JP4784454B2 - Optical element manufacturing method and manufacturing apparatus - Google Patents

Optical element manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP4784454B2
JP4784454B2 JP2006252497A JP2006252497A JP4784454B2 JP 4784454 B2 JP4784454 B2 JP 4784454B2 JP 2006252497 A JP2006252497 A JP 2006252497A JP 2006252497 A JP2006252497 A JP 2006252497A JP 4784454 B2 JP4784454 B2 JP 4784454B2
Authority
JP
Japan
Prior art keywords
molten glass
molding
optical
lower mold
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006252497A
Other languages
Japanese (ja)
Other versions
JP2008074637A (en
Inventor
渉 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2006252497A priority Critical patent/JP4784454B2/en
Publication of JP2008074637A publication Critical patent/JP2008074637A/en
Application granted granted Critical
Publication of JP4784454B2 publication Critical patent/JP4784454B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/48Convex-concave

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、溶融ガラスを金型で加圧成形してガラス製光学素子を得る光学素子の製造方法、及び、製造装置に関する。   The present invention relates to an optical element manufacturing method and a manufacturing apparatus for obtaining a glass optical element by pressure molding molten glass with a mold.

今日、ガラス製の光学素子は、デジタルカメラ用レンズ、DVD等の光ピックアップレンズ、携帯電話用カメラレンズ、光通信用のカップリングレンズ、各種ミラーなどとして広範にわたって利用されている。かかるガラス製の光学素子は、ガラス素材を成形金型で加圧成形するプレス成形法により製造されることが多くなってきた。特に、光学面として非球面を有する光学素子は、研削・研磨加工による面形成が容易でないことから、成形金型によるプレス成形法による製造が一般的になりつつある。その中でも、溶融ガラスを成形金型で直接加圧成形してガラス製の光学素子を得るダイレクトプレス法は、高い生産効率を期待できることから注目されている。   Today, glass optical elements are widely used as digital camera lenses, optical pickup lenses such as DVDs, mobile phone camera lenses, optical communication coupling lenses, various mirrors, and the like. Such glass optical elements are often manufactured by a press molding method in which a glass material is pressure-molded with a molding die. In particular, an optical element having an aspheric surface as an optical surface is not easily formed by grinding / polishing, and therefore is generally manufactured by a press molding method using a molding die. Among them, a direct press method for obtaining a glass optical element by directly pressure-molding molten glass with a molding die is attracting attention because high production efficiency can be expected.

溶融ガラスを成形金型で直接加圧成形してガラス製の光学素子を得る方法として、ノズル先端からの溶融ガラスを支持部材に滞留させたあと、該支持部材をノズル先端から退避させ、得られたガラスゴブを上型と下型とで加圧成形する方法が知られている(例えば、特許文献1を参照。)。   As a method for obtaining a glass optical element by directly pressure-molding molten glass with a molding die, the molten glass from the nozzle tip is retained in the support member, and then the support member is withdrawn from the nozzle tip. A method of pressure-molding a glass gob with an upper mold and a lower mold is known (see, for example, Patent Document 1).

しかし、成形の過程で溶融ガラスが冷却される速度が、溶融ガラスの上面と下面、あるいは中心と端部において異なり、冷却による収縮量が不均一になることから、かかる方法により精度の高い光学面を形成することは困難であった。特に、溶融ガラスが最初に支持部材に接触して急冷される下面側に精度の高い光学面を形成することは非常に困難であった。   However, the rate at which the molten glass is cooled during the molding process differs between the upper and lower surfaces of the molten glass, or the center and edges, and the amount of shrinkage due to cooling becomes uneven. It was difficult to form. In particular, it has been very difficult to form a highly accurate optical surface on the lower surface side where the molten glass first contacts with the support member and is rapidly cooled.

また、受け型に供給された溶融ガラスを下型の上に搬送した後、上下金型で加圧成形することによって、溶融ガラスの温度が比較的安定する上面側の光学面のみを上型の成形面の転写によって形成し、下面側の光学面は追加工(研削・研磨加工)によって形成してガラスレンズを製造する方法が提案されている(例えば、特許文献2を参照。)。   In addition, after conveying the molten glass supplied to the receiving mold onto the lower mold, only the upper optical surface on which the temperature of the molten glass is relatively stable is formed by pressing with the upper and lower molds. There has been proposed a method of manufacturing a glass lens by forming a molding surface by transfer and forming an optical surface on the lower surface side by additional processing (grinding / polishing) (see, for example, Patent Document 2).

特許文献2には、更に、成形されるレンズの肉厚が全面にわたって均一になるように下型の受け面を形成することで、レンズの径方向の冷却速度の分布が小さくなり、レンズの上面側に高精度な光学面が得られる旨が開示されている。
特開平6−206730号公報 特開平8−208248号公報
In Patent Document 2, the distribution of the cooling rate in the radial direction of the lens is reduced by forming the receiving surface of the lower mold so that the thickness of the molded lens is uniform over the entire surface. It is disclosed that a highly accurate optical surface can be obtained on the side.
JP-A-6-206730 JP-A-8-208248

しかしながら、光学素子の光学面のうち、成形によって形成しようとする面が凸面の場合には、以下のような問題のため高精度な光学面を得ることはできなかった。   However, when the surface to be formed by molding among the optical surfaces of the optical element is a convex surface, a highly accurate optical surface cannot be obtained due to the following problems.

光学素子の光学面のうち、成形によって形成しようとする面が凸面の場合、これに対応する上型の成形面は凹面となる。従って、成形によって得られる成形体の肉厚を全面にわたって均一にしようとすると、下型の受け面を凸面にする必要がある。しかし、受け面が凸面であると、供給された溶融ガラスの位置が不安定になる。そのため、溶融ガラスの冷却速度がばらつき、高精度な光学面を得ることができなかった。   Of the optical surfaces of the optical element, when the surface to be formed by molding is a convex surface, the molding surface of the upper mold corresponding to this is a concave surface. Therefore, in order to make the thickness of the molded body obtained by molding uniform over the entire surface, it is necessary to make the receiving surface of the lower mold convex. However, if the receiving surface is a convex surface, the position of the supplied molten glass becomes unstable. For this reason, the cooling rate of the molten glass varies, and a highly accurate optical surface cannot be obtained.

