終的な変形行為が硬い状態のガラスに対して
行われるため、できるだけ、その変形量が少ない方が好
ましいのであって、1〜2%程度が最も好ましく、最大
でも、5%程度に抑える必要があり、この時点での厚み
が厚すぎると、目的とする最終の厚みまで変形できなか
ったり、ガス膜に過大な力が加わり、ガラスと成形型が
接触して成形品に欠陥を残すことにつながる。
At this point, it is desirable that the thickness of the molded article in the middle of molding is about 1 to 5% larger than the thickness of the finally obtained molded article. This is for keeping the deformation allowance in the subsequent steps, and is performed subsequently.
Any amount can be used as long as it can correct the deformation caused by the shrinkage of the glass with respect to the mold, which is generated when the predetermined temperature state is maintained. In addition, since the final deformation action in the step performed immediately after the holding of the temperature state is performed on the hard glass, it is preferable that the deformation amount is as small as possible. % Is the most preferable, and it is necessary to suppress the maximum to about 5%. If the thickness at this point is too large, it cannot be deformed to the desired final thickness, or excessive force is applied to the gas film, and And the mold come into contact with each other, resulting in a defect in the molded product.

【0022】なお、ここで用いられる多孔質の成形型
は、成形途中で行われる所定温度状態の保持の時の温
度、および、ガラス製品の実際の使用時の温度における
ガラスの熱膨張差や、ガラスと成形型との熱膨張率差な
どの要因を考慮して、予め、成形型の形状を、ガラス製
品の最終の所望の形状に一致するように、補正を加えて
おくことが望ましく、そうすることで、より精度の高い
ガラス製品を得ることができる。また、成形型に用いる
多孔質材としては、多孔質の最大穴径が20ミクロン以
下、望ましくは10ミクロン以下で、気孔率が10〜3
5%で、材質は耐酸化性のあるアルミナや窒化珪素、炭
化珪素などのセラミックや、多孔質カーボンであること
が望ましく、更に、成形転写面は、成形型から噴出する
ガスによる膜を介して、ガラス製品に良好な形状を転写
させるために、出っ張りの無い平滑な鏡面状に加工され
ていることが望ましい。また、成形型より噴出させ、ガ
ラスと成形型の成形転写面に薄いガス膜を形成させるた
めのガスとしては、そのガスを高温にして噴出させる必
要があることから、型材の酸化防止のみならず、型周り
の構成分材などを含めた酸化防止の観点からも、非酸化
性のガスであることが望ましい。
The porous mold used here has a difference in the thermal expansion difference of the glass at the temperature at the time of maintaining the predetermined temperature state during the molding and the temperature at the time of the actual use of the glass product. In consideration of factors such as the difference in the coefficient of thermal expansion between the glass and the mold, it is desirable that the shape of the mold be corrected in advance so that it matches the final desired shape of the glass product. By doing so, a more accurate glass product can be obtained. Further, as the porous material used for the mold, the maximum pore diameter of the porous material is 20 μm or less, preferably 10 μm or less, and the porosity is 10 to 3 μm.
At 5%, the material is desirably a ceramic such as alumina, silicon nitride, silicon carbide or the like, which has oxidation resistance, or porous carbon. Further, the molding transfer surface is formed through a film made of gas ejected from a molding die. In order to transfer a good shape to a glass product, it is desirable that the glass product is processed into a smooth mirror-like surface without protrusion. In addition, since the gas to be ejected from the mold and to form a thin gas film on the glass and the molding transfer surface of the mold needs to be ejected at a high temperature, it is necessary to prevent not only oxidation of the mold material but also Also, from the viewpoint of preventing oxidation including constituent materials around the mold, it is desirable that the gas is a non-oxidizing gas.

【0023】このように、若干の押し代を残した状態に
成形型を保持したまま、途中まで成形されているガラス
の調温を行うのは、ガラスの内部と外部との温度差のみ
ならず、ガラス全体の温度分布、密度分布を均一にする
ためである。即ち、この時までの工程で、ガラスの内部
に生じた温度差に起因する熱膨張収縮量の違いによる密
度差を、上述の所定温度状態に保持することで無くし、
温度分布及び密度分布の無い近似形状のガラス製品を得
るのである。
As described above, the temperature of the glass that has been formed halfway while holding the forming die in a state where a slight pressing margin is left is determined not only by the temperature difference between the inside and outside of the glass but also by the temperature. This is to make the temperature distribution and the density distribution of the entire glass uniform. That is, in the steps up to this point, the density difference due to the difference in the amount of thermal expansion and contraction caused by the temperature difference generated inside the glass is eliminated by maintaining the above-mentioned predetermined temperature state,
This is to obtain a glass product having an approximate shape without a temperature distribution and a density distribution.

【0024】この時のガラスの温度分布のバラつきの範
囲は、ガラスの大きさに関係なく、5℃以内に抑えるこ
とが必要で、その時の最終的な温度は、好ましくは、成
形されるガラスの粘度で106 〜1010dPa・sに相
当する温度である。因みに、この温度分布のバラつき範
囲が広すぎると、上記の密度分布の解消が十分に行われ
ず、更に、温度分布のバラつきが大きいまま冷却される
と、ヒケの発生量が大きく、発生場所も限定されなくな
り、補正の対応ができなくなり、最終的に精度の良いガ
ラス製品が得られなくなる。そのためにも、この範囲
は、形状精度、つまり所望の形状との誤差が数十μm、
ないしは、ニュートンリングレベルの精度が要求される
場合は、上記の範囲が限界となり、この範囲が狭いほ
ど、得られる製品の精度は向上する。
At this time, the range of the variation in the temperature distribution of the glass must be kept within 5 ° C. regardless of the size of the glass. It is a temperature corresponding to 10 6 to 10 10 dPa · s in viscosity. By the way, if the variation range of the temperature distribution is too wide, the above-mentioned density distribution is not sufficiently eliminated, and if the temperature distribution is cooled while the variation is large, the generation amount of the sink is large, and the location of occurrence is limited. It is no longer possible to cope with the correction, and finally a glass product with high accuracy cannot be obtained. For this reason, this range has a shape accuracy, that is, an error from a desired shape of several tens μm,
Alternatively, when accuracy at the Newton's ring level is required, the above range is a limit. The narrower this range is, the higher the accuracy of the obtained product is.

【0025】更に、この時の最終的な温度、換言すれ
ば、この温度保持の完了直前に加圧力を増し、成形型を
閉じ、成形型の成形転写面の形状にガラスを倣わす時の
温度は、それが高すぎると、冷却中にガラス塊の自重や
噴出ガスの吹き付けなどによる微少な力で変形を起こし
たり、冷却固化までの間に、ガラス内部に発生する温度
勾配による冷却収縮量の差に起因して、ガラスの流動が
発生し、ヒケを発生させたりするために、精度が維持で
きなくなる。このような理由で、上記の精度を得るため
には、この温度の上限は、その成形されるガラスの粘度
で106 dPa・sに相当する温度程度が限界で、より
高精度を要求される場合には、この温度をそれより下げ
る必要がある。
Further, the final temperature at this time, in other words, the pressure at which the pressing force is increased immediately before the completion of the temperature holding, the mold is closed, and the temperature at which the glass is imitated to the shape of the molding transfer surface of the mold is transferred. If it is too high, it may be deformed by a very small force due to the weight of the glass lump or the blowing of blowing gas during cooling, or the amount of cooling shrinkage due to the temperature gradient generated inside the glass before cooling and solidification Due to the difference, the flow of the glass occurs, causing sink marks or the like, so that accuracy cannot be maintained. For these reasons, in order to obtain the above accuracy, the upper limit of this temperature is limited to a temperature corresponding to 10 6 dPa · s in the viscosity of the glass to be formed, and higher accuracy is required. In some cases, this temperature needs to be lowered.

【0026】また、これとは逆に、この温度を下げすぎ
ると、ガラスが硬くなりすぎ、最終の肉厚を出すために
成形型の成形転写面の形状に倣わすことができなくなっ
てしまう。特に、この成形方法では、ガス膜を介して成
形を行うため、前以て成形型の成形転写面の近似形状に
ガラスが成形されていて、全体に均一に加圧力が掛かる
ようになっていても、ガラスの変形能力(=粘度)に対
して、変形圧力が高すぎると、簡単にガス膜が切れて、
ガラスと成形型が接触し、成形品に有害な欠陥を残して
しまう。このため、通常、この時の温度は、成形される
ガラスの粘度で109 dPa・sに相当する温度以上で
あることが必要で、仮に、成形を非常にゆっくりと行っ
ても、粘度で1010dPa・sに相当する温度が限界で
ある。
Conversely, if the temperature is lowered too much, the glass becomes too hard and cannot follow the shape of the molding transfer surface of the mold in order to obtain the final thickness. In particular, in this molding method, since the molding is performed via the gas film, the glass is molded in an approximate shape of the molding transfer surface of the molding die in advance, and the pressing force is uniformly applied to the whole. Also, if the deformation pressure is too high for the deformation capacity (= viscosity) of the glass, the gas film will break easily,
The glass comes into contact with the mold, leaving harmful defects in the molded product. For this reason, it is usually necessary that the temperature at this time be equal to or higher than the temperature corresponding to 10 9 dPa · s in terms of the viscosity of the glass to be formed. The temperature corresponding to 10 dPa · s is the limit.

