JP2010018487A - Forming method of optical element - Google Patents

Forming method of optical element Download PDF

Info

Publication number
JP2010018487A
JP2010018487A JP2008180889A JP2008180889A JP2010018487A JP 2010018487 A JP2010018487 A JP 2010018487A JP 2008180889 A JP2008180889 A JP 2008180889A JP 2008180889 A JP2008180889 A JP 2008180889A JP 2010018487 A JP2010018487 A JP 2010018487A
Authority
JP
Japan
Prior art keywords
optical element
molding
mold
molded
glass lump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008180889A
Other languages
Japanese (ja)
Other versions
JP2010018487A5 (en
JP5430092B2 (en
Inventor
Masayuki Tomita
昌之 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008180889A priority Critical patent/JP5430092B2/en
Publication of JP2010018487A publication Critical patent/JP2010018487A/en
Publication of JP2010018487A5 publication Critical patent/JP2010018487A5/ja
Application granted granted Critical
Publication of JP5430092B2 publication Critical patent/JP5430092B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a forming method of an optical element which forms the optical element of a concave meniscus shape up to its side part with high shape accuracy. <P>SOLUTION: The difference of the depth of a cavity in the normal-line direction to a forming surface of a spherical shape is structured as to be 15% or below between a central part and an outer peripheral part of the cavity of a forming mold used in a step of forming a formed glass lump 1 from melt glass. The formed glass lump 1 is formed using the forming mold and press molded to produce an optical element 2, that is a molded product. The more nearly the depth of the cavity of the forming mold for forming the formed glass lump 1 is uniform, the fewer a great swell is generated on the surface of the formed glass lump 1 and the less the shape accuracy of the optical element 2 to be press formed is impaired. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、溶融ガラス等から成形された成形用素材をプレス成形することで凹メニスカス形状の光学素子を得る光学素子の成形方法に関するものである。   The present invention relates to an optical element molding method for obtaining a concave meniscus optical element by press molding a molding material molded from molten glass or the like.

成形用素材を溶融ガラスから得る技術として、例えば、特許文献1に開示された方法が知られている。この方法は、溶融ガラスを凸形状治具の上に受け、これを反転させ、さらにこのガラス塊を熱変形させた後、精密成形型で精密成形し、レンズ等の光学素子を得ている。溶融ガラスを凸形状治具の上に受けるのは、溶融ガラスと受け治具の界面に発生する真空泡の発生を防止するためであり、ガラス塊を反転した後に熱変形させるのは、溶融ガラスと受け治具の界面に発生するガラスのしわ状の面を滑らかにするためである。   As a technique for obtaining a forming material from molten glass, for example, a method disclosed in Patent Document 1 is known. In this method, molten glass is received on a convex jig, inverted, and further, this glass lump is thermally deformed, and then precision molded with a precision mold to obtain an optical element such as a lens. The reason why the molten glass is received on the convex jig is to prevent the generation of vacuum bubbles generated at the interface between the molten glass and the receiving jig. This is to smooth the wrinkled surface of the glass generated at the interface of the receiving jig.

この公知技術において、ガラス塊を反転した後に熱変形させて得られた成形用素材は、凸形状の自由表面からなり、この凸形状の成形用素材を精密成形することで光学素子を得ているが、この光学素子は両凸形状である。また、光学素子の側面部の成形は行なっていない。   In this known technology, a molding material obtained by reversing the glass lump and then thermally deforming has a convex free surface, and an optical element is obtained by precisely molding the convex molding material. However, this optical element has a biconvex shape. Moreover, the side part of the optical element is not molded.

特開平4−77320号公報JP-A-4-77320

近年では、成形ガラス光学素子の光学機器への使用は一般化し、従来には見られなかった硝材、レンズ形状への展開が進んでおり、凹メニスカス形状の光学素子の開発も盛んである。しかし、凹メニスカス形状の光学素子を製造する際の成形用素材として、以下に示す課題がある。   In recent years, the use of molded glass optical elements in optical devices has become common, and development of glass materials and lens shapes that have not been seen in the past has progressed, and development of concave meniscus optical elements is also active. However, there are the following problems as a molding material for manufacturing a concave meniscus optical element.