また、例えば外径がφ20mm以上といった比較的大きな光学素子を製造する場合には、下型の受け面に多量の溶融ガラスを溜める必要があることから、溶融ガラスの外径を規制するための外径規制面を有する外径規制部材を備えた成形金型を使用する必要がある。このような場合に、受け面が凸面であると、供給された溶融ガラスはまず外側に流れ、受け面の外側から中心側に向かって溜まっていく。外側に流れた溶融ガラスは外径規制部材の外径規制面と接触し、その接触面から急速に冷却されることとなる。このように、外径規制部材を備えた成形金型を使用する場合には、溶融ガラスの中心部と端部の冷却速度に大きな差が生じることから、成形時における溶融ガラスの収縮量が均一にならず、光学素子の上面側に高精度な光学面を得ることは更に困難となっていた。   Further, when manufacturing a relatively large optical element having an outer diameter of, for example, φ20 mm or more, it is necessary to store a large amount of molten glass on the receiving surface of the lower mold, so that the outer diameter for regulating the outer diameter of the molten glass is limited. It is necessary to use a molding die provided with an outer diameter regulating member having a diameter regulating surface. In such a case, if the receiving surface is a convex surface, the supplied molten glass first flows outward and accumulates from the outer side of the receiving surface toward the center side. The molten glass that has flowed to the outside comes into contact with the outer diameter regulating surface of the outer diameter regulating member and is rapidly cooled from the contact surface. As described above, when a molding die having an outer diameter regulating member is used, there is a large difference in the cooling rate between the center portion and the end portion of the molten glass, so that the amount of shrinkage of the molten glass during molding is uniform. Therefore, it has become more difficult to obtain a highly accurate optical surface on the upper surface side of the optical element.

本発明は上記のような技術的課題に鑑みてなされたものであり、本発明の目的は、上型の成形面が凹面の場合であっても、溶融ガラスの中心と端部の冷却速度を均一化することで、高精度な光学面を有する光学素子を高い生産効率で製造することができる光学素子の製造方法、及び、製造装置を提供することである。   The present invention has been made in view of the technical problems as described above, and an object of the present invention is to reduce the cooling rate of the center and end of the molten glass even if the molding surface of the upper mold is a concave surface. An object of the present invention is to provide an optical element manufacturing method and a manufacturing apparatus capable of manufacturing an optical element having a highly accurate optical surface with high production efficiency by making it uniform.

上記の課題を解決するために、本発明は以下の特徴を有するものである。   In order to solve the above problems, the present invention has the following features.

1. 溶融ガラスを受けるための受け面を有する下型と、光学素子の第1の光学面を形成するための凹面の成形面を有する上型とを備える成形金型を、溶融ガラスの温度よりも低い所定温度に加熱する加熱工程と、前記下型の受け面に前記溶融ガラスを供給する溶融ガラス供給工程と、前記成形金型で前記溶融ガラスを加圧成形し、前記上型の成形面が転写された第1の光学面を有する成形体を形成する成形工程とを有し、前記下型の前記受け面は、中心部が凹面又は平面であり、且つ、前記凹面又は平面よりも外側に、前記凹面又は平面の端部よりも高さが低い領域を有し、前記溶融ガラス供給工程において供給された前記溶融ガラスは、前記受け面の中心部に溜まり、その後前記高さが低い領域に供給されることを特徴とする光学素子の製造方法。 1. A molding die comprising a lower mold having a receiving surface for receiving molten glass and an upper mold having a concave molding surface for forming the first optical surface of the optical element is lower than the temperature of the molten glass. A heating step of heating to a predetermined temperature; a molten glass supply step of supplying the molten glass to the receiving surface of the lower mold; and pressure molding of the molten glass with the molding die, and transfer of the molding surface of the upper mold Forming a molded body having a first optical surface, wherein the receiving surface of the lower mold is concave or flat at the center, and outside the concave or flat surface, The molten glass having a region whose height is lower than the end portion of the concave surface or the flat surface, the molten glass supplied in the molten glass supply step is collected in a central portion of the receiving surface, and then supplied to the region having a low height. are manufactured side of the optical element characterized Rukoto .

. 前記成形工程の後に、追加工によって前記成形体の第1の光学面の裏面側に第2の光学面を形成する追加工工程を有することを特徴とする前記1に記載の光学素子の製造方法。 2 . 2. The method of manufacturing an optical element according to 1 above, further comprising an additional processing step of forming a second optical surface on the back surface side of the first optical surface of the molded body by additional processing after the molding step. .

. 前記成形金型は、前記溶融ガラスの外径を規制するための外径規制面を有する外径規制部材を備え、前記溶融ガラス供給工程において、前記下型の受け面に供給された前記溶融ガラスが、前記外径規制部材の外径規制面に接触することを特徴とする前記1又は2の何れか1項に記載の光学素子の製造方法。 3 . The molding die includes an outer diameter regulating member having an outer diameter regulating surface for regulating the outer diameter of the molten glass, and the molten glass supplied to the receiving surface of the lower mold in the molten glass supply step The method of manufacturing an optical element according to any one of 1 and 2 , wherein the outer diameter regulating surface of the outer diameter regulating member is in contact with the outer diameter regulating surface.

. 溶融ガラスを受けるための受け面を有する下型と、光学素子の第1の光学面を形成するための凹面の成形面を有する上型とを備える成形金型と、前記成形金型を溶融ガラスの温度よりも低い所定温度に加熱するための加熱手段と、前記下型の受け面に前記溶融ガラスを供給するための溶融ガラス供給手段と、前記成形金型で前記溶融ガラスを加圧成形し、前記上型の成形面が転写された第1の光学面を有する成形体を形成するための加圧手段とを有し、前記下型の前記受け面は、中心部が凹面又は平面であり、且つ、前記凹面又は平面よりも外側に、前記凹面又は平面の端部よりも高さが低い領域を有し、前記溶融ガラス供給手段により供給された前記溶融ガラスは、前記受け面の中心部に溜まり、その後前記高さが低い領域に供給されることを特徴とする光学素子の製造装置。 4 . A molding die provided with a lower die having a receiving surface for receiving molten glass and an upper die having a concave molding surface for forming the first optical surface of the optical element, and the molding die as molten glass A heating means for heating to a predetermined temperature lower than the temperature of the molten glass, a molten glass supply means for supplying the molten glass to the receiving surface of the lower mold, and the molten glass by pressure molding with the molding die. And a pressing means for forming a molded body having a first optical surface onto which the molding surface of the upper mold is transferred, and the receiving surface of the lower mold has a concave or flat central portion And the outer side of the concave surface or plane has a region whose height is lower than the end of the concave surface or plane, and the molten glass supplied by the molten glass supply means is a central portion of the receiving surface. the reservoir, Turkey is then supplied to the low-level-area Apparatus for producing an optical element characterized.