【0027】また、このガラスの温度分布のバラつきを
無くし、最終の温度に合せるのは、成形型の成形転写面
から噴出させるガスの温度を直接に調整するのが、最も
効果的である。これは、実質的にガラス塊に触れている
のが、成形型の成形転写面から噴出されるガスのみであ
り、成形型や成形型の廻りの雰囲気をいくら温度制御し
ても、成形転写面から噴出し、常時、流れているガスの
温度が、その成形型や雰囲気の温度と平衡となるには、
時間が掛り、細かい迅速な温度制御が困難であるためで
ある。但し、既に、温度制御されたガスが成形型の成形
噴射面から噴出されてガラス塊表面に当たる迄の間に、
その温度を保持したりするために、成形型の温度や雰囲
気の温度を補助的に制御しておくことは、場合によって
は必要である。
The most effective way of eliminating the variation in the temperature distribution of the glass and adjusting it to the final temperature is to directly adjust the temperature of the gas ejected from the molding transfer surface of the molding die. This is because only the gas ejected from the molding transfer surface of the molding die substantially touches the glass lump, and no matter how much the temperature of the molding die or the atmosphere around the molding die is controlled, the molding transfer surface In order for the temperature of the gas flowing out and constantly flowing to be in equilibrium with the temperature of its mold and atmosphere,
This is because it takes time and it is difficult to perform fine and quick temperature control. However, before the temperature-controlled gas is ejected from the molding injection surface of the mold and hits the surface of the glass block,
In order to maintain the temperature, it is necessary in some cases to supplementarily control the temperature of the mold and the temperature of the atmosphere.

【0028】また、この時の温度調整の方法には、物体
の外部からの加熱冷却する場合に、その物体内部に温度
勾配が必ず生じる点を考慮し、ガラス内部の温度勾配に
よる温度の山谷ができるだけ少なくなるような方法、具
体的には、外部を冷却した後に内部が冷却されたら、今
度は、逆に外部を内部の温度に近づけ(ガス温度を上げ
る)、また、更に外部を冷却するというように、ガス温
度を上下に振りながら次第に冷却させ、所望の温度に制
御保持して行くような方法が用いられる。この場合、製
品の厚さ、大きさ、及び、所望温度までの温度差によ
り、ガスの温度を振る幅や時間、回数などを調整し、前
述の温度分布のバラつき幅内の温度領域にするのであ
る。
In addition, in the method of adjusting the temperature at this time, in consideration of the fact that a temperature gradient always occurs inside the object when the object is heated and cooled from the outside, the temperature peaks and valleys due to the temperature gradient inside the glass are taken into consideration. After cooling the outside and then cooling the inside, the next step is to bring the outside closer to the inner temperature (increase the gas temperature) and cool the outside further. As described above, a method is used in which the gas temperature is gradually lowered while swinging up and down, and the temperature is controlled and maintained at a desired temperature. In this case, the thickness, size, and temperature difference to the desired temperature of the product, the width of the gas temperature, the time, the number of times, etc. are adjusted, so that the temperature range within the variation width of the temperature distribution described above is there.

【0029】そして、このようにして、ガラス内部の温
度分布のバラつきが5℃以内で、ガラスの粘度で106
〜1010dPa・sに相当する温度である時に、若干、
押し代を残していた成形型を閉じて、ガラス塊を成形型
の成形転写面の形状に非接触状態で倣わすが、この時
は、ガラスの粘度に合せ、閉じる速度を設定すると同時
に、ガス膜が、その粘度と閉じる速度とに耐え、ガラス
と成形型が非接触状態を維持し得るように、ガスの流量
及び圧力を上げる必要があり、また、ガスの温度もガラ
スの温度が変化しないように維持しておく必要がある。
この状態で、成形された成形ガラス塊は、成形に伴なう
歪が発生しても、瞬時に緩和されるため、温度・密度共
に均一なものとなる。
In this way, the variation in the temperature distribution inside the glass is within 5 ° C., and the viscosity of the glass is 10 6
When the temperature is equivalent to 〜1010 10 dPa · s,
The molding die that has left the pushing margin is closed, and the glass block is copied in a non-contact state to the shape of the molding transfer surface of the molding die.At this time, the closing speed is set according to the viscosity of the glass, The flow rate and pressure of the gas need to be increased so that the membrane withstands its viscosity and closing speed, and the glass and the mold can be kept in a non-contact state, and the temperature of the gas does not change. Need to be maintained.
In this state, the molded glass lump is instantaneously relieved even if distortion accompanying molding occurs, so that both the temperature and the density are uniform.

【0030】次に、成形型を閉じ、ガラス塊が成形型の
成形転写面に倣い、ガラスの流動が止まった所で、成形
型に加えていた加圧力を減じ、または、解除すると同時
に、冷却を開始する。この冷却は、成形型の形状に倣っ
た後のガラス製品の形状を保持するように、素早く、均
一に行う必要がある。そのためには、成形型から噴出す
るガスの温度を下げ、かつ、成形型を開かずに、ガスが
成形品に均一に当たるようにし、また、冷却のガス圧力
により成形品に変形が発生しないように、噴出させるガ
スの圧力、流量を減らさなければならない。
Next, the mold is closed, the glass block follows the molding transfer surface of the mold, and when the flow of the glass stops, the pressure applied to the mold is reduced or released, and at the same time, cooling is performed. To start. This cooling needs to be performed quickly and uniformly so as to maintain the shape of the glass product following the shape of the mold. To do so, lower the temperature of the gas ejected from the mold, and make sure that the gas hits the molded article evenly without opening the mold, and that the molded article does not deform due to the cooling gas pressure. , The pressure and flow rate of the gas to be ejected must be reduced.

【0031】このようにして冷却されたガラス製品は、
冷却中に温度分布のバラつきによるガラスの流動が発生
しなければ、ヒケの発生も無く、非常に精度の良いもの
が得られる。特に、本発明の方法によれば、冷却開始前
では、ガラスの温度・密度ともほぼ一定で、冷却の開始
温度は、ガラスの粘度で106 〜1010dPa・sに相
当する温度であり、また、ガラス塊と成形型の成形転写
面が非接触であり、ガラス塊が冷却中に成形型からの拘
束を受けないため、この範囲で、108 dPa・s以上
の硬さを保持している時は、数十秒以内で、素早く冷却
を実施すれば、殆どガラス内部の流動が起こらず、それ
以下の硬さの時も、同様に冷却することにより、ヒケの
発生量が非常に少なく、また、その発生量及び発生場所
もほぼ一定となる。このため、精度の要求が厳しくなけ
れば、あまり問題とならず、精度が必要な場合も、成形
結果から成形型の成形転写面の形状を若干補正すること
で、十分に対応でき、最終的に、非常に精度の良いガラ
ス製品を得ることができる。
The glass product thus cooled is:
If the flow of the glass due to the variation in the temperature distribution does not occur during cooling, there is no occurrence of sink marks and a very accurate glass can be obtained. In particular, according to the method of the present invention, before the start of cooling, the temperature and density of the glass are almost constant, and the starting temperature of the cooling is a temperature corresponding to 10 6 to 10 10 dPa · s in viscosity of the glass, Further, since the glass lump and the molding transfer surface of the molding die are not in contact with each other and the glass lump is not restrained by the molding die during cooling, a hardness of 10 8 dPa · s or more is maintained in this range. When it is cooled within a few tens of seconds, if it is quickly cooled, almost no flow inside the glass occurs, and when the hardness is lower than that, the amount of generation of sink marks is extremely small by cooling similarly. Also, the amount and location of the generation are substantially constant. For this reason, if the demand for accuracy is not severe, there is not much problem, and even when accuracy is required, it can be adequately dealt with by slightly correcting the shape of the molding transfer surface of the mold from the molding result, and ultimately It is possible to obtain very accurate glass products.

【0032】また、このようにして得られたガラス製品
を、更に、非酸化性の雰囲気中などで再加熱し、高精度
に加工された成形型を用いて接触プレス成形を行い、非
球面レンズなどの高精度な光学素子を安価に容易に得る
ことも、勿論可能である。
Further, the glass product thus obtained is further reheated in a non-oxidizing atmosphere or the like, and is subjected to contact press molding using a high-precision molding die to form an aspherical lens. Of course, it is also possible to easily obtain a high-precision optical element at a low cost.

【0033】更に、既に第2の発明において指摘したよ
うに、光学素子などの精密素子を成形する際の工程が、
溶融ガラス塊から、直接に多孔質の成形型を用いて、光
学素子などのガラス製品を成形する際に、多孔質の型か
らガスを噴出させ、溶融ガラスと成形型の成形転写面と
を非接触の状態に保ち、成形型を閉じて、加圧成形を行
う途中で、成形されるガラス塊が成形型の成形転写面の
形状に完全に倣う前に、一旦、加圧によるガラスの変形
動作を停止させ、そこでガラス塊の冷却をなし、その製
品の形状を決定する温度領域でガラスの内部の温度差が
5℃以内になるように、一旦、温度保持を行い、その温
度保持の完了直前に加圧力を増し、成形型を閉じ、成形
転写面の形状にガラス塊を倣らし、その後、加圧力を減
じると同時に、冷却を開始し、前記保持温度で得られた
形状を保つことにより、成形ガラス塊(成形品)を得、
その得られたガラス素材の表層を、更に精研削および/
または研磨加工により除去し、最終的なガラス製品を得
る。なお、このような精研削や研磨加工で除去されるガ
ラス素材の表層の厚さは、上述のプレス成形の方法によ
り、実質的に50μm以下でよく、その結果、ガラスス
ラッジの発生が非常に少なくなる。
Further, as already pointed out in the second invention, the steps for molding a precision element such as an optical element are as follows.
When a glass product such as an optical element is molded directly from a molten glass lump using a porous molding die, a gas is blown from the porous die, and the molten glass and the molding transfer surface of the molding die are non-contact. While maintaining the contact state, closing the mold, and performing pressure molding, before the glass block to be molded completely conforms to the shape of the molding transfer surface of the mold, the glass is once deformed by pressing. Is stopped, whereupon the glass block is cooled, and the temperature is once held so that the temperature difference inside the glass is within 5 ° C. in the temperature range that determines the shape of the product, and immediately before the completion of the temperature holding. By increasing the pressing force, closing the mold, imitating the glass lump to the shape of the molding transfer surface, then, while reducing the pressing force, simultaneously starting cooling and maintaining the shape obtained at the holding temperature, Obtain a molded glass lump (molded product)
The surface layer of the obtained glass material is further finely ground and / or
Alternatively, it is removed by polishing to obtain a final glass product. In addition, the thickness of the surface layer of the glass material removed by such precision grinding or polishing may be substantially 50 μm or less by the above-described press molding method, and as a result, the generation of glass sludge is extremely small. Become.