上記従来例のように、表面が自由表面からなる凸形状の成形用素材を用いると、凹メニスカス形状の光学素子になるまでの変形量が大きいために、成形中にガラスが偏肉するという現象が発生することがある。このため、きれいな軸対称形状の凹メニスカス形状の光学素子を得ることは困難であった。   Phenomenon that glass becomes uneven during molding due to the large amount of deformation until it becomes a concave meniscus optical element when using a convex molding material with a free surface as in the conventional example above May occur. For this reason, it has been difficult to obtain a clean axisymmetric shaped concave meniscus optical element.

そこで、成形用素材の形状を成形品である光学素子の形状に近づけることも考えられた。しかし、凹メニスカス形状の成形用素材を、研削研摩加工で作ることは当然可能であるが、その製造コストが高くなり、製品価格競争の厳しい製品への投入は困難である。   Therefore, it has been considered that the shape of the molding material is close to the shape of the optical element that is a molded product. However, although it is naturally possible to produce a concave meniscus-shaped molding material by grinding and polishing, its manufacturing cost increases and it is difficult to introduce it into a product with severe product price competition.

凹メニスカス形状の成形用素材を、溶融ガラスからプレス成形で得る技術も検討されたが、溶融ガラスの失透防止のため低粘度での溶融ガラスの流出が必要となる。このため、成形時のガラスの収縮量が大きくなり、凹メニスカス形状のような厚み差の大きな成形品を得る場合は、ガラスの収縮によるヒケが発生する。従って、凹メニスカス形状の成形用素材を溶融ガラスから得ることは困難であった。   A technique for obtaining a concave meniscus-shaped molding material from molten glass by press molding has also been studied, but it is necessary to discharge the molten glass with low viscosity in order to prevent devitrification of the molten glass. For this reason, the shrinkage amount of the glass at the time of shaping | molding becomes large, and when obtaining a molded product with a large thickness difference like a concave meniscus shape, sink marks due to the shrinkage of the glass occur. Therefore, it has been difficult to obtain a concave meniscus molding material from molten glass.

また、一方において、近年の成形ガラス光学素子においては、その側面部まで高い形状精度で成形することが求められている。すなわち、従来は特許文献1に開示されたように、成形後に光学素子の側面を研削加工で形成する芯取り加工を行なっていた。しかし、製造コスト削減の観点、及び、研削時に発生する加工屑の発生防止を目的とする環境面の観点から、光学素子の側面部まで高い形状精度で成形し、従来では後工程で行なっていた芯取り加工を行なわない技術の開発が望まれている。   On the other hand, recent molded glass optical elements are required to be molded with high shape accuracy up to the side surface. That is, conventionally, as disclosed in Patent Document 1, a centering process for forming a side surface of an optical element by grinding after molding has been performed. However, from the viewpoint of manufacturing cost reduction and the environmental viewpoint for the purpose of preventing the generation of processing waste generated during grinding, molding was performed with high shape accuracy up to the side surface of the optical element, which was conventionally performed in a subsequent process. Development of technology that does not perform centering is desired.

本発明は、凹メニスカス形状の光学素子を、その側面部まで高い形状精度で成形することができる光学素子の成形方法を提供することを目的とするものである。   An object of the present invention is to provide an optical element molding method capable of molding a concave meniscus optical element up to its side surface with high shape accuracy.

本発明の光学素子の成形方法は、溶融状態の光学材料を、球面形状の成形面を有する成形型のキャビティーに充填し、成形用素材を成形する第1工程と、前記成形用素材をプレス成形することで凹メニスカス形状の光学素子を成形する第2工程と、を有し、前記第1工程において、前記成形型のキャビティーの中心部の、前記球面形状の成形面に対する法線方向の厚みと、前記キャビティーの外周部の、前記球面形状の成形面に対する法線方向の厚みの差が15%以下であることを特徴とする。   The optical element molding method of the present invention includes a first step of filling a molten mold optical material into a cavity of a molding die having a spherical molding surface, and molding the molding material, and pressing the molding material. A second step of forming a concave meniscus optical element by molding, and in the first step, a central portion of the cavity of the molding die in a direction normal to the spherical molding surface The difference between the thickness and the thickness of the outer peripheral portion of the cavity in the normal direction to the spherical molding surface is 15% or less.