本発明の光学素子の製造方法によれば、成形金型に供給された溶融ガラスの冷却速度が均一化され、成形時における溶融ガラスの収縮量を均一化することができる。そのため、上型の成形面が凹面の場合であっても、成形によって少なくとも上面側の光学面が高精度に形成された成形体を得ることができ、高精度な光学面を有する光学素子を高い生産効率で製造することができる。   According to the method for producing an optical element of the present invention, the cooling rate of the molten glass supplied to the molding die is made uniform, and the shrinkage amount of the molten glass at the time of molding can be made uniform. Therefore, even if the molding surface of the upper mold is concave, it is possible to obtain a molded body in which at least the optical surface on the upper surface side is formed with high accuracy by molding, and an optical element having a high accuracy optical surface is high. It can be manufactured with production efficiency.

以下、本発明の実施の形態について図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(光学素子)
図1は、本実施形態で製造する光学素子の例を示す図である。図1(a)は両凸レンズ120、図1(b)はメニスカスレンズ130である。両凸レンズ120は、成形によって形成される第1の光学面121と追加工によって形成される第2の光学面122を有している。メニスカスレンズ130も同様に、成形によって形成される第1の光学面131と追加工によって形成される第2の光学面132を有している。本発明は、これらのように成形によって形成される第1の光学面が凸面である光学素子を対象としている。
(Optical element)
FIG. 1 is a diagram illustrating an example of an optical element manufactured in the present embodiment. FIG. 1A shows a biconvex lens 120, and FIG. 1B shows a meniscus lens 130. The biconvex lens 120 has a first optical surface 121 formed by molding and a second optical surface 122 formed by additional machining. Similarly, the meniscus lens 130 has a first optical surface 131 formed by molding and a second optical surface 132 formed by additional machining. The present invention is directed to an optical element in which the first optical surface formed by molding as described above is a convex surface.

両凸レンズの場合、二つの光学面のうちいずれの面を成形によって形成される第1の光学面とするかについては、特に制限はない。ただし、両凸レンズの二つの光学面のうち、一方の面が、いわゆる非球面等であって追加工による形成が困難な形状であり、他方の面が一般的な球面である場合には、前者を成形によって形成される第1の光学面とし、後者を追加工によって形成する第2の光学面とすることが、生産性の観点から好ましい。尤も、製造する光学素子が、ミラーのように一つの光学面のみを有する物の場合には、その面を第1の光学面として成形によって形成すれば良い。   In the case of a biconvex lens, there is no particular limitation as to which one of the two optical surfaces is the first optical surface formed by molding. However, if one of the two optical surfaces of the biconvex lens is a so-called aspherical surface that is difficult to form by additional machining, and the other surface is a general spherical surface, the former Is a first optical surface formed by molding, and the latter is a second optical surface formed by additional machining, from the viewpoint of productivity. However, when the optical element to be manufactured is an object having only one optical surface such as a mirror, the surface may be formed by molding as the first optical surface.

図2は、成形工程で得られた成形体の例を示す図である。図2(a)は両凸レンズ120を製造するための成形体123、図2(b)はメニスカスレンズ130を製造するための成形体133である。図の波線で示すように、追加工によって第2の光学面122、132を形成し、更に、コバ面124、134を形成することで目的とする光学素子が完成する。このとき、第1の光学面121と131が同じ形状であれば、1種類の成形体を作製し、それを追加工することによって両凸レンズ120を製造することもできるし、メニスカスレンズ130を製造することもできる。   FIG. 2 is a diagram illustrating an example of a molded body obtained in the molding process. 2A shows a molded body 123 for manufacturing the biconvex lens 120, and FIG. 2B shows a molded body 133 for manufacturing the meniscus lens 130. As indicated by the wavy lines in the figure, the second optical surfaces 122 and 132 are formed by additional processing, and the edge surfaces 124 and 134 are further formed to complete the target optical element. At this time, if the first optical surfaces 121 and 131 have the same shape, a biconvex lens 120 can be manufactured by manufacturing one type of molded body and additionally processing it, or a meniscus lens 130 can be manufactured. You can also

(成形装置)
図3は、本実施形態で用いる成形装置の一例を示す図である。
(Molding equipment)
FIG. 3 is a diagram illustrating an example of a molding apparatus used in the present embodiment.

本実施形態においては、溶融ガラスの温度よりも低い所定温度に加熱された成形金型10の下型11の受け面に、溶融槽2の下部に設けられたノズル5より溶融ガラスを供給する。このとき、溶融槽2とノズル5はヒーター3によってそれぞれ所定の温度に加熱されている。溶融ガラスが供給された下型11は上型12の下方まで移動し、下型11と上型12とで溶融ガラスを加圧成形して、上型12の成形面が転写された第1の光学面を有する成形体を得る。その後、第1の光学面の裏面側に追加工によって第2の光学面を形成することで光学素子が完成する。   In the present embodiment, molten glass is supplied from the nozzle 5 provided at the lower part of the melting tank 2 to the receiving surface of the lower mold 11 of the molding die 10 heated to a predetermined temperature lower than the temperature of the molten glass. At this time, the melting tank 2 and the nozzle 5 are each heated to a predetermined temperature by the heater 3. The lower mold 11 to which the molten glass is supplied moves to a position below the upper mold 12, the molten glass is pressure-molded by the lower mold 11 and the upper mold 12, and the molding surface of the upper mold 12 is transferred to the first mold 11. A molded body having an optical surface is obtained. Then, an optical element is completed by forming a 2nd optical surface by an additional process in the back surface side of a 1st optical surface.