【0034】このような成形方法において、ガラス素材
を得るまでの構成は、第1の発明と同じであるが、更に
研磨加工を容認することにより、より高精度な形状を得
ることが可能になり、また、製品の肉厚が厚く形状が出
しにくい時や、温度〜粘性の特性カーブが立っており、
粘度の温度依存性が高く、温度による粘度管理が難しい
ガラスの成形などに効果を発揮する。
In such a forming method, the structure up to obtaining the glass material is the same as that of the first invention. However, by further permitting polishing, it becomes possible to obtain a more accurate shape. Also, when the thickness of the product is too thick and the shape is difficult to come out, or the temperature-viscosity characteristic curve stands,
It has a high temperature dependence of viscosity, and is effective for molding glass, for which it is difficult to control viscosity by temperature.

【0035】既に述べたように、この成形方法では、第
1の発明に係わるプレス成形で、非常に精度の良い成形
品が得られるため、通常、次加工を必要とするような高
精度のものでも、ガラスを大きく削る研削などの従来の
加工が必要なく、単に表面を磨く程度の精研磨加工だけ
で目的を十分に達成することが可能である。この研磨加
工では、例えば、直径=20mm、厚さ=3mm程度の
レンズ形状のガラス製品であれば、加工代は10μm以
下で十分であり、研磨時間も数十秒もあれば十分であ
り、特に、肉厚が大きくかつ径の大きなものについて
も、その研磨代は、50μm以下で十分であり、逆に言
えば、本発明のプレス方法によれば、プレス成形で出来
上がった成形ガラス塊(精研磨前のガラス製品)の形状
が、所望とする設計値と50μm以上の誤差を生じるこ
とはないのである。
As described above, in this molding method, a highly accurate molded product can be obtained by the press molding according to the first invention. However, conventional processing such as grinding for sharply shaving glass is not required, and the object can be sufficiently achieved only by fine polishing to the extent that the surface is polished. In this polishing, for example, in the case of a lens-shaped glass product having a diameter of about 20 mm and a thickness of about 3 mm, a processing allowance of 10 μm or less is sufficient, and a polishing time of several tens of seconds is sufficient. The polishing allowance of 50 μm or less is sufficient for a large thickness and a large diameter. Conversely, according to the pressing method of the present invention, the formed glass block (fine polishing) The shape of the previous glass product) does not cause an error of 50 μm or more from a desired design value.

【0036】[0036]

【発明の実施の形態】以下、本発明の実施の形態を、図
面を参照して具体的に説明する。図1は、本発明で用い
られる成形装置の概略図であり、同図において、符号1
は下型ユニット、2は上型ユニットであり、上下型ユニ
ット1、2は、それぞれ、下面成形型である下型11
と、上面成形型である上型21と、それらを保持する下
型ホルダー12と上型ホルダー22で構成されている。
なお、ホルダー12、22には、流体を下型11、上型
21にバランスよく供給分配するための圧力室12a、
22aが、それぞれ設けられており、更に、ヒータ1
3、23および測温手段(図示せず)が埋め込まれてい
て、下型11、上型12の成形転写面11a、21aか
ら噴出する流体の温度を最終的に微調整することができ
るようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a schematic diagram of a molding apparatus used in the present invention.
Is a lower mold unit, 2 is an upper mold unit, and upper and lower mold units 1 and 2 are each a lower mold 11 which is a lower mold.
And an upper die 21 as an upper surface forming die, and a lower die holder 12 and an upper die holder 22 for holding them.
The holders 12 and 22 have pressure chambers 12a for supplying and distributing the fluid to the lower mold 11 and the upper mold 21 in a balanced manner.
22a are provided respectively, and the heater 1
3 and 23 and a temperature measuring means (not shown) are embedded so that the temperature of the fluid ejected from the molding transfer surfaces 11a and 21a of the lower mold 11 and the upper mold 12 can be finally finely adjusted. Has become.

【0037】なお、成形転写面11a、21aは、それ
ぞれ、成形されるガラス製品、例えば、レンズなどのガ
ラス光学素子の光学機能面の形状を決定する転写機能を
有するものである。また、下型ユニット1および上型ユ
ニット2には、駆動装置(図示せず)が、それぞれ、取
り付けられており、下型ユニット1、上型ユニット2
が、それぞれ、独立に移動できるようになっている。更
に、ホルダー12、22には、図示のように、N2 ガス
供給用の接続パイプ14、24が接続されており、流量
圧力調整器(図示せず)により、任意の圧力及び流量に
制御されたN2 ガスを、同様の制御器(図示せず)によ
り、個別に制御されるN2 ガスヒータ16、26と、耐
熱性のあるフレキシブルチューブ15、25とを介し
て、圧力室12a、22aに供給できるように成ってい
て、成形転写面11a、21aより噴出するN2 ガスの
温度、圧力、流量を任意に制御できる構成となってい
る。
The molding transfer surfaces 11a and 21a each have a transfer function for determining the shape of an optically functional surface of a glass product to be molded, for example, a glass optical element such as a lens. A drive unit (not shown) is attached to each of the lower die unit 1 and the upper die unit 2, and the lower die unit 1 and the upper die unit 2
However, each can be moved independently. Further, connection pipes 14 and 24 for supplying N 2 gas are connected to the holders 12 and 22 as shown in the figure, and are controlled to an arbitrary pressure and flow rate by a flow rate pressure regulator (not shown). the N 2 gas, by the same controller (not shown), and N 2 gas heater 16, 26 are individually controlled, via the flexible tube 15, 25 having heat resistance, pressure chambers 12a, to 22a The temperature, pressure and flow rate of the N 2 gas ejected from the molding transfer surfaces 11a and 21a can be arbitrarily controlled.

【0038】図2〜図4は、溶融軟化状態の溶融ガラス
を供給ノズルより成形型に供給し、更に、供給された溶
融ガラスを供給ノズルより切断分離するときの工程説明
図である。図2における符号101は、溶融軟化状態の
溶融ガラス102の供給ノズルであり、図3における符
号103aは、下型11の成形転写面11aの上に供給
された切断前の溶融ガラス塊を、また、符号103b
は、切断のための溶融ガラス102と切断前の溶融ガラ
ス塊103aの間に作られるくびれを、図4における符
号104は、成形転写面11a上に得られた溶融ガラス
塊を表わす。
FIG. 2 to FIG. 4 are process explanatory diagrams when the molten glass in a molten and softened state is supplied to a forming die from a supply nozzle, and the supplied molten glass is cut and separated from the supply nozzle. Reference numeral 101 in FIG. 2 denotes a supply nozzle of the molten glass 102 in a molten and softened state, and reference numeral 103a in FIG. 3 denotes a molten glass mass before cutting supplied onto the molding transfer surface 11a of the lower mold 11, and , Code 103b
Represents a constriction created between the molten glass 102 for cutting and the molten glass lump 103a before cutting, and the reference numeral 104 in FIG. 4 represents the molten glass lump obtained on the molding transfer surface 11a.

【0039】[0039]

【実施例】(第1の実施例)次に、上記の成形装置を使
用して、ガラス製品を成形する工程を、図を用いて具体
的に説明する。なお、ここで成形されるガラス製品は、
図8に示すような、ビデオカメラに用いられるφ15m
mの凸メニスカスの球面レンズであり、その光学有効面
の曲率がR=30mmとR=20mmとであり、中心肉
厚が2mmであって、ガラス材料には、温度が1200
℃の時に101.6 dPa・s、890℃の時に102.9
dPa・s、720℃の時に105 dPa・s、610
℃の時に107.55dPa・s、498℃の時に1013
Pa・sとなる粘度を示す粘性特性を持つ光学ガラスを
用いた。
Embodiment (First Embodiment) Next, a process of forming a glass product using the above-described forming apparatus will be specifically described with reference to the drawings. The glass products molded here are:
Φ15m used for video camera as shown in FIG.
m is a convex meniscus spherical lens, the curvature of the optically effective surface is R = 30 mm and R = 20 mm, the center thickness is 2 mm, and the glass material has a temperature of 1200.
10 1.6 dPa · s at ℃, 10 2.9 at 890 ° C.
dPa · s, 10 5 dPa · s at 720 ° C., 610
10 7.55 dPa · s at ℃, 10 13 d at 498 ° C
Optical glass having a viscosity characteristic showing a viscosity of Pa · s was used.

【0040】なお、下型11の成形転写面11aと上型
21の成形転写面21aとは、成形後の室温でのレンズ
が上記のレンズ形状になるように、成形転写面とガラス
塊の間のガス膜の厚さが最終的に5μmになるものとし
て、更に、ガラス・成形型の熱膨張などを考慮して、そ
の補正を加えた数値を用いた形状に加工され、その表面
(成形転写面)は多孔質の穴部のくぼみを除いた面を、
Rmax0.3ミクロン以下となるような鏡面状態に加
工されている。また、下型11、上型21の材料として
は、気孔率が30%であり、最大穴径が8ミクロンであ
る多孔質のアルミナ系のセラミックが用いられ、噴出ガ
スには下型11、上型12の酸化を防ぐために窒素ガス
が用いられる。
The molding transfer surface 11a of the lower mold 11 and the molding transfer surface 21a of the upper mold 21 are positioned between the molding transfer surface and the glass block so that the lens at room temperature after molding has the above-mentioned lens shape. Assuming that the thickness of the gas film finally becomes 5 μm, it is further processed into a shape using the corrected numerical value in consideration of the thermal expansion of the glass and the mold, and the surface (mold transfer) Surface) is the surface excluding the hollow of the porous hole,
It is processed to a mirror surface state of Rmax 0.3 micron or less. As a material of the lower mold 11 and the upper mold 21, a porous alumina-based ceramic having a porosity of 30% and a maximum hole diameter of 8 μm is used. Nitrogen gas is used to prevent oxidation of the mold 12.