キャビティーの厚みが均一に近い成形型を用いて成形用素材を成形することで、冷却時のヒケを低減する。このような成形用素材を用いることで、高屈折率ガラスで、凹メニスカス形状の光学素子を、後工程の芯取り加工を必要とせず、成形のみでその側面部まで高い形状精度で得ることができる。   By forming a molding material using a mold having a nearly uniform cavity thickness, sink marks during cooling are reduced. By using such a molding material, it is possible to obtain a concave meniscus-shaped optical element with a high refractive index glass with high shape accuracy up to its side surface by molding alone without the need for post-centering processing. it can.

これによって、光学素子の高品質化、製造コストの削減、さらには環境対策等に大きく貢献できる。   This can greatly contribute to the improvement of the quality of the optical element, the reduction of the manufacturing cost, and the environmental measures.

本発明を実施するための最良の形態を図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1は一実施形態を説明するもので、本実施形態による光学素子の成形方法は、次の2つの工程からなる。   FIG. 1 illustrates one embodiment, and the optical element molding method according to the present embodiment includes the following two steps.

第1工程では、成形用素材である成形ガラス塊1を成形する。第1工程で用意する成形型は、光学素子の光学面に対応する球面形状の成形面を有する一対の上下型と、光学素子の側面に対応する部位を成形するための円筒状の側面型を有する。   In the first step, a molded glass lump 1 that is a forming material is formed. The mold prepared in the first step includes a pair of upper and lower molds having a spherical molding surface corresponding to the optical surface of the optical element, and a cylindrical side mold for molding a portion corresponding to the side surface of the optical element. Have.

一対の上下型の一方は、凹球面形状の成形面を有する凹球面型であり、他方は、凸球面形状の成形面を有する凸球面型である。凹球面型と凸球面型で形成されるキャビティーの厚みを、下型の球面形状の成形面に対して法線方向に測定したときに、キャビティーの中心部と外周部とで前記厚みの差が15%以下になるよう形成されている。   One of the pair of upper and lower molds is a concave spherical mold having a concave spherical shaped molding surface, and the other is a convex spherical mold having a convex spherical shaped molding surface. When the thickness of the cavity formed by the concave spherical surface mold and the convex spherical surface mold is measured in the normal direction with respect to the molding surface of the spherical surface of the lower mold, The difference is 15% or less.

第1工程で用意する成形型は、溶融ガラスとの濡れ性の悪い材料で作ることが好ましく、具体的材料としては、カーボン、セラミック、金属等がある。   The mold prepared in the first step is preferably made of a material having poor wettability with molten glass, and specific materials include carbon, ceramic, metal, and the like.

第1工程では、溶融ガラスを、上記の成形型に充填し、図1(a)に示す成形ガラス塊1を得る。   In the first step, molten glass is filled into the above-described mold to obtain a molded glass lump 1 shown in FIG.

この工程は、大気雰囲気中で行なっても問題は無い。   There is no problem even if this process is performed in an air atmosphere.

この工程の成形温度及びプレス力は、ガラスの種類とレンズ形状から最適なプロセスが選択されることが望ましい。   For the molding temperature and pressing force in this step, it is desirable to select an optimum process from the type of glass and the lens shape.

第2工程では、第1工程で得られた成形ガラス塊1を、精密成形型で精密成形(プレス成形)し、図1(b)に示す光学素子2を得る。   In the second step, the molded glass lump 1 obtained in the first step is precision-molded (press-molded) with a precision mold to obtain the optical element 2 shown in FIG.

この第2工程で用いる精密成形型は、光学素子2の側面部も成形できるよう、円筒状の側面型も有することが好ましい。   The precision mold used in the second step preferably has a cylindrical side mold so that the side portion of the optical element 2 can be molded.

この工程は、非酸化雰囲気中で行なうのが好ましい。   This step is preferably performed in a non-oxidizing atmosphere.