(成形金型)
図4は、本実施形態で用いる成形金型10を示す図である。成形金型10は、両凸レンズ120用の成形体123を成形するための成形金型である。この成形金型10は、下型11と上型12とを有し、更に、外径規制部材13を備えている。下型11は溶融ガラスを受けるための受け面17を有し、上型12は光学素子の第1の光学面を形成するための成形面18を有している。外径規制部材13は、溶融ガラスの外径を規制するための外径規制面19を有し、下型11に組み合わされて固定されている。また、下型11、上型12、外径規制部材13は、加熱手段としてのヒーター14a、15a、16a及び温度センサー14b、15b、16bをそれぞれ有している。
(Molding mold)
FIG. 4 is a view showing a molding die 10 used in the present embodiment. The molding die 10 is a molding die for molding the molded body 123 for the biconvex lens 120. The molding die 10 includes a lower die 11 and an upper die 12, and further includes an outer diameter regulating member 13. The lower mold 11 has a receiving surface 17 for receiving molten glass, and the upper mold 12 has a molding surface 18 for forming a first optical surface of the optical element. The outer diameter regulating member 13 has an outer diameter regulating surface 19 for regulating the outer diameter of the molten glass, and is fixed in combination with the lower mold 11. The lower mold 11, the upper mold 12, and the outer diameter regulating member 13 have heaters 14a, 15a, 16a and temperature sensors 14b, 15b, 16b as heating means, respectively.

外径規制部材13は、本発明の製造方法において必ずしも必須の部材ではないが、例えば外径がφ20以上といった比較的大きな光学素子を製造する場合には、下型11の受け面17に多量の溶融ガラスを溜める必要があることから、溶融ガラスの外径を規制するための外径規制面19を有する外径規制部材13を備えていることが好ましい。外径規制部材13は、図4のように下型11と別部材で構成しても良いし、同一部材に受け面17と外径規制面19とを形成し、下型11と外径規制部材13の両方の機能を兼ね備えた部材を用いても良い。   The outer diameter regulating member 13 is not necessarily an essential member in the manufacturing method of the present invention. However, for example, when a relatively large optical element having an outer diameter of φ20 or more is manufactured, a large amount is provided on the receiving surface 17 of the lower mold 11. Since it is necessary to store molten glass, it is preferable to include an outer diameter regulating member 13 having an outer diameter regulating surface 19 for regulating the outer diameter of the molten glass. As shown in FIG. 4, the outer diameter regulating member 13 may be constituted by a member separate from the lower mold 11, or a receiving surface 17 and an outer diameter regulating surface 19 are formed on the same member, so that the lower mold 11 and the outer diameter regulating member 13 are formed. A member having both functions of the member 13 may be used.

下型11、上型12、及び外径規制部材13の材質は、炭化タングステンを主成分とする超硬材料、炭化珪素、窒化珪素、窒化アルミニウム、カーボンなど、ガラス製光学素子を加圧成形するための成形金型として公知の材料の中から用途に応じて適宜選択して用いることができる。また、これらの材料の表面に各種金属やセラミックス、カーボンなどの保護膜を形成したものを用いることもできる。下型11、上型12、及び外径規制部材13を全て同一の材料で構成しても良いし、それぞれ別の材料で構成しても良い。   The lower mold 11, the upper mold 12, and the outer diameter regulating member 13 are formed by press-molding a glass optical element such as a super hard material mainly composed of tungsten carbide, silicon carbide, silicon nitride, aluminum nitride, carbon, or the like. As a molding die for this purpose, it can be appropriately selected from known materials according to the use. Moreover, what formed protective films, such as various metals, ceramics, and carbon, on the surface of these materials can also be used. The lower mold 11, the upper mold 12, and the outer diameter regulating member 13 may all be made of the same material, or may be made of different materials.

上型12の成形面18は、両凸レンズ120の第1の光学面121に対応した形状とする。これに対して、両凸レンズ120の第2の光学面122は成形後の追加工によって形成するため、下型11の受け面17は第2の光学面122に対応した形状とする必要はない。   The molding surface 18 of the upper mold 12 has a shape corresponding to the first optical surface 121 of the biconvex lens 120. On the other hand, since the second optical surface 122 of the biconvex lens 120 is formed by additional machining after molding, the receiving surface 17 of the lower mold 11 does not need to have a shape corresponding to the second optical surface 122.

本実施形態の下型11の受け面17は、中心部が凹面17aであり、且つ、その外側に凹面17aの端部17cよりも高さが低い領域17bを有している。供給された溶融ガラスは、まず凹面17aに溜まり、その後次第に外側の領域17bまで流れて供給が完了する。そのため、供給の初期の段階で溶融ガラスが外側に流れて外径規制部材13の外径規制面19と接触することはなく、供給の最終段階になって初めて溶融ガラスと外径規制面19が接触する。したがって、溶融ガラスが外径規制面19と接触することによって急冷され、溶融ガラスの中心部と端部の冷却速度に大きな差が生じるという問題を最小限に抑えることができる。   The receiving surface 17 of the lower mold 11 of this embodiment has a concave portion 17a at the center, and a region 17b having a height lower than that of the end portion 17c of the concave surface 17a. The supplied molten glass first accumulates on the concave surface 17a and then gradually flows to the outer region 17b to complete the supply. Therefore, the molten glass does not flow to the outside at the initial stage of supply and does not come into contact with the outer diameter regulating surface 19 of the outer diameter regulating member 13, and the molten glass and the outer diameter regulating surface 19 are not formed until the last stage of supply. Contact. Therefore, the problem that the molten glass is rapidly cooled by coming into contact with the outer diameter regulating surface 19 and a large difference in the cooling rate between the central portion and the end portion of the molten glass can be minimized.

受け面の中心部は、凹面ではなく平面であっても良い。受け面の中心部の凹面又は平面は、受け面の一部のみであっても受け面の全体であっても良く、供給の初期の段階で溶融ガラスが外径規制面と接触することを効果的に防止することができるだけの大きさがあることが好ましい。   The center of the receiving surface may be a flat surface instead of a concave surface. The concave surface or flat surface of the central portion of the receiving surface may be only a part of the receiving surface or the entire receiving surface, and it is effective that the molten glass comes into contact with the outer diameter regulating surface at the initial stage of supply. It is preferable that there is a size that can be prevented.