【0041】ついで、このように加工準備した下型1
1、上型21を、図1に示す成形装置に取り付け、図2
〜図4に示すような方法で、溶融ガラス塊を得た。以下
に、この行程を、図2〜図4を参照して具体的に説明す
る。まず、ガラス溶融炉(図示せず)で、硝材を溶融
し、脱泡、均質化工程を経て、軟化状態の均質な溶融ガ
ラス102を準備し、更に、それを供給ノズル101へ
導く。なお、この供給ノズル101を1200℃の温度
に設定し、溶融ガラス102を流出させると共に、下型
ユニット1を供給のズル101の直下に持って行き、図
2に示すように、下型11の成形転写面11a上に所定
の容量の溶融ガラスを受けた後、図3に示すように、下
型ユニット1を矢印Aのように下方へ少し下げ、溶融ガ
ラス102と切断前の溶融ガラス塊103aの間にクビ
レ103bを発生させ、クビレ103bが自重と表面張
力により切断にいたるまで待機する。これによって、図
4に示すように、軟化状態の溶融ガラス塊104を得
た。
Next, the lower mold 1 prepared as described above is prepared.
1. Attach the upper mold 21 to the molding device shown in FIG.
4 to 4 to obtain a molten glass lump. Hereinafter, this process will be specifically described with reference to FIGS. First, in a glass melting furnace (not shown), a glass material is melted, defoamed, and homogenized to prepare a homogeneous molten glass 102 in a softened state. The supply nozzle 101 was set at a temperature of 1200 ° C., the molten glass 102 was allowed to flow out, and the lower mold unit 1 was taken just below the supply nozzle 101, and as shown in FIG. After receiving a predetermined volume of molten glass on the molding transfer surface 11a, as shown in FIG. 3, the lower mold unit 1 is slightly lowered downward as shown by the arrow A, and the molten glass 102 and the molten glass lump 103a before cutting are formed. During this time, a crack 103b is generated, and waits until the crack 103b is cut by its own weight and surface tension. As a result, as shown in FIG. 4, a molten glass lump 104 in a softened state was obtained.

【0042】このように溶融ガラス102の切断工程に
おいて下型ユニット1を一旦停止させることにより、ク
ビレ103bの部分が冷やされることが少なくなり、自
重と表面張力により自然に切断することが可能となるた
めに、切断部にガラス素材が糸状に固化して残ったり、
あるいは、通常、ガラスの切断に用いられる切断刃によ
る破断痕が残らない。このため、溶融ガラス塊104の
表面には、有害な欠陥が生じることがなくなる。
By temporarily stopping the lower mold unit 1 in the step of cutting the molten glass 102 as described above, the portion of the crack 103b is less likely to be cooled, and it is possible to cut naturally by its own weight and surface tension. Because of this, the glass material solidifies into a thread at the cutting part and remains,
Alternatively, no trace of breakage is usually left by a cutting blade used for cutting glass. Therefore, no harmful defects occur on the surface of the molten glass lump 104.

【0043】また、この時の噴出N2 ガスの温度は、溶
融ガラスを成形転写面11aに受ける時は、ガラスの転
移点付近の温度である500℃に、その直後には600
℃になるように、ヒータ16、13の温度を調整し、更
に、N2 ガスの流量も溶融ガラス102を成形転写面1
1aに受ける直前までは毎分20リッター、その後は毎
分5リッターとなるように制御した。このようにするこ
とで、上述の溶融ガラス102が成形転写面11aに達
する前に、その先端が多少固化し、流動性が少なくな
り、加えて、噴出するN2 ガスの流量も増えるために、
溶融ガラス102の先端が成形転写面11aに全く接触
することなく、また、上述の切断方法を用いることとも
併せて、その表面に全く欠陥がないところの溶融ガラス
塊104が得られた。
When the molten glass is received on the molding transfer surface 11a, the temperature of the jetted N 2 gas at this time is 500 ° C., which is the temperature near the glass transition point, and immediately thereafter, it is 600 ° C.
° C, the temperature of the heaters 16 and 13 is adjusted, and the flow rate of the N 2 gas
It was controlled to be 20 liters per minute until immediately before receiving 1a, and then 5 liters per minute thereafter. By doing so, before the molten glass 102 reaches the molding transfer surface 11a, its tip is slightly solidified, the fluidity is reduced, and the flow rate of the jetted N 2 gas is increased.
The molten glass block 104 was obtained without the tip of the molten glass 102 coming into contact with the molding transfer surface 11a at all, and in addition to using the above-described cutting method, without any defect on the surface.

【0044】次に、下型ユニット1を上型ユニット2の
直下に移動し、これらを用いて、溶融ガラス塊104を
成形する工程を、図5〜図7を用いて具体的に説明す
る。図5は、溶融ガラス塊104を下型ユニット1と上
型ユニット2を用いて成形する直前の状態を示す図で、
この時のガラスの粘度は、下型11の成形転写面11a
で受けている下面近傍の粘度が105 6.5 dPa・
s、その他の部分が103〜105 dPa・sであっ
た。
Next, the process of moving the lower mold unit 1 directly below the upper mold unit 2 and forming the molten glass lump 104 using the lower mold unit 1 will be specifically described with reference to FIGS. FIG. 5 is a diagram showing a state immediately before forming the molten glass lump 104 using the lower mold unit 1 and the upper mold unit 2.
At this time, the viscosity of the glass is determined by the molding transfer surface 11a of the lower mold 11.
The viscosity of the vicinity of the bottom surface which in receiving it has is 10 5 ~ 6.5 dPa ·
s and other portions were 10 3 to 10 5 dPa · s.

【0045】次に下型ユニット1、上型ユニット2にお
いて、各成形型の成形転写面より噴出するN2 ガスの温
度を、溶融ガラス塊104の粘度で106.5 dPa・s
に相当する650℃となるように制御し、図6に示すよ
うな状態にした。この時のガラスの半成形品105の中
心の肉厚が、冷間時概算で、2.04mmの厚さになる
ように下型ユニット1と上型ユニット2の間隔を制御し
た。また、上述の半成形品105と下型11、上型21
の間でのガス膜厚は、およそ50μmとなるように、流
量及び圧力を調整した。この状態で、N2 ガスの温度を
610℃(ガラスの粘度で107.55dPa・s)で10
秒間保持し、半成形品105の中心付近の温度が630
℃(ガラスの粘度で107.0 dPa・s)程まで冷却さ
れた時点で、N2 ガスの温度を620℃(ガラスの粘度
で107.26dPa・s)で15秒間保持した。こうする
ことで、半成形品105の温度は、620℃±2.5℃
となり、これまでの熱履歴による歪、密度分布も完全に
解消された状態となった。
Next, in the lower mold unit 1 and the upper mold unit 2, the temperature of the N 2 gas ejected from the molding transfer surface of each mold is adjusted to 10 6.5 dPa · s by the viscosity of the molten glass block 104.
The temperature was controlled so as to be 650 ° C., and the state as shown in FIG. 6 was obtained. At this time, the distance between the lower mold unit 1 and the upper mold unit 2 was controlled such that the thickness of the center of the glass half-molded product 105 was 2.04 mm in the cold state. In addition, the above-mentioned semi-molded article 105, the lower mold 11, the upper mold 21
The flow rate and the pressure were adjusted so that the gas film thickness in the period between was about 50 μm. In this state, the temperature of the N 2 gas is set at 610 ° C. ( 107.55 dPa · s in terms of glass viscosity).
The temperature near the center of the semi-molded article 105 is 630
C. (at the glass viscosity of 10 7.0 dPa · s), the temperature of the N 2 gas was kept at 620 ° C. (at the glass viscosity of 10.7.26 dPa · s) for 15 seconds. By doing so, the temperature of the semi-molded article 105 becomes 620 ° C. ± 2.5 ° C.
Thus, the strain and density distribution due to the heat history up to now have been completely eliminated.

【0046】次に、この温度状態を保持したまま、図7
に示すように、ガラス成形品106の中心の肉厚が2m
m、また、成形転写面11a、21aとガラス成形品1
06の間のN2 ガス膜の厚さが5μm程度となるよう
に、N2 ガスの流量および圧力を調整しながら、下型ユ
ニット1と上型ユニット2とを徐々に接近し、下型11
と上型21とを閉じ、成形転写面11a、21aの形状
を半成形品105に転写して、ガラス成形品(レンズ)
106を得た。
Next, while maintaining this temperature state, FIG.
As shown in the figure, the center thickness of the glass molded product 106 is 2 m
m, and the molding transfer surfaces 11a, 21a and the glass molding 1
The lower mold unit 1 and the upper mold unit 2 are gradually approached while adjusting the flow rate and pressure of the N 2 gas so that the thickness of the N 2 gas film during the period 06 is about 5 μm.
And the upper mold 21 are closed, the shapes of the molding transfer surfaces 11a and 21a are transferred to the semi-molded product 105, and a glass molded product (lens)
106 was obtained.

【0047】この閉じた状態を5秒保持し、ガラス成形
品106の内部のガラスの動きが完全に停止した所で、
下型ユニット1と上型ユニット2とへの締め付け力を解
除すると同時に、N2 ガスの圧力を減じ、更に、温度
が、15秒を要して室温に達するように設定し、急冷却
を行った。冷却開始後、ガラス成形品の表面近傍の粘度
が1012dPa・s(温度で、約510℃)となった時
に、下型1と上型2とを開き、下型11の成形転写面1
1aからはN2 ガスを噴出させたままの状態で、ガラス
成形品106を下型ユニット1より取り出した。
This closed state is maintained for 5 seconds, and when the movement of the glass inside the glass molded article 106 is completely stopped,
At the same time when the tightening force on the lower mold unit 1 and the upper mold unit 2 is released, the pressure of the N 2 gas is reduced, and the temperature is set to reach room temperature in 15 seconds, and rapid cooling is performed. Was. After the start of cooling, when the viscosity near the surface of the glass molded product reaches 10 12 dPa · s (at a temperature of about 510 ° C.), the lower mold 1 and the upper mold 2 are opened, and the molding transfer surface 1 of the lower mold 11 is opened.
1a, the glass molded product 106 was taken out from the lower mold unit 1 in a state where the N 2 gas was jetted.