この工程で用いる成形型は、セラミックなどの高温強度のある材料からなることが好ましい。   The mold used in this step is preferably made of a material having high temperature strength such as ceramic.

この工程の成形温度及びプレス力は、ガラスの種類とレンズ形状から最適なプロセスが選択されることが望ましい。   For the molding temperature and pressing force in this step, it is desirable to select an optimum process from the type of glass and the lens shape.

図1は、本実施例で成形した成形用素材である成形ガラス塊1と、成形品である光学素子2を示す。   FIG. 1 shows a molded glass lump 1 that is a molding material molded in this example and an optical element 2 that is a molded product.

光学素子2の形状は、図1(b)に示すように凹メニスカス形状であり、その硝材は、屈折率nd1.82の高屈折率のガラスである。具体的な光学素子2の寸法は、直径12.6mm、中心高さ1.5mm、凸面R40mm、凹面R5mmの凹メニスカスレンズである。   The shape of the optical element 2 is a concave meniscus shape as shown in FIG. 1B, and the glass material is a high refractive index glass having a refractive index nd1.82. The specific dimensions of the optical element 2 are a concave meniscus lens having a diameter of 12.6 mm, a center height of 1.5 mm, a convex surface R40 mm, and a concave surface R5 mm.

第1工程として、下型の凹球面R12.3mm、上型の凸球面R9mm、円筒状の側面型の内径11.9mmである成形型を用意した。この成形型の中心高さは3.3mmで、成形型の中心部と外周部とで、キャビティーの成形面である下型の凹球面に対する法線方向の厚みが均一になるように形成されている。この成形型は、カーボン材料から作った。   As a first step, a molding die having a lower concave spherical surface R12.3 mm, an upper convex spherical surface R9 mm, and a cylindrical side surface inner diameter 11.9 mm was prepared. The center height of this mold is 3.3 mm, and the thickness in the normal direction to the concave spherical surface of the lower mold, which is the molding surface of the cavity, is uniform between the center and the outer periphery of the mold. ing. This mold was made from a carbon material.

このカーボン製の成形型を用いて図1(a)に示す成形ガラス塊1を得た。溶融状態の光学材料である溶融ガラスを1000℃で流出し、所望重量のガラス塊を得た後、このガラス塊を成形型内に入れて成形した。成形型の温度は常時500℃に保った。プレス力は200Nであった。なお、この成形は大気中で行なった。得られた成形用ガラス塊1は、内径11.9mm、凸面R12.25mm、凹面R8.9mm、中心高さ3.25mであった。   Using this carbon mold, a molded glass lump 1 shown in FIG. 1 (a) was obtained. Molten glass, which is an optical material in a molten state, was flowed out at 1000 ° C. to obtain a glass lump having a desired weight, and this glass lump was placed in a mold and molded. The temperature of the mold was always kept at 500 ° C. The pressing force was 200N. This molding was performed in the atmosphere. The obtained glass lump 1 for molding had an inner diameter of 11.9 mm, a convex surface R of 12.25 mm, a concave surface R of 8.9 mm, and a center height of 3.25 m.

次に、第2工程として、この成形ガラス塊1を精密成形型を用いてプレス成形し、光学素子2を得た。精密成形型は、超硬合金からなっており、光学素子2の側面部も成形できるよう、円筒状の側面型を有し、この部材も超硬合金からなっている。この工程の精密成形は窒素雰囲気で行なった。プレス温度は560℃であった。このときのプレス押し代である成形ガラス塊1の中心厚と光学素子2の中心厚との差は、1.8mmであった。光学素子2は、直径12.6mm、中心高さ1.5mm、凸面R40mm、凹面R5mmの凹メニスカスレンズであった。その側面と光学面の間の稜線部は、曲率半径0.1mm以上、1.2mm以下に形成されていた。   Next, as a second step, this molded glass lump 1 was press-molded using a precision mold to obtain an optical element 2. The precision molding die is made of a cemented carbide, has a cylindrical side mold so that the side surface of the optical element 2 can be molded, and this member is also made of a cemented carbide. Precision molding in this step was performed in a nitrogen atmosphere. The press temperature was 560 ° C. At this time, the difference between the center thickness of the molded glass lump 1 and the center thickness of the optical element 2 as a press margin was 1.8 mm. The optical element 2 was a concave meniscus lens having a diameter of 12.6 mm, a center height of 1.5 mm, a convex surface R40 mm, and a concave surface R5 mm. The ridge line portion between the side surface and the optical surface was formed with a curvature radius of 0.1 mm or more and 1.2 mm or less.