一方、受け面の中心部の凹面又は平面が大きい場合、成形体の形状によっては得られる成形体の端部の肉厚が中心部の肉厚に比べて薄くなりすぎることにより、成形時における溶融ガラスの中心部と端部の冷却速度の差が大きくなってしまう場合がある。そのため、下型の受け面は、中心部の凹面又は平面よりも外側に、凹面又は平面の端部よりも高さが低い領域を有していることが好ましい。これにより、供給の初期の段階で溶融ガラスが外径規制面と接触することを効果的に防止できるとともに、成形体の端部の肉厚が薄くなりすぎることを防止でき、成形時における溶融ガラスの収縮量を更に均一化することができる。   On the other hand, if the concave surface or flat surface of the central portion of the receiving surface is large, the thickness of the end of the resulting molded body becomes too thin compared to the thickness of the central portion depending on the shape of the molded body, so In some cases, the difference in cooling rate between the center portion and the end portion of the glass becomes large. Therefore, it is preferable that the receiving surface of the lower mold has a region whose height is lower than the end portion of the concave surface or the plane outside the concave surface or plane of the central portion. As a result, the molten glass can be effectively prevented from coming into contact with the outer diameter regulating surface at the initial stage of supply, and the thickness of the end of the molded body can be prevented from becoming too thin. The amount of shrinkage can be made more uniform.

図5と図6に、本発明で用いることのできる別の下型の例を示す。加熱手段としてのヒーター及び温度センサーは図示していない。   5 and 6 show another example of a lower mold that can be used in the present invention. A heater and a temperature sensor as heating means are not shown.

図5(a)に示す下型21は、受け面27の全体が凹面27aとなっている。また、図5(b)に示す下型31の受け面37は、中心部が凹面37aであり、その外側は、凹面37aの端部と同じ高さの平面となっている。   As for the lower mold | type 21 shown to Fig.5 (a), the whole receiving surface 27 is the concave surface 27a. Moreover, the receiving surface 37 of the lower mold | type 31 shown in FIG.5 (b) has the concave part 37a in the center part, and the outer side becomes a plane of the same height as the edge part of the concave surface 37a.

下型21や下型31を用いることで、供給された溶融ガラスは、まず受け面の中心部に溜まり、供給の初期の段階で溶融ガラスが外径規制面と接触することを効果的に防止することができるため、成形時における溶融ガラスの収縮量を均一化でき、高精度な光学面を有する光学素子を得ることができる。   By using the lower mold 21 and the lower mold 31, the supplied molten glass first accumulates in the center of the receiving surface, and effectively prevents the molten glass from coming into contact with the outer diameter regulating surface in the initial stage of supply. Therefore, the amount of shrinkage of the molten glass during molding can be made uniform, and an optical element having a highly accurate optical surface can be obtained.

図6(a)に示す下型41の受け面47は、中心部が凹面47aであり、その外側に、凹面47aの端部47cよりも高さが低い領域47bを有している。また、図6(b)に示す下型51の受け面57は、中心部が平面57aであり、その外側に、平面57aの端部57cよりも高さが低い領域57bを有している。   The receiving surface 47 of the lower mold 41 shown in FIG. 6A has a concave surface 47a at the center, and has a region 47b whose height is lower than that of the end portion 47c of the concave surface 47a. Moreover, the receiving surface 57 of the lower mold | type 51 shown in FIG.6 (b) has the area | region 57b whose center part is the plane 57a, and whose height is lower than the edge part 57c of the plane 57a on the outer side.

下型41や下型51を用いることで、供給の初期の段階で溶融ガラスが外径規制面と接触することを効果的に防止することができると共に、成形体の端部の肉厚が薄くなりすぎることを防止できるため、成形時における溶融ガラスの収縮量を更に均一化することができ、高精度な光学面を有する光学素子を得ることができる。   By using the lower mold 41 and the lower mold 51, it is possible to effectively prevent the molten glass from coming into contact with the outer diameter regulating surface in the initial stage of supply, and the thickness of the end portion of the molded body is thin. Since it can prevent becoming too much, the shrinkage | contraction amount of the molten glass at the time of shaping | molding can be made further uniform, and the optical element which has a highly accurate optical surface can be obtained.

(加熱工程)
加熱工程は、成形金型を溶融ガラスの温度よりも低い所定温度に加熱する工程である。図4に示すように、成形金型10は、下型11と上型12とを有し、更に、必要に応じて外径規制部材13を備えていても良い。
(Heating process)
The heating step is a step of heating the molding die to a predetermined temperature lower than the temperature of the molten glass. As shown in FIG. 4, the molding die 10 includes a lower die 11 and an upper die 12, and may further include an outer diameter regulating member 13 as necessary.

下型11、上型12、外径規制部材13は、加熱手段としてのヒーター14a、15a、16a及び温度センサー14b、15b、16bをそれぞれ有している。このように、それぞれの部材を独立して温度調節することができる構成としても良いし、成形金型全体を一つ、あるいは複数のヒーターでまとめて加熱するような構成としても良い。ヒーターは、公知の各種のヒーターの中から適宜選択して用いることができる。例えば、部材の内部に埋め込んで使用するカートリッジヒーターや、部材の外側に接触させて使用するシート状のヒーターなどを用いることができる。また、温度センサーとしては、種々の熱電対の他、白金測温抵抗体、各種サーミスタなど公知の手段を使用することができる。   The lower die 11, the upper die 12, and the outer diameter regulating member 13 have heaters 14a, 15a, 16a and temperature sensors 14b, 15b, 16b as heating means, respectively. Thus, it is good also as a structure which can adjust temperature of each member independently, and it is good also as a structure which heats the whole shaping die collectively with one or several heaters. The heater can be appropriately selected from known various heaters. For example, a cartridge heater that is used by being embedded inside the member, or a sheet heater that is used while being in contact with the outside of the member can be used. In addition to various thermocouples, known means such as a platinum resistance thermometer and various thermistors can be used as the temperature sensor.