【0048】このようにして、ガラス成形品106が完
全に室温の状態になった所で、精度を測定したが、全
て、アス・クセ共に、ニュートンリング1.5本以下に
収まり、通常のレンズとしての十分の機能を果たせるこ
とが確認できた。
In this way, the accuracy was measured when the glass molded article 106 was completely at room temperature, but the accuracy was measured. It could be confirmed that the function as sufficient as can be achieved.

【0049】(第2の実施例)次に、第1の実施例と同
じ装置と材料を用いて、図9に示すような片面がR=2
0mm、もう一方の面がR=30mm、レンズの中心肉
厚が4mm、直径がφ14mmである、コンパクトカメ
ラ用の両凸のガラス球面レンズの成形を行った。ここで
は、第1の実施例と同様に、下型11の成形転写面11
aと上型21の成形転写面21aは、数々の補正を考慮
した形状に加工し、その後、更に実際に成形を行い、そ
の形状データをもとに、最終的なヒケに対する微少な補
正を行って、問題のない成形ができる形状を決定した。
(Second Embodiment) Next, using the same apparatus and material as in the first embodiment, one side as shown in FIG.
A biconvex glass spherical lens for a compact camera having 0 mm, R = 30 mm on the other surface, a center thickness of the lens of 4 mm, and a diameter of 14 mm was formed. Here, similarly to the first embodiment, the molding transfer surface 11 of the lower mold 11 is formed.
a and the molding transfer surface 21a of the upper die 21 are processed into a shape in consideration of a number of corrections, and then, are further actually formed, and a minute correction for final sink is performed based on the shape data. Thus, a shape that can be molded without any problem was determined.

【0050】なお、成形転写面11a、21aの表面状
態も、第1の実施例と同様に、出っ張りのない平滑な鏡
面状態に仕上げられ、最終的な形状とした。なお、ここ
では、下型11、上型21の材料として、気孔率が25
%であり、最大穴径が6μmである多孔質からなるアル
ミナが用いられ、噴出ガスには、第1の実施例と同様
に、N2 ガスが用いられた。
The surface condition of the molding transfer surfaces 11a and 21a was finished to have a smooth mirror surface with no protrusion, as in the first embodiment, to give a final shape. Here, as a material of the lower mold 11 and the upper mold 21, a porosity of 25 is used.
% And a porous alumina having a maximum hole diameter of 6 μm was used, and N 2 gas was used as the gas to be ejected, as in the first embodiment.

【0051】ついで、このように加工準備した下型1
1、上型21を、図1に示す成形装置に取り付け、第1
の実施例と全く同様にして、溶融ガラス塊104を得
た。次に、下型ユニット1を上型ユニット2の直下に移
動し、下型11の成形転写面11aで受けている、溶融
ガラス塊104の下面近傍の粘度が105 7 dPa・
s、その他の部分の粘度が103 6 dPa・sである
内に、成形転写面11a、21aからそれぞれ噴出する
2 ガスの流量を毎分5リッター、及び、10リッタ
ー、温度をガラスの粘度で106.5 dPa・sに相当す
る650℃となるように設定し、半成形品105の中心
肉厚が4.05mm、それと、成形転写面11a及び2
1aとの間のN2 ガスの膜厚が、およそ30μmとなる
まで、N2 ガスの圧力・流量を制御しながら下型11と
上型21とを閉じた。
Next, the lower mold 1 prepared as described above is prepared.
1. Attach the upper mold 21 to the molding device shown in FIG.
The molten glass lump 104 was obtained in exactly the same manner as in the example of FIG. Next, the lower mold unit 1 is moved directly below the upper mold unit 2, and the viscosity near the lower surface of the molten glass lump 104 received on the molding transfer surface 11 a of the lower mold 11 is 10 5 to 7 dPa ·
s, while the viscosity of the other parts is 10 3 to 6 dPa · s, the flow rate of the N 2 gas ejected from the molding transfer surfaces 11a and 21a is 5 liters per minute and 10 liters per minute, The viscosity was set to be 650 ° C. corresponding to 10 6.5 dPa · s, the center thickness of the semi-molded product 105 was 4.05 mm, and the molding transfer surfaces 11 a and 2
The lower mold 11 and the upper mold 21 were closed while controlling the pressure and flow rate of the N 2 gas until the film thickness of the N 2 gas between the first mold 1a and the second mold 1 became about 30 μm.

【0052】そして、噴出N2 ガスの温度を565℃
(ガラスの粘度で約109.2 dPa・s)に設定し、溶
融ガラス塊105の中心部の温度が575℃(ガラスの
粘度で約108.8 dPa・s)となった所で、一旦冷却
を止め、ガスの温度を570℃に設定し直して、約15
秒間保持し、溶融ガラス塊105が570℃±3℃(ガ
ラスの粘度で約109 dPa・s)となるようにした。
Then, the temperature of the jetted N 2 gas is set to 565 ° C.
(The viscosity of the glass was set to about 10 9.2 dPa · s). When the temperature at the center of the molten glass block 105 became 575 ° C. (about 108.8 dPa · s with the viscosity of glass), the cooling was stopped once. , The gas temperature was reset to 570 ° C.
The temperature was kept for 2 seconds so that the temperature of the molten glass block 105 became 570 ° C. ± 3 ° C. (the viscosity of the glass was about 10 9 dPa · s).

【0053】次に、第1の実施例と同様に、この温度状
態を保持したまま、その成形品106の中心の肉厚が4
mm、また、それと成形転写面11a、21aとの間の
2ガス膜の厚さが5μm程度となるように、N2 ガス
の流量及び圧力を調整しながら、下型ユニット1と上型
ユニット2とを低速で、徐々に動作し下型11と上型2
1とを閉じ、成形転写面11a、21aを半成形品10
5に転写し、その結果、成形品(レンズ)106を得
た。
Next, as in the first embodiment, while maintaining this temperature state, the thickness of the center of the molded product 106 is reduced to 4 mm.
mm, and the lower mold unit 1 and the upper mold unit while adjusting the flow rate and pressure of the N 2 gas so that the thickness of the N 2 gas film between it and the molding transfer surfaces 11a and 21a is about 5 μm. 2 operates slowly at a low speed, and the lower mold 11 and the upper mold 2
1 and the molding transfer surfaces 11a and 21a are
5, and as a result, a molded product (lens) 106 was obtained.

【0054】この閉じた状態を10秒保持し、成形品1
06の内部のガラスの動きが完全に停止した所で、下型
ユニット1と上型ユニット2への締め付け力を解除する
と同時に、N2 ガスの圧力を減じ、更に、設定された2
0秒で、温度を室温に達するように冷却した。冷却開始
後、レンズの表面近傍の粘度が1012.5dPa・s(温
度で約500℃)となった時に、下型11と上型21と
を開き、下型11の成形転写面11aから、N2 ガスを
噴出させたままの状態で、成形品106を下型ユニット
1より取り出した。
This closed state is maintained for 10 seconds, and the molded article 1
When the movement of the glass inside 06 completely stopped, the tightening force on the lower mold unit 1 and the upper mold unit 2 was released, and at the same time, the pressure of N 2 gas was reduced.
At 0 seconds, the temperature was cooled to reach room temperature. After the start of cooling, when the viscosity near the surface of the lens becomes 10 12.5 dPa · s (at a temperature of about 500 ° C.), the lower mold 11 and the upper mold 21 are opened, and N is transferred from the molding transfer surface 11 a of the lower mold 11. The molded product 106 was taken out from the lower mold unit 1 while the two gases were jetted.

【0055】第1の実施例と同様に、その成形品の精度
を測定したが、アス・クセ共に全てニュートンリング
1.0本程度に収まり、第1の実施例での実績以上の良
好な結果を得ることができた。
The precision of the molded product was measured in the same manner as in the first embodiment. However, both the ass and habits were within about 1.0 Newton's ring. Could be obtained.

【0056】(第3の実施例)次に、第1の実施例で用
いた成形装置と材料を用いて、図10に示すような、直
径がφ10mm、凸面の曲率がR=20mm、R=30
mm、中心部の肉厚が2.5mmである凸形状のレンズ
を成形した。ここでは、第1の実施の形態と同様に、下
型11の成形転写面11aと上型21の成形転写面21
aは、数々の補正を考慮した形状に加工し、それぞれの
成形転写面の表面状態も、第1の実施例と同様に、平滑
な鏡面状態に仕上げ、最終的な形状とした。また、下型
11、上型21の材料としては、気孔率が10%で、最
大穴径が20μmの多孔質の窒化珪素が用いられ、噴出
ガスには、第1の実施例と同様にN2 ガスが用いられ
た。
(Third Embodiment) Next, using the molding apparatus and materials used in the first embodiment, as shown in FIG. 10, the diameter is 10 mm, the curvature of the convex surface is R = 20 mm, and R = 20 mm. 30
A convex lens having a thickness of 2.5 mm and a central portion having a thickness of 2.5 mm was formed. Here, as in the first embodiment, the molding transfer surface 11a of the lower mold 11 and the molding transfer surface 21
a was processed into a shape in consideration of various corrections, and the surface state of each molding transfer surface was finished to a smooth mirror surface state as in the first embodiment, thereby obtaining a final shape. As a material of the lower mold 11 and the upper mold 21, porous silicon nitride having a porosity of 10% and a maximum hole diameter of 20 μm is used, and the gas to be ejected is N as in the first embodiment. Two gases were used.