このようにして得られた光学素子は、高い光学性能を有しており、また、その側面は高い形状精度に成形されているため、芯取り加工を必要とせずに光学機器の鏡筒に組込み可能であった。   The optical element obtained in this way has high optical performance, and its side surface is molded with high shape accuracy, so it can be incorporated into the barrel of optical equipment without the need for centering. It was possible.

本実施例によれば、簡単な工程で高い光学性能を有する光学素子を得られることから、製造コストの低減に大きな効果がある。   According to the present embodiment, since an optical element having high optical performance can be obtained with a simple process, there is a great effect in reducing the manufacturing cost.

図2に示すように、本実施例では、実施例1と同一形状の光学素子を得るために、寸法の異なる成形ガラス塊11を用いる。   As shown in FIG. 2, in this example, in order to obtain an optical element having the same shape as that of Example 1, a molded glass lump 11 having different dimensions is used.

第1工程として、下型の凹球面R16.43mm、上型の凸球面R6mm、円筒状の側面型の内径11.9mmである成形型を用意した。この成形型の中心高さは2.5mmに調整され、キャビティーの、下型の成形面(凹球面)に対する法線方向の厚みは、その中心部と外周部の差が14%になるように形成されている。この成形型は、窒化硼素から作った。   As a first step, a molding die having a lower concave spherical surface R of 16.43 mm, an upper convex spherical surface R of 6 mm, and a cylindrical side surface inner diameter of 11.9 mm was prepared. The center height of this mold is adjusted to 2.5 mm, and the normal thickness of the cavity with respect to the molding surface (concave spherical surface) of the lower mold is such that the difference between the center and the outer periphery is 14%. Is formed. This mold was made from boron nitride.

この窒化硼素製の成形型を用いて成形ガラス塊11を得た。溶融ガラスを1000℃で流出し、所望重量のガラス塊を得た後、このガラス塊を成形型内に入れて成形した。成形型の温度は常時500℃に保った。プレス力は200Nであった。なお、この成形は大気中で行なった。得られた成形ガラス塊11は、内径11.8mm、凸面R16mm、凹面R5.5mm、中心高さ2.4mmであった。成形ガラス塊11の表面には、深さ20μmの凹み状のウネリがあった。   A molded glass lump 11 was obtained using this boron nitride mold. The molten glass was flowed out at 1000 ° C. to obtain a glass lump having a desired weight, and this glass lump was placed in a mold and molded. The temperature of the mold was always kept at 500 ° C. The pressing force was 200N. This molding was performed in the atmosphere. The obtained molded glass lump 11 had an inner diameter of 11.8 mm, a convex surface R16 mm, a concave surface R5.5 mm, and a center height of 2.4 mm. On the surface of the molded glass lump 11, there was a concave undulation with a depth of 20 μm.

次に、第2工程として、成形ガラス塊11を精密成形し、光学素子を得た。精密成形型は、超硬合金からなり、光学素子の側面部も成形できるよう、円筒状の側面型を有し、この部材も超硬合金からなっている。第2工程の精密成形は窒素雰囲気で行なった。プレス温度は560℃であった。このときのプレス押し代である成形ガラス塊11の中心厚と成形品である光学素子の中心厚との差は、1.0mmであった。光学素子の寸法は、直径12.6mm、中心高さ1.5mm、凸面R40mm、凹面R5mmの凹メニスカスレンズであった。側面と光学面の間の稜線部は、曲率半径0.1mm以上、1.2mm以下に形成されていた。このようにして得られた光学素子は、高い光学性能を有しており、また、その側面は高い形状精度に成形されており、芯取り加工を必要とせずに光学機器の鏡筒に組込み可能であった。   Next, as a second step, the molded glass lump 11 was precisely molded to obtain an optical element. The precision mold is made of cemented carbide and has a cylindrical side mold so that the side part of the optical element can be molded. This member is also made of cemented carbide. The precision molding in the second step was performed in a nitrogen atmosphere. The press temperature was 560 ° C. At this time, the difference between the center thickness of the molded glass lump 11 serving as a press margin and the center thickness of the optical element serving as a molded product was 1.0 mm. The dimensions of the optical element were a concave meniscus lens having a diameter of 12.6 mm, a center height of 1.5 mm, a convex surface R40 mm, and a concave surface R5 mm. The ridge line portion between the side surface and the optical surface was formed with a curvature radius of 0.1 mm or more and 1.2 mm or less. The optical element obtained in this way has high optical performance, and its side surface is molded with high shape accuracy, and can be incorporated into the lens barrel of optical equipment without the need for centering processing. Met.