成形金型10の内、上型12の加熱温度は、溶融ガラスに成形面18の形状を良好に転写できる温度範囲に設定する必要がある。通常、成形するガラスのTg(ガラス転移点)−100℃からTg+100℃程度の温度範囲とすることが好ましい。加熱温度が低すぎると溶融ガラスに成形面18の形状を良好に転写させることが困難になってくる。逆に、必要以上に温度を高くしすぎることは、ガラスと成形金型との融着を防止する観点や、成形金型の寿命の観点から好ましくない。実際には、成形するガラスの材質や、成形体の形状、大きさ、成形金型の材質、保護膜の種類、ヒーターや温度センサーの位置等種々の条件を考慮に入れて適正な温度を決定する。   Of the molding die 10, the heating temperature of the upper die 12 needs to be set in a temperature range in which the shape of the molding surface 18 can be satisfactorily transferred to the molten glass. Usually, it is preferable to make it the temperature range of Tg (glass transition point) -100 degreeC of glass to shape | mold to about Tg + 100 degreeC. If the heating temperature is too low, it becomes difficult to transfer the shape of the molding surface 18 to the molten glass. On the contrary, it is not preferable to raise the temperature more than necessary from the viewpoint of preventing fusion between the glass and the molding die and the life of the molding die. In practice, the appropriate temperature is determined taking into account various conditions such as the glass material to be molded, the shape and size of the molded body, the material of the molding die, the type of protective film, the position of the heater and temperature sensor, etc. To do.

下型11と外径規制部材13の加熱温度については、上型12とは異なり成形面の転写性を考慮する必要はないが、溶融ガラスの冷却速度に影響することから、上型12と同様に、成形するガラスのTg−100℃からTg+100℃程度の温度範囲とすることが好ましい。   Unlike the upper mold 12, the heating temperature of the lower mold 11 and the outer diameter regulating member 13 does not need to consider the transferability of the molding surface, but affects the cooling rate of the molten glass. Furthermore, it is preferable that the glass to be molded has a temperature range of about Tg-100 ° C to about Tg + 100 ° C.

(溶融ガラス供給工程)
溶融ガラス供給工程は、下型11の受け面17に溶融ガラスを供給する工程である。供給された溶融ガラスは、下型11の受け面17に接触して冷却される。成形金型が、溶融ガラスの外径を規制するための外径規制面19を有する外径規制部材13を備えている場合には、外径規制面19にも接触して冷却される。
(Molten glass supply process)
The molten glass supply step is a step of supplying molten glass to the receiving surface 17 of the lower mold 11. The supplied molten glass comes into contact with the receiving surface 17 of the lower mold 11 and is cooled. When the molding die is provided with the outer diameter regulating member 13 having the outer diameter regulating surface 19 for regulating the outer diameter of the molten glass, it is also cooled by contacting the outer diameter regulating surface 19.

但し、下型11の受け面17は中心部が凹面17aであるため、供給された溶融ガラスは、まず受け面17の中心部に溜まり、その後次第に外側まで流れて供給が完了する。そのため、供給の初期の段階で溶融ガラスが外側に流れて外径規制部材13の外径規制面19と接触することはなく、供給の最終段階になって初めて溶融ガラスと外径規制面19が接触する。   However, since the receiving surface 17 of the lower mold 11 has a concave portion 17a at the center, the supplied molten glass first accumulates at the center of the receiving surface 17, and then gradually flows to the outside to complete the supply. Therefore, the molten glass does not flow to the outside at the initial stage of supply and does not come into contact with the outer diameter regulating surface 19 of the outer diameter regulating member 13, and the molten glass and the outer diameter regulating surface 19 are not formed until the last stage of supply. Contact.

溶融ガラスを供給する方法について特に制限はなく、公知の手法を適宜選択して用いることができる。例えば、ノズル先端から溶融状態のガラス滴が自重により落下する状態で、下型11をノズル先端に接近させて受け面17に所定量の溶融ガラスを滞留させた後、下型11を下方に引き下げて溶融ガラスを切断する方法(特許文献1を参照。)を用いることも好ましい。また、ノズル先端から溶融ガラスが液線状態で流出する状態で、下型11に所定量の溶融ガラスを滞留させた後、金属ブレードによって溶融ガラスを切断する方法を用いることもできる。   There is no restriction | limiting in particular about the method of supplying molten glass, A well-known method can be selected suitably and can be used. For example, in a state where a molten glass droplet falls from the tip of the nozzle due to its own weight, the lower die 11 is brought close to the nozzle tip and a predetermined amount of molten glass is retained on the receiving surface 17, and then the lower die 11 is pulled down. It is also preferable to use a method of cutting molten glass (see Patent Document 1). Alternatively, a method of cutting a molten glass with a metal blade after a predetermined amount of molten glass is retained in the lower mold 11 in a state where the molten glass flows out from the nozzle tip in a liquid state.

使用できるガラスの種類に特に制限はなく、光学的用途に用いられる公知のガラスを用途に応じて選択して用いることができる。例えば、リン酸系ガラス、ランタン系ガラスなどが挙げられる
(成形工程)
成形工程は、成形金型で溶融ガラスを加圧成形し、上型の成形面が転写された第1の光学面を有する成形体を形成する工程である。
There is no restriction | limiting in particular in the kind of glass which can be used, The well-known glass used for an optical use can be selected and used according to a use. For example, phosphate glass, lanthanum glass, etc. (molding process)
The molding step is a step of forming a molded body having a first optical surface on which the molding surface of the upper mold is transferred by pressure-molding molten glass with a molding die.

加圧手段に特に制限はなく、エアシリンダ、油圧シリンダ、サーボモータを用いた電動シリンダ等の公知の加圧手段を適宜選択して用いることができる。   The pressurizing means is not particularly limited, and known pressurizing means such as an air cylinder, a hydraulic cylinder, and an electric cylinder using a servo motor can be appropriately selected and used.