【0057】ついで、このように加工準備した下型1
1、上型21を、図1に示す成形装置に取り付け、第1
の実施例と全く同様にして、溶融ガラス塊104を得
た。次に、下型ユニット1を上型ユニット2の直下に移
動し、下型11の成形転写面11aで受けている溶融ガ
ラス塊104の下面近傍の粘度が105 7 dPa・
s、その他の部分の粘度が103 6 dPa・sである
内に、成形転写面11a、21aから噴出するN2 ガス
の流量を毎分5リッター及び10リッター、設定温度を
ガラスの粘度で106.5 dPa・sに相当する650℃
とし、半成形品105の中心肉厚が2.55mm、それ
と成形転写面11a、21aとの間のN2 ガスの膜厚が
およそ50μmとなるまで、N2 ガスの圧力・流量を制
御しながら、下型11と上型21とを閉じた。
Then, the lower mold 1 prepared as described above is prepared.
1. Attach the upper mold 21 to the molding device shown in FIG.
The molten glass lump 104 was obtained in exactly the same manner as in the example of FIG. Next, the lower mold unit 1 is moved directly below the upper mold unit 2, and the viscosity near the lower surface of the molten glass lump 104 received on the molding transfer surface 11 a of the lower mold 11 becomes 10 5 to 7 dPa ·
s, while the viscosity of other parts is 10 3 to 6 dPa · s, the flow rate of N 2 gas ejected from the molding transfer surfaces 11a and 21a is 5 liters and 10 liters per minute, and the set temperature is the viscosity of glass. 650 ° C equivalent to 10 6.5 dPa · s
While controlling the pressure and flow rate of the N 2 gas until the center thickness of the semi-molded product 105 becomes 2.55 mm and the film thickness of the N 2 gas between the semi-molded product 105 and the molding transfer surfaces 11a and 21a becomes about 50 μm. The lower mold 11 and the upper mold 21 were closed.

【0058】そして、噴出N2 ガスの温度を580℃
(ガラスの粘度で約108.2 dPa・s)に設定し、半
成形品105の中心部の温度が600℃(ガラスの粘度
で約107.8 dPa・s)となった所で、一旦冷却を止
め、N2 ガスの温度を590℃に設定し直して、約10
秒間保持し、半成形品105が590℃±2℃(ガラス
の粘度で約108 dPa・s)となるようにした。
Then, the temperature of the jetted N 2 gas is set to 580 ° C.
(Viscosity of glass is about 108.2 dPa · s), and when the temperature of the center of the semi-molded article 105 reaches 600 ° C. (about 107.8 dPa · s in viscosity of glass), cooling is stopped once. , The temperature of N 2 gas is reset to 590 ° C.
After holding for half a second, the semi-molded article 105 was adjusted to 590 ° C. ± 2 ° C. (about 10 8 dPa · s in terms of glass viscosity).

【0059】次に、第1の実施例と同様に、この温度状
態を保持したままで、上述の成形品106の中心の肉厚
が2.5mm、また、それと成形転写面11a、21a
との間のN2 ガス膜の厚さが5μm程度となるように、
2 ガスの流量及び圧力を調整しながら、下型ユニット
1と上型ユニット2とを低速で動作し、下型1と上型2
を閉じ、成形転写面11a、21aの形状を半成形品1
05に転写し、成形品(成形レンズ)106を得た。
Next, in the same manner as in the first embodiment, while maintaining this temperature state, the center thickness of the above-mentioned molded product 106 is 2.5 mm, and the molded product 106 and the molding transfer surfaces 11a, 21a
So that the thickness of the N 2 gas film between them is about 5 μm.
The lower mold unit 1 and the upper mold unit 2 are operated at a low speed while adjusting the flow rate and pressure of the N 2 gas, and the lower mold 1 and the upper mold 2 are operated.
Is closed, and the shape of the molding transfer surfaces 11a and 21a is
The molded product (molded lens) 106 was obtained.

【0060】この閉じた状態を5秒保持し、成形品10
6の内部のガラスの動きが完全に停止した所で、下型1
と上型2への締め付け力を解除すると同時に、N2 ガス
の圧力を減じ、更に、設定温度を10秒で室温に達する
ように急冷却を行った。冷却開始後、レンズの表面近傍
の粘度が1012dPa・s(温度で約510℃)となっ
た時に、下型11と上型21とを開き、下型11の成形
転写面11aからN2ガスを噴出させたままの状態で、
成形品106を下型ユニット1より取り出した。
This closed state is maintained for 5 seconds, and the molded product 10
When the movement of the glass inside 6 has completely stopped, the lower mold 1
At the same time, the clamping force on the upper mold 2 was released, the pressure of the N 2 gas was reduced, and rapid cooling was performed so that the set temperature reached room temperature in 10 seconds. After the start of cooling, when the viscosity near the surface of the lens becomes 10 12 dPa · s (about 510 ° C. in temperature), the lower mold 11 and the upper mold 21 are opened, and N 2 is transferred from the molding transfer surface 11 a of the lower mold 11. With the gas still erupting,
The molded product 106 was taken out from the lower mold unit 1.

【0061】この後、第1の実施例と同様に、その成形
品の精度を測定したが、全て、アスがニュートンリング
1.5本程度、クセがニュートンリング1.0本以内に
収まり、第1の実施例と同じような、良好な結果を得る
ことができた。
Thereafter, the precision of the molded product was measured in the same manner as in the first embodiment, but in all cases, the ass fit within about 1.5 Newton rings and the habit within 1.0 Newton rings. The same good results as in Example 1 were obtained.

【0062】(第4の実施例)次に、第1の実施例と同
じ装置と材料を用いて、図11に示すような、片面がR
=35mm、もう一方の面がR=60mm、レンズの中
心肉厚が5mm、直径がφ23mmである、コンパクト
カメラ用の両凸のガラス球面レンズの成形を行った。こ
こでは、第1の実施例と同様に、下型11の成形転写面
11aと上型21の成形転写面21aは、数々の補正を
考慮した形状に加工し、その後更に、実際に成形を行
い、その形状データをもとに最終的なヒケに対する微少
な補正を行って、その形状を決定した。
(Fourth Embodiment) Next, using the same apparatus and material as in the first embodiment, one side has an R as shown in FIG.
= 35 mm, the other surface was R = 60 mm, the center thickness of the lens was 5 mm, the diameter was 23 mm, and a biconvex glass spherical lens for compact cameras was molded. Here, similarly to the first embodiment, the molding transfer surface 11a of the lower mold 11 and the molding transfer surface 21a of the upper mold 21 are processed into shapes taking into account various corrections, and then the molding is further performed. Based on the shape data, a slight correction was made for the final sink mark to determine the shape.

【0063】また、成形転写面11a、21aの表面状
態も、第1の実施例と同様に、出っ張りのない平滑な鏡
面状態に仕上げ、最終的な形状とした。なお、下型1
1、上型21の材料として、気孔率が25%であり、最
大穴径が6μmである多孔質カーボンが用いられ、噴出
ガスには、第1の実施例と同様にN2 ガスが用られた。
Also, the surface condition of the molding transfer surfaces 11a and 21a was finished to have a smooth mirror surface with no protrusion as in the case of the first embodiment, and the final shape was obtained. In addition, lower mold 1
1. As the material of the upper mold 21, porous carbon having a porosity of 25% and a maximum hole diameter of 6 μm is used, and N 2 gas is used as a gas to be ejected as in the first embodiment. Was.

【0064】ついで、このように加工準備した下型1
1、上型21を、図1に示す成形装置に取り付け、第1
の実施例と全く同様にして溶融ガラス塊104を得た。
そして、下型ユニット1を上型ユニット2の直下に移動
し、下型11の成形転写面11aで受けている溶融ガラ
ス塊104の下面近傍の粘度が105 7 dPa・s、
その他の部分の粘度が103 6 dPa・sである内
に、成形転写面11a、21aから噴出するN2 ガスの
流量を毎分2リッター及び5リッター、設定温度をガラ
スの粘度で107.7 dPa・sに相当する605℃とな
し、半成形品105の中心肉厚が5.06mm、半成形
品105と成形転写面11a、21aとの間のN2 ガス
の膜厚がおよそ30μmとなるまで、N2 ガスの圧力・
流量を制御しながら下型11と上型21とを閉じた。
Next, the lower mold 1 prepared as described above is prepared.
1. Attach the upper mold 21 to the molding device shown in FIG.
A molten glass lump 104 was obtained in exactly the same manner as in the example.
Then, the lower mold unit 1 is moved directly below the upper mold unit 2, and the viscosity near the lower surface of the molten glass lump 104 received on the molding transfer surface 11 a of the lower mold 11 is 10 5 to 7 dPa · s,
Within the viscosity of the other portion is 10 3 ~ 6 dPa · s, the molding transfer surface 11a, min 2 liters the flow rate of N 2 gas ejected from 21a and 5 liters, 10 set temperature viscosity of the glass 7.7 605 ° C. equivalent to dPa · s, the center thickness of the semi-molded product 105 is 5.06 mm, and the film thickness of N 2 gas between the semi-molded product 105 and the molding transfer surfaces 11a and 21a is about 30 μm. Up to the pressure of N 2 gas
The lower mold 11 and the upper mold 21 were closed while controlling the flow rate.

【0065】そして、噴出N2 ガスの温度を590℃
(ガラスの粘度で約108.2 dPa・s)に設定し、半
成形品105の中心部の温度が600℃(ガラスの粘度
で、約107.8 dPa・s)となった所で、一旦冷却を
止め、N2 ガスの温度を595℃に設定し直して、約2
0秒間保持し、半成形品105が595℃±3℃(ガラ
スの粘度で約108 dPa・s)となるようにした。
Then, the temperature of the jetted N 2 gas is set to 590 ° C.
(Viscosity of glass: about 108.2 dPa · s), and when the temperature at the center of the semi-molded article 105 reaches 600 ° C. (viscosity of glass: about 107.8 dPa · s), once cooled, Stop and reset the temperature of N 2 gas to 595 ° C.
The temperature was held for 0 second so that the temperature of the semi-molded article 105 became 595 ° C. ± 3 ° C. (about 10 8 dPa · s in terms of glass viscosity).