本実施例によれば、高い光学性能を有する光学素子を得られることから、製造コストの低減に大きな効果がある。
(比較例)
比較のために、実施例1、2と同一形状の光学素子を得る場合で、成形ガラス塊の寸法が異なるものを用いた。
According to the present embodiment, since an optical element having high optical performance can be obtained, there is a great effect in reducing the manufacturing cost.
(Comparative example)
For comparison, an optical element having the same shape as that of Examples 1 and 2 was used, and the molded glass block having a different size was used.

第1工程として、下型の凹球面R21.53mm、上型の凸球面R6mm、円筒状の側面型の内径11.9mmの成形型を用意した。この成形型の中心高さは2.3mmに調整されている。この成形型のキャビティーの、下型の成形面(凹球面)に対する法線方向の厚みは、その中心部と外周部の差が30%になるよう形成されている。この成形型は、窒化硼素から作った。   As a first step, a lower mold concave spherical surface R21.53 mm, an upper mold convex spherical surface R6 mm, and a cylindrical side surface mold having an inner diameter of 11.9 mm were prepared. The center height of the mold is adjusted to 2.3 mm. The thickness of the mold cavity in the normal direction relative to the molding surface (concave spherical surface) of the lower mold is formed such that the difference between the central portion and the outer peripheral portion is 30%. This mold was made from boron nitride.

この窒化硼素製の成形型を用いて成形ガラス塊を得た。溶融ガラスを1000℃で流出させ、所望重量のガラス塊を得た後、このガラス塊をこの成形型内に入れて成形した。成形型の温度は常時500℃に保った。プレス力は200Nであった。なお、この成形は大気中で行なった。得られた成形ガラス塊の寸法は、内径11.8mm、凸面R20mm、凹面R5.5mm、中心高さ2.2mであった。この成形ガラス塊の表面には、深さ80μmの凹み状のウネリがあった。   Using this boron nitride mold, a molded glass lump was obtained. The molten glass was allowed to flow out at 1000 ° C. to obtain a glass lump having a desired weight, and then the glass lump was placed in the mold and molded. The temperature of the mold was always kept at 500 ° C. The pressing force was 200N. This molding was performed in the atmosphere. The dimensions of the resulting molded glass block were an inner diameter of 11.8 mm, a convex surface R of 20 mm, a concave surface R of 5.5 mm, and a center height of 2.2 m. On the surface of this molded glass lump, there was a concave undulation with a depth of 80 μm.

次に、第2工程として、この成形ガラス塊を精密成形し、光学素子を得た。精密成形型は、超硬合金からなっている。光学素子の側面部も成形できるよう、円筒状の側面型を有し、この部材も超硬合金からなっている。第2工程の精密成形は窒素雰囲気で行なった。プレス温度は560℃であった。このときのプレス押し代、すなわち成形ガラス塊の中心厚と光学素子の中心厚との差は、0.7mmであった。このようにして得られた光学素子の寸法は、直径12.6mm、中心高さ1.5mm、凸面R40mm、凹面R5mmの凹メニスカスレンズであった。側面部と光学面の間の稜線部は、曲率半径0.1mm以上、1.2mm以下に形成されていた。   Next, as a second step, this molded glass lump was precisely molded to obtain an optical element. The precision mold is made of cemented carbide. A cylindrical side surface mold is provided so that the side surface portion of the optical element can be molded, and this member is also made of a cemented carbide. The precision molding in the second step was performed in a nitrogen atmosphere. The press temperature was 560 ° C. The press allowance at this time, that is, the difference between the center thickness of the formed glass lump and the center thickness of the optical element was 0.7 mm. The dimensions of the optical element thus obtained were a concave meniscus lens having a diameter of 12.6 mm, a center height of 1.5 mm, a convex surface R40 mm, and a concave surface R5 mm. The ridge line portion between the side surface portion and the optical surface is formed with a curvature radius of 0.1 mm or more and 1.2 mm or less.