加圧の間に溶融ガラスの冷却が更に進む。溶融ガラスが十分固化する温度まで冷却された後、加圧を解除して成形金型から成形体を取り出す。加圧を解除する際の成形体の温度は、ガラスの種類や、成形体の大きさや形状、必要な精度等によるが、通常はガラスのTg近傍の温度まで冷却されていれば良い。必要な加圧時間、荷重も種々の条件によって異なるが、通常は、加圧時間が10秒〜300秒、荷重が500N〜20000Nの範囲の中から適切な値を選択すれば良い。   Cooling of the molten glass further proceeds during pressing. After being cooled to a temperature at which the molten glass is sufficiently solidified, the pressure is released and the molded body is taken out from the molding die. The temperature of the molded body at the time of releasing the pressure depends on the type of glass, the size and shape of the molded body, the required accuracy, and the like, but it may be usually cooled to a temperature in the vicinity of Tg of the glass. Necessary pressurization time and load vary depending on various conditions, but normally, an appropriate value may be selected from the range of pressurization time of 10 seconds to 300 seconds and load of 500 N to 20000 N.

なお、溶融ガラスと外径規制部材が接触した状態のままで加圧を行っても良いし、成形工程の前に外径規制部材を退避させて溶融ガラスと外径規制部材との接触を解除した後に加圧を行っても良い。後者の場合、溶融ガラスが外部に流れ出さない程度の粘度になるまで冷却された後に外径規制部材を退避させる必要がある。   Note that pressurization may be performed while the molten glass and the outer diameter regulating member are in contact with each other, or the outer diameter regulating member is retracted before the molding process to release the contact between the molten glass and the outer diameter regulating member. After that, pressurization may be performed. In the latter case, it is necessary to retract the outer diameter regulating member after cooling until the viscosity reaches a level at which the molten glass does not flow outside.

また、得られた成形体に残存する歪みを除去し、屈折率等の品質を均一化して更に高精度の光学素子とするために、成形体をアニールする工程を設けることもできる。   In addition, a step of annealing the molded body can be provided in order to remove distortion remaining in the obtained molded body and to make the quality such as the refractive index uniform and to obtain a more accurate optical element.

(追加工工程)
追加工工程とは、成形工程の後に、成形体の第1の光学面の裏面側に第2の光学面を形成する工程である。
(Additional process)
The additional processing step is a step of forming the second optical surface on the back side of the first optical surface of the molded body after the molding step.

一般的には、高速研削機(カーブジェネレータ)等を用いた粗摺工程、ダイヤモンドペレット等を用いた精研削工程、研磨剤で表面を仕上げる研磨工程といった工程によって光学面を形成することができるが、これに限定されることはなく、公知の手法を適宜選択して用いることができる。   In general, an optical surface can be formed by a process such as a roughing process using a high-speed grinding machine (curve generator), a fine grinding process using diamond pellets, or a polishing process for finishing the surface with an abrasive. However, the present invention is not limited to this, and a known method can be appropriately selected and used.

また、研削等によって光学素子の外径面を形成する工程を備えていても良い。   Moreover, you may provide the process of forming the outer diameter surface of an optical element by grinding etc.

(実施例1)
図3に示す成形装置を用いて成形体を作製し、上型の成形面の転写によって形成された第1の光学面の形状精度の評価を行った。成形金型は図4に示す成形金型10を用いて、図2(a)に示す成形体123を作製した。第1の光学面121は、通常、非球面とすることが多いが、ここでは評価を容易にするため曲率半径30mmの球面とした。
(Example 1)
A molded body was produced using the molding apparatus shown in FIG. 3, and the shape accuracy of the first optical surface formed by transferring the molding surface of the upper mold was evaluated. A molding die 123 shown in FIG. 2A was produced using the molding die 10 shown in FIG. The first optical surface 121 is usually an aspheric surface in many cases, but here a spherical surface having a curvature radius of 30 mm is used for easy evaluation.

成形体123の外径はφ25mm、中心部の肉厚は8mmとした。下型11の受け面17は、中心部が曲率半径30mmの凹面17aであり、その外側に、凹面17aの端部17cよりも高さが低い領域17bを有している。凹面17aは直径φ15mmであり、端部17cと領域17bの高さの差は最大で2mmとした。下型11、上型12、外径規制部材13は、いずれも炭化タングステンを主成分とする超硬材料を用いた。加熱温度は、下型11と外径規制部材13が520℃、上型12が430℃に設定した。   The outer diameter of the molded body 123 was 25 mm, and the wall thickness at the center was 8 mm. The receiving surface 17 of the lower mold 11 is a concave surface 17a having a radius of curvature of 30 mm at the center, and has a region 17b whose height is lower than that of the end portion 17c of the concave surface 17a. The concave surface 17a has a diameter of 15 mm, and the difference in height between the end 17c and the region 17b is 2 mm at the maximum. The lower mold 11, the upper mold 12, and the outer diameter regulating member 13 are all made of a super hard material mainly composed of tungsten carbide. The heating temperature was set to 520 ° C. for the lower die 11 and the outer diameter regulating member 13, and 430 ° C. for the upper die 12.

ガラス材料にはリン酸系ガラスを用いた。ノズル先端を1000℃に加熱し、溶融状態のガラス滴が自重により落下する状態で、下型11をノズル先端に接近させて受け面17に溶融ガラスを滞留させた後、下型11を下方に引き下げて溶融ガラスを切断し、成形体と同体積の溶融ガラスを供給した。その後、下型11を上型12に対向する位置まで移動し、1800Nの荷重で70秒の間溶融ガラスを加圧した。   Phosphoric glass was used as the glass material. The nozzle tip is heated to 1000 ° C., and the molten glass drops fall under its own weight, the lower die 11 is brought close to the nozzle tip and the molten glass is retained on the receiving surface 17, and then the lower die 11 is moved downward. The molten glass was cut by pulling down, and a molten glass having the same volume as the compact was supplied. Then, the lower mold | type 11 was moved to the position facing the upper mold | type 12, and the molten glass was pressurized for 70 second with the load of 1800N.

取り出した成形体の光学面121の形状精度を評価した。評価は、テーラーホブソン株式会社製の表面形状測定器PGI840を用いて球面からのずれ量の最大値を求め、球面からのずれ量の最大値が150nm以下であり極めて良好な場合を◎、150nmより大きく300nm以下であり良好な場合を○、300nmより大きく問題となる場合を×とした。   The shape accuracy of the optical surface 121 of the molded body taken out was evaluated. For evaluation, the maximum value of the deviation from the spherical surface was obtained using a surface shape measuring instrument PGI840 manufactured by Taylor Hobson Co., Ltd., and the maximum value of the deviation from the spherical surface was 150 nm or less. The case where it was large and 300 nm or less and good was rated as ○, and the case where the problem was larger than 300 nm was marked as x.