【0066】次に、第1の実施例と同様に、温度状態を
保持したまま、成形品106の中心の肉厚が4.01m
m、また、成形品106と成形転写面11a、21aと
の間のN2 ガス膜の厚さが3μm程度となるように、N
2 ガスの流量及び圧力を調整しながら、下型ユニット1
と上型ユニット2とを低速で徐々に動作し、下型11と
上型21とを閉じ、成形転写面11a、21aの形状を
半成形品105に転写し、成形品(レンズ)106を得
た。
Next, similarly to the first embodiment, while maintaining the temperature state, the thickness of the center of the molded product 106 is 4.01 m.
m, so that the thickness of the N 2 gas film between the molded product 106 and the molding transfer surfaces 11a and 21a is about 3 μm.
2 While adjusting the gas flow rate and pressure,
And the upper mold unit 2 are gradually operated at a low speed, the lower mold 11 and the upper mold 21 are closed, the shapes of the molding transfer surfaces 11a and 21a are transferred to the semi-molded product 105, and a molded product (lens) 106 is obtained. Was.

【0067】この閉じた状態を10秒保持し、成形品1
06の内部のガラスの動きが完全に停止した所で、下型
ユニット1と上型ユニット2への締め付け力を解除する
と同時に、N2 ガスの圧力を減じ、更に、設定温度を2
0秒で室温に達するように冷却を行った。冷却開始後、
レンズの表面近傍の粘度が1012dPa・s(温度で約
510℃)となった時に下型11と上型21とを開き、
下型11の成形転写面11aからN2 ガスを噴出させた
ままの状態で、成形品106を下型ユニット1より取り
出した。
This closed state is maintained for 10 seconds, and the molded article 1
When the movement of the glass inside 06 has completely stopped, the tightening force on the lower mold unit 1 and the upper mold unit 2 is released, and at the same time, the pressure of the N 2 gas is reduced, and the set temperature is further reduced to 2 mm.
Cooling was performed to reach room temperature in 0 seconds. After cooling starts,
When the viscosity near the lens surface becomes 10 12 dPa · s (about 510 ° C. in temperature), the lower mold 11 and the upper mold 21 are opened,
The molded product 106 was taken out of the lower mold unit 1 while the N 2 gas was being blown out from the molding transfer surface 11 a of the lower mold 11.

【0068】そして、第1の実施例と同様に、その成形
品の精度を測定したが、表面にヒケによるものと思われ
る多少のうねりを生じていたため、研磨皿と研磨剤とを
用いて、修正研磨を行った。この時の研磨量は、最大で
8μmであり、その研磨後の表面の形状精度は、アス・
クセ共にニュートンリング0.5本以下に収まった。
Then, the precision of the molded product was measured in the same manner as in the first embodiment. However, since the surface had some undulations, which seemed to be caused by sink marks, using a polishing plate and an abrasive, Correction polishing was performed. The polishing amount at this time is a maximum of 8 μm, and the shape accuracy of the polished surface is as
Both habits were within 0.5 Newton rings.

【0069】(第5の実施例)次に第1の実施例と同じ
装置と材料を用いて、図12に示すような凹面がR=2
0mm、凸面がR=60mm、レンズの中心肉厚が3m
m、コバ厚が5.5mm、直径がφ30mmである、コ
ンパクトカメラ等に用いる凹メニスカスレンズの成形を
行った。
(Fifth Embodiment) Next, using the same apparatus and material as in the first embodiment, a concave surface as shown in FIG.
0 mm, convex surface R = 60 mm, lens center thickness 3 m
m, a concave meniscus lens having an edge thickness of 5.5 mm and a diameter of φ30 mm used for a compact camera or the like was formed.

【0070】第1の実施例と同様に、下型11の成形転
写面11aと上型21の成形転写面21aは、数々の補
正を考慮した形状に加工し、それぞれの表面状態も、第
1の実施例と同様に、出っ張りのない平滑な鏡面状態に
仕上げ、最終的な形状とした。なお、下型11、上型2
1の材料として、気孔率が25%であり、最大穴径が6
μmである多孔質カーボンを用い、噴出ガスには、第1
の実施例と同様に、N 2 ガスを用いた。ついで、このよ
うに加工準備した下型11、上型21を用いて、第1の
実施例と全く同様な工程を経て溶融ガラス塊104を得
た。
In the same manner as in the first embodiment, the molding
The imaging surface 11a and the molding transfer surface 21a of the upper mold 21 are
It is processed into a shape that considers positive, and the surface condition of each
As in the first embodiment, a smooth mirror surface without protrusions
Finished and finished shape. The lower mold 11 and the upper mold 2
Material 1 has a porosity of 25% and a maximum hole diameter of 6
μm porous carbon.
As in the embodiment of TwoGas was used. By the way, this
Using the lower mold 11 and the upper mold 21 prepared as described above,
A molten glass lump 104 is obtained through exactly the same steps as in the embodiment.
Was.

【0071】次に下型ユニット1を上型ユニット2の直
下に移動し、下型11の成形転写面11aで受けている
溶融ガラス塊104の下面近傍の粘度が105.5 6.5
dPa・s、その他の部分の粘度が103 5.6 dPa
・sである内に、成形転写面11a、21aから噴出す
るN2 ガスの流量を毎分3リッター及び8リッター、設
定温度をガラスの粘度で107 dPa・sに相当する6
30℃となるよう冷却し、半成形品105の中心肉厚が
3.1mm、これと成形転写面11a、21aとの間の
2 ガスの膜厚がおよそ50μmとなるまで、N2 ガス
の圧力・流量を制御しながら下型11と上型21とを閉
じた。
Next, the lower mold unit 1 is moved directly below the upper mold unit 2, and the viscosity near the lower surface of the molten glass lump 104 received on the molding transfer surface 11 a of the lower mold 11 becomes 10 5.5 to 6.5.
dPa · s, viscosity of other parts is 10 3 to 5.6 dPa
S, the flow rate of the N 2 gas ejected from the molding transfer surfaces 11a and 21a is 3 liters and 8 liters per minute, and the set temperature is equivalent to 10 7 dPa · s in terms of glass viscosity.
Cooled so as to be 30 ° C., the center thickness of the semi-molded article 105 is 3.1 mm, which the molding transfer surface 11a, until a thickness of approximately 50μm of N 2 gas between 21a, the N 2 gas The lower mold 11 and the upper mold 21 were closed while controlling the pressure and the flow rate.

【0072】そして、半成形品105の中心部の温度が
640℃(ガラスの粘度で約106. 7 dPa・s)とな
った所で、一旦冷却を止め、改めてN2 ガスの温度を5
35℃に設定し直して、約25秒間保持し、半成形品1
05が535℃±4℃(ガラスの粘度で約106.8 dP
a・s)となるようにした。
[0072] Then, upon reaching a temperature of the center portion of the semi-molded article 105 is 640 ° C. (about a viscosity of the glass 10 6. 7 dPa · s), once the cooling is the temperature of the newly N 2 gas 5
Reset the temperature to 35 ° C and hold it for about 25 seconds.
05 at 535 ° C. ± 4 ° C. (approximately 10 6.8 dP
a · s).

【0073】次に、第1の実施例と同様に、この温度状
態を保持したまま、成形品106の中心の肉厚が5.0
1mm、また、これと成形転写面11a、21aとの間
のN 2 ガス膜の厚さが5μm程度となるように、N2
スの流量及び圧力を調整しながら、下型ユニット1と上
型ユニット2を低速で徐々に動作し、下型11と上型2
1とを閉じ、成形転写面11a、21aの形状を半成形
品105に転写し、成形品(レンズ)106を得た。
Next, as in the first embodiment, the temperature
While maintaining the state, the thickness of the center of the molded product 106 is 5.0
1 mm, and between this and the molding transfer surfaces 11a, 21a
N TwoN is adjusted so that the thickness of the gas film is about 5 μm.TwoMoth
While adjusting the flow rate and pressure of the
The mold unit 2 is gradually operated at a low speed, and the lower mold 11 and the upper mold 2 are operated.
1 is closed, and the shapes of the molding transfer surfaces 11a and 21a are semi-molded.
This was transferred to a product 105 to obtain a molded product (lens) 106.

【0074】この閉じた状態を15秒保持し、成形品1
06の内部のガラスの動きが完全に停止した所で、下型
ユニット1と上型ユニット2への締め付け力を解除する
と同時に、N2 ガスの圧力を減じ、更に、所定温度を2
5秒で室温に達するように冷却を行った。冷却開始後、
レンズの表面近傍の粘度が1012dPa・s(温度で約
510℃)となった時に下型11および上型21を開
き、下型11の成形転写面11aからはN2 ガスを噴出
させたままの状態で、成形品106を下型ユニット1よ
り取り出した。
This closed state is held for 15 seconds, and the molded article 1
When the movement of the glass inside 06 has completely stopped, the tightening force on the lower mold unit 1 and the upper mold unit 2 is released, and at the same time, the pressure of the N 2 gas is reduced, and the predetermined temperature is further reduced by 2 mm.
Cooling was performed to reach room temperature in 5 seconds. After cooling starts,
When the viscosity near the surface of the lens became 10 12 dPa · s (about 510 ° C. in temperature), the lower mold 11 and the upper mold 21 were opened, and N 2 gas was ejected from the molding transfer surface 11 a of the lower mold 11. The molded article 106 was taken out from the lower mold unit 1 in the state as it was.

【0075】しかして、第4の実施例と同様に、その成
形品の精度を測定したが、レンズ外周部に転写不良のう
ねりを生じていたため、更に精研削及び研磨加工を行っ
た。この時の精研削による表層の除去量は、最大で40
μmであり、その後の研磨で、アスがニュートンリング
1本、クセがニュートンリング0.5本以下に収まり、
通常の研削・研磨と遜色の無いレンズを、スラッジの発
生量を9割以上削減した状態で得ることができた。
Thus, the precision of the molded product was measured in the same manner as in the fourth embodiment. However, since fine undulations occurred in the outer peripheral portion of the lens, fine grinding and polishing were further performed. At this time, the removal amount of the surface layer by fine grinding is 40 at a maximum.
μm, and in the subsequent polishing, the ass fit in one Newton ring and the habit fits in 0.5 Newton rings or less,
A lens comparable to ordinary grinding and polishing could be obtained with the amount of sludge generated reduced by 90% or more.