しかしながら、ここで得られた光学素子の光学面には、成形ガラス塊の凹み部がガス残りとして残り、光学素子としては使えないものであった。   However, the concave portion of the molded glass lump remains as a gas residue on the optical surface of the optical element obtained here and cannot be used as an optical element.

実施例1を示すもので、(a)は成形ガラス塊の断面形状を示す模式断面図、(b)は、成形品である光学素子の断面形状を示す模式断面図である。1 shows Example 1, (a) is a schematic cross-sectional view showing a cross-sectional shape of a molded glass lump, and (b) is a schematic cross-sectional view showing a cross-sectional shape of an optical element that is a molded product. 実施例2による成形ガラス塊を断面形状の示す模式断面図である。It is a schematic cross section which shows the cross-sectional shape of the shaping | molding glass lump by Example 2. FIG.

符号の説明Explanation of symbols

1、11 成形ガラス塊
2 光学素子
1, 11 Molded glass block 2 Optical element

Claims (3)

溶融状態の光学材料を、球面形状の成形面を有する成形型のキャビティーに充填し、成形用素材を成形する第1工程と、
前記成形用素材をプレス成形することで凹メニスカス形状の光学素子を成形する第2工程と、を有し、
前記第1工程において、前記成形型のキャビティーの中心部の、前記球面形状の成形面に対する法線方向の厚みと、前記キャビティーの外周部の、前記球面形状の成形面に対する法線方向の厚みの差が15%以下であることを特徴とする光学素子の成形方法。
A first step of filling the molten optical material into a cavity of a molding die having a spherical molding surface, and molding a molding material;
A second step of forming a concave meniscus optical element by press molding the molding material,
In the first step, the thickness of the central portion of the cavity of the mold in the normal direction with respect to the spherical shaped molding surface, and the thickness of the outer peripheral portion of the cavity in the normal direction with respect to the spherical shaped molding surface. A method for molding an optical element, wherein the difference in thickness is 15% or less.
プレス成形された光学素子の側面と光学面の間の稜線部が、曲率半径0.1mm以上、1.2mm以下であることを特徴とする請求項1に記載の光学素子の成形方法。   The method for molding an optical element according to claim 1, wherein a ridge line portion between the side surface of the press-molded optical element and the optical surface has a curvature radius of 0.1 mm or more and 1.2 mm or less. 前記第1工程において、前記成形型は、前記球面形状の成形面を有する一対の上下型と、円筒状の側面型と、を有することを特徴とする請求項1又は2に記載の光学素子の成形方法。   3. The optical element according to claim 1, wherein, in the first step, the mold includes a pair of upper and lower molds having the spherical molding surface and a cylindrical side mold. Molding method.
JP2008180889A 2008-07-11 2008-07-11 Optical element molding method Expired - Fee Related JP5430092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008180889A JP5430092B2 (en) 2008-07-11 2008-07-11 Optical element molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008180889A JP5430092B2 (en) 2008-07-11 2008-07-11 Optical element molding method

Publications (3)

Publication Number Publication Date
JP2010018487A true JP2010018487A (en) 2010-01-28
JP2010018487A5 JP2010018487A5 (en) 2011-08-25
JP5430092B2 JP5430092B2 (en) 2014-02-26

Family

ID=41703764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008180889A Expired - Fee Related JP5430092B2 (en) 2008-07-11 2008-07-11 Optical element molding method

Country Status (1)