評価結果を表1に示す。光学面121の形状精度は55nmであり、成形によって高精度な光学面を形成することができた。   The evaluation results are shown in Table 1. The shape accuracy of the optical surface 121 was 55 nm, and a high-precision optical surface could be formed by molding.

Figure 0004784454
Figure 0004784454

(実施例2〜5)
実施例2では、下型として図5(a)に示す下型21を用いた。受け面27は曲率半径30mmの凹面からなる。
(Examples 2 to 5)
In Example 2, the lower mold 21 shown in FIG. 5A was used as the lower mold. The receiving surface 27 is a concave surface having a curvature radius of 30 mm.

実施例3では、下型として図5(b)に示す下型31を用いた。受け面37は、中心部が曲率半径30mmの凹面37aである。凹面17aは直径φ15mmとした。凹面37aよりも外側は、凹面37aの端部と同じ高さの平面となっている。   In Example 3, the lower mold 31 shown in FIG. 5B was used as the lower mold. The receiving surface 37 is a concave surface 37a having a radius of curvature of 30 mm at the center. The concave surface 17a had a diameter of 15 mm. The outer side of the concave surface 37a is a flat surface having the same height as the end of the concave surface 37a.

実施例4では、下型として図6(a)に示す下型41を用いた。受け面47は、中心部が曲率半径30mmの凹面47aであり、その外側に、凹面47aの端部47cよりも高さが低い領域47bとを有している。凹面47aは直径φ15mmであり、端部47cと領域47bの高さの差は最大で2mmとした。   In Example 4, the lower mold 41 shown in FIG. 6A was used as the lower mold. The receiving surface 47 is a concave surface 47a having a radius of curvature of 30 mm at the center, and a region 47b having a height lower than that of the end portion 47c of the concave surface 47a. The concave surface 47a has a diameter of 15 mm, and the height difference between the end 47c and the region 47b is 2 mm at the maximum.

実施例5では、下型として図6(b)に示す下型51を用いた。受け面57は、中心部が平面57aと、その外側に、平面57aよりも高さが低い領域57bとを有している。平面57aは直径φ15mmであり、平面57aと領域57bの高さの差は最大で2mmとした。   In Example 5, the lower mold 51 shown in FIG. 6B was used as the lower mold. The receiving surface 57 has a flat surface 57a at the center and a region 57b having a height lower than that of the flat surface 57a on the outer side. The flat surface 57a has a diameter of 15 mm, and the maximum height difference between the flat surface 57a and the region 57b is 2 mm.

上記のそれぞれの下型を使用した以外は、実施例1と同じ条件で成形体を作製し、取り出した成形体の光学面の形状精度を評価した。評価は、実施例1と同様の方法で行った。評価結果を表1に併せて示す。何れも成形によって高精度な光学面を形成することができた。   Except having used each said lower mold | type, the molded object was produced on the same conditions as Example 1, and the shape accuracy of the optical surface of the taken-out molded object was evaluated. Evaluation was performed in the same manner as in Example 1. The evaluation results are also shown in Table 1. In any case, a high-precision optical surface could be formed by molding.

(比較例1)
受け面が、全面にわたって曲率半径30mmの凸面からなる下型を用いた。実施例1と同じ条件で成形体を作製し、取り出した成形体の光学面の形状精度を評価した。評価は、実施例1と同様の方法で行った。
(Comparative Example 1)
A lower mold was used in which the receiving surface was a convex surface with a curvature radius of 30 mm over the entire surface. A molded body was produced under the same conditions as in Example 1, and the shape accuracy of the optical surface of the removed molded body was evaluated. Evaluation was performed in the same manner as in Example 1.

評価結果を表1に併せて示す。実施例1〜5の場合と異なり、光学面の形状精度は300nmよりも大きく、高精度な光学面を形成することはできなかった。   The evaluation results are also shown in Table 1. Unlike the cases of Examples 1 to 5, the shape accuracy of the optical surface was larger than 300 nm, and a high-precision optical surface could not be formed.

本発明の方法によって製造する光学素子の例を示す断面図Sectional drawing which shows the example of the optical element manufactured by the method of this invention 成形工程で得られた成形体の例を示す断面図Sectional drawing which shows the example of the molded object obtained at the formation process 本発明の方法で用いる成形装置の一例を示す図The figure which shows an example of the shaping | molding apparatus used with the method of this invention 本発明で用いる成形金型の断面図Sectional view of the molding die used in the present invention 本発明で用いることのできる別の下型の例を示す断面図Sectional drawing which shows the example of another lower mold | type which can be used by this invention 本発明で用いることのできる更に別の下型の例を示す断面図Sectional drawing which shows the example of another lower mold | type which can be used by this invention

符号の説明Explanation of symbols

1 成形装置
10 成形金型
11、21、31、41、51 下型
12 上型
13 外径規制部材
17、27、37、47、57 受け面
17a、27a、37a、47a 凹面
17b、47b、57b 凹面又は平面の端部よりも高さが低い領域
17c、47c、57c 凹面又は平面の端部
18 成形面
19 外径規制面
57a 平面
120、130 光学素子
121、131 第1の光学面
122、132 第2の光学面
123、133 成形体
DESCRIPTION OF SYMBOLS 1 Molding apparatus 10 Molding die 11, 21, 31, 41, 51 Lower mold 12 Upper mold 13 Outer diameter regulating member 17, 27, 37, 47, 57 Receiving surface 17a, 27a, 37a, 47a Concave surface 17b, 47b, 57b Regions 17c, 47c, 57c having a lower height than the end of the concave surface or plane 17c, 47c, 57c End portions of the concave surface or plane 18 Molding surface 19 Outer diameter regulating surface 57a Plane 120, 130 Optical element 121, 131 First optical surface 122, 132 Second optical surface 123, 133 molded body

Claims (4)

溶融ガラスを受けるための受け面を有する下型と、光学素子の第1の光学面を形成するための凹面の成形面を有する上型とを備える成形金型を、溶融ガラスの温度よりも低い所定温度に加熱する加熱工程と、
前記下型の受け面に前記溶融ガラスを供給する溶融