【0076】[0076]

【発明の効果】以上説明したように、本発明によれば、
ガラスの熱収縮に伴なうヒケなどの、形状を阻害する要
因を取り除くことにより、溶融ガラスから直接に、非常
に精度の良いガラス製品を得ることができ、更に、高精
度なガラス製品を得ようとする場合にも、研削・研磨等
の加工方法により発生する、研削・研磨屑等の廃棄物を
極端に削減することが可能となり、光学素子のレンズな
どのガラス製品を大量に安価に提供することができる。
As described above, according to the present invention,
By removing factors that hinder the shape, such as sink marks caused by heat shrinkage of the glass, it is possible to obtain very accurate glass products directly from the molten glass, and furthermore, to obtain highly accurate glass products. In this case, it is possible to extremely reduce waste such as grinding and polishing debris generated by processing methods such as grinding and polishing, and to provide a large amount of glass products such as optical element lenses at low cost. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いられる成形装置の概略図である。FIG. 1 is a schematic view of a molding apparatus used in the present invention.

【図2】本発明で用いられる溶融ガラス塊の切断方法の
説明図である。
FIG. 2 is an explanatory diagram of a method for cutting a molten glass lump used in the present invention.

【図3】本発明で用いられる溶融ガラス塊の切断方法の
説明図である。
FIG. 3 is an explanatory diagram of a method for cutting a molten glass lump used in the present invention.

【図4】本発明で用いられる溶融ガラス塊の切断方法の
説明図である。
FIG. 4 is an explanatory view of a method for cutting a molten glass lump used in the present invention.

【図5】本発明の溶融ガラス塊の成形方法の説明図であ
る。
FIG. 5 is an explanatory view of a method for forming a molten glass lump according to the present invention.

【図6】本発明の溶融ガラス塊の成形方法の説明図であ
る。
FIG. 6 is an explanatory diagram of a method for forming a molten glass lump according to the present invention.

【図7】本発明の溶融ガラス塊の成形方法の説明図であ
る。
FIG. 7 is an explanatory view of a method for forming a molten glass lump according to the present invention.

【図8】本発明の第1の実施例に用いられるガラス製品
の図である。
FIG. 8 is a view of a glass product used in the first embodiment of the present invention.

【図9】本発明の第2の実施例に用いられるガラス製品
の図である。
FIG. 9 is a view of a glass product used in a second embodiment of the present invention.

【図10】本発明の第3の実施例に用いられるガラス製
品の図である。
FIG. 10 is a view of a glass product used in a third embodiment of the present invention.

【図11】本発明の第4の実施例に用いられるガラス製
品の図である。
FIG. 11 is a view of a glass product used in a fourth embodiment of the present invention.

【図12】本発明の第5の実施例に用いられるガラス製
品の図である。
FIG. 12 is a view of a glass product used in a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 下型ユニット 2 上型ユニット 11 下型 12 上型 16、26 N2 ガスヒータ 101 溶融ガラス供給ノズル 102 溶融ガラス 104 溶融ガラス塊 105 ガラスの半成形品 106 ガラス成形品Reference Signs List 1 lower die unit 2 upper die unit 11 lower die 12 upper die 16, 26 N 2 gas heater 101 molten glass supply nozzle 102 molten glass 104 molten glass lump 105 semi-molded glass product 106 glass molded product

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保 裕之 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroyuki Kubo 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 多孔質の成形型の成形転写面から噴出す
るガスを介して、溶融ガラス塊と成形型とを非接触の状
態に保持したまま、前記溶融ガラス塊を加圧成形し、ま
た、その後に冷却し、ガラス製品を得るガラス成形品の
成形方法において、そのガラス製品の形状を決定する温
度領域で、ガラス内部と表面との温度差が5℃以内にな
るように、所要時間、所定温度に保持すると共に、その
温度保持の完了直前に、加圧力を増して、成形転写面の
形状に溶融ガラス塊の表面を倣わせ、その後、加圧力を
減じると同時に冷却を開始し、前記保持温度で得られた
形状を保つようにしたことを特徴とするガラス製品の成
形方法。
1. A pressure forming of the molten glass block while maintaining the molten glass block and the mold in a non-contact state via a gas ejected from a molding transfer surface of a porous mold, and In a method of forming a glass molded product, which is then cooled to obtain a glass product, the time required for the temperature difference between the inside and the surface of the glass to be within 5 ° C. in a temperature range that determines the shape of the glass product; While maintaining the predetermined temperature, immediately before the completion of the temperature holding, increasing the pressing force to make the surface of the molten glass block conform to the shape of the molding transfer surface, and then, after reducing the pressing force, simultaneously start cooling, A method for forming a glass product, wherein a shape obtained at a holding temperature is maintained.
【請求項2】 前記温度保持が成形型より噴出するガス
の温度を調整することにより行われることを特徴とする
請求項1記載のガラス製品の成形方法。
2. The method for forming a glass product according to claim 1, wherein the temperature is maintained by adjusting a temperature of a gas ejected from a forming die.
【請求項3】 前記ガラス成形品の形状を決定する温度
領域が、加圧成形されるガラスの粘度で106 〜1010
dPa・sに相当する温度の領域であることを特徴とす
る請求項1記載のガラス製品の成形方法。
3. The temperature range which determines the shape of the glass molded product is 10 6 to 10 10 based on the viscosity of the glass to be pressure-formed.
The method for forming a glass product according to claim 1, wherein the temperature is in a range corresponding to dPa · s.
【請求項4】 多孔質の成形型の成形転写面から噴出す
るガスを介して、溶融ガラス塊と成形型とを非接触の状
態に保持したまま、前記溶融ガラス塊を加圧成形し、ま
た、その後に冷却し、ガラス製品を得るガラス成形品の
成形方法において、そのガラス製品の形状を決定する温
度領域で、ガラス内部と表面との温度差が5℃以内にな
るように、所要時間、所定温度に保持すると共に、その
温度保持の完了直前に、加圧力を増して、成形転写面の
形状に溶融ガラス塊の表面を倣わせ、その後、加圧力を
減じると同時に冷却を開始して、前記保持温度で得られ
た形状を保つと共に、このようにして得られたガラス素
材の表層を、精研削・研磨加工により除去し、ガラス製
品を得ることを特徴とするガラス製品の成形方法。
4. A pressure molding of the molten glass mass while maintaining the molten glass mass and the molding die in a non-contact state through a gas ejected from a molding transfer surface of a porous molding die; In a method for forming a glass molded product, which is then cooled to obtain a glass product, the time required for the temperature difference between the inside and the surface of the glass to be within 5 ° C. in a temperature range that determines the shape of the glass product; While maintaining the predetermined temperature, immediately before the completion of the temperature holding, increase the pressing force to make the surface of the molten glass lump conform to the shape of the molding transfer surface, and then reduce the pressing force and simultaneously start cooling, A method for forming a glass product, wherein the shape obtained at the holding temperature is maintained, and the surface layer of the glass material thus obtained is removed by precision grinding and polishing to obtain a glass product.
【請求項5】 前記除去するガラス素材の表層の厚さ
が、50μm以下であることを特徴とする請求項4記載
のガラス製品の成形方法。
5. The method according to claim 4, wherein the thickness of the surface layer of the glass material to be removed is 50 μm or less.
JP13965398A 1998-05-21 1998-05-21 Molding of glass product Pending JPH11322349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13965398A JPH11322349A (en) 1998-05-21 1998-05-21 Molding of glass product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13965398A JPH11322349A (en) 1998-05-21 1998-05-21 Molding of glass product

Publications (1)

Publication Number Publication Date
JPH11322349A true JPH11322349A (en) 1999-11-24

Family

ID=15250292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13965398A Pending JPH11322349A (en) 1998-05-21 1998-05-21 Molding of glass product

Country Status (1)

Country Link
JP (1) JPH11322349A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052129A (en) * 2004-07-19 2006-02-23 Schott Ag Method and apparatus for producing fire polished gob
JP2010018487A (en) * 2008-07-11 2010-01-28 Canon Inc Forming method of optical element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052129A (en) * 2004-07-19 2006-02-23 Schott Ag Method and apparatus for producing fire polished gob
JP4537281B2 (en) * 2004-07-19 2010-09-01 ショット アクチエンゲゼルシャフト Method and apparatus for making a flame polished gob
US8069689B2 (en) 2004-07-19 2011-12-06 Schott Ag Process and device for producing fire-polished gobs
JP2010018487A (en) * 2008-07-11 2010-01-28 Canon Inc Forming method of optical element

Similar Documents

Publication Publication Date Title
JP3853622B2 (en) Manufacturing method of glass molded body, manufacturing method of press-molded product, manufacturing method of glass optical element, and manufacturing apparatus of glass molded body
JP3673670B2 (en) Optical element and method for producing molded glass block for its production
JPH0471853B2 (en)
JP4289716B2 (en) Glass element molding method
JP3768796B2 (en) Apparatus for producing glass lump for optical element, and method for producing optical element from the glass lump
JPH11322349A (en) Molding of glass product
JP3689586B2 (en) Optical element manufacturing method
JPH0912317A (en) Production of glass optical element
JP3618937B2 (en) Optical element molding method and precision element molding method
JP3630829B2 (en) Manufacturing method of optical element molding material
JP4026868B2 (en) Optical element manufacturing method
JPH11171555A (en) Production of blank for forming optical element
JP2501585B2 (en) Optical element molding method
JP2008074636A (en) Method and device for producing optical element
JP2000233934A (en) Method for press-forming glass product and device therefor
JP2012176862A (en) Method of manufacturing glass preform for precision press-molding, and method of manufacturing optical element
JP4992035B2 (en) Optical element manufacturing method
JP2002137925A (en) Forming method for glass element
JP4784454B2 (en) Optical element manufacturing method and manufacturing apparatus
JPH0372016B2 (en)
JP2001010831A (en) Molding mold for glass optical element and production of glass optical element using the same
JPH0952720A (en) Production of perform for forming glass optical element and apparatus therefor
JPH09221329A (en) Blank for forming optical element and production of optical element as well as apparatus for production thereof
JPH11106221A (en) Molding of glass element
JPH08217465A (en) Method for forming optical element and apparatus for forming