Country Link
JP (1) JP5430092B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609716A (en) * 1983-06-29 1985-01-18 Canon Inc Manufacture of optical element
JPS6428238A (en) * 1987-07-23 1989-01-30 Canon Kk Press forming mold for optical glass element
JPH0769650A (en) * 1993-08-31 1995-03-14 Canon Inc Production of optical element
JPH10158019A (en) * 1996-11-26 1998-06-16 Canon Inc Formation of optical element, optical element, production of optical element forming material, formation of precision element and precision element
JPH11322349A (en) * 1998-05-21 1999-11-24 Canon Inc Molding of glass product
JP2001019448A (en) * 1999-06-28 2001-01-23 Canon Inc Production of glass blank for optical element, production of optical element using the same and glass optical element
JP2001278631A (en) * 2000-03-30 2001-10-10 Canon Inc Glass forming die manufacturing method of glass formed body and glass optical element
JP2006315877A (en) * 2005-05-10 2006-11-24 Hoya Corp Method for producing formed article, and method for producing preform

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609716A (en) * 1983-06-29 1985-01-18 Canon Inc Manufacture of optical element
JPS6428238A (en) * 1987-07-23 1989-01-30 Canon Kk Press forming mold for optical glass element
JPH0769650A (en) * 1993-08-31 1995-03-14 Canon Inc Production of optical element
JPH10158019A (en) * 1996-11-26 1998-06-16 Canon Inc Formation of optical element, optical element, production of optical element forming material, formation of precision element and precision element
JPH11322349A (en) * 1998-05-21 1999-11-24 Canon Inc Molding of glass product
JP2001019448A (en) * 1999-06-28 2001-01-23 Canon Inc Production of glass blank for optical element, production of optical element using the same and glass optical element
JP2001278631A (en) * 2000-03-30 2001-10-10 Canon Inc Glass forming die manufacturing method of glass formed body and glass optical element
JP2006315877A (en) * 2005-05-10 2006-11-24 Hoya Corp Method for producing formed article, and method for producing preform

Also Published As

Publication number Publication date
JP5430092B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5095564B2 (en) Mold, method for manufacturing glass molded body using the mold, and method for manufacturing optical element
TWI499563B (en) Method for producing glass preform, and
US20050247081A1 (en) Optical glass element and manufacturing method thereof
JP4951166B2 (en) Lens blank and lens manufacturing method
JP5430092B2 (en) Optical element molding method
JP4318681B2 (en) Preform for precision press molding, manufacturing method thereof, and manufacturing method of optical element
JPWO2013118888A1 (en) GLASS PREFORM MANUFACTURING METHOD, GLASS PREFORM, OPTICAL ELEMENT MANUFACTURING METHOD, AND OPTICAL ELEMENT
JP5345228B2 (en) Manufacturing method of glass preform for precision press molding and manufacturing method of optical element
JP2005281106A (en) Mold press forming apparatus and method for manufacturing optical element
JP4426910B2 (en) Mold press mold, optical element manufacturing method, and mold press lens
JP5121610B2 (en) Optical element molding method and optical element molding material
CN202449983U (en) Die-forming die
KR101533113B1 (en) Preform for precision press forming, forming die, glass compact manufacturing method using the die, and optical element manufacturing method
JP4666679B2 (en) Mold press molding apparatus and method for manufacturing molded body
JP5414222B2 (en) Preform for precision press molding and method for manufacturing optical element
JP2000086255A (en) Method for molding optical element
KR102076984B1 (en) Press mould for manufacturing optical dummy lens
CN218951239U (en) Processing die for aspherical glass element
JP5652398B2 (en) Method for producing glass gob and method for producing glass molded body
JP5445087B2 (en) Optical element molding die and optical element molding method
JP2024065018A (en) Press molding apparatus and press molding method, glass lens blank and glass lens, and manufacturing method thereof
JP2006007602A (en) Method for manufacturing plastic lens molding tool and plastic lens
JPH11236230A (en) Mold for forming optical element and forming method using the same
JP2005231946A (en) Apparatus and method for manufacturing glass preform, glass preform and optical element
WO2018025844A1 (en) Press-forming glass material and optical element production method using same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110707

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

LAPS Cancellation because of no payment of annual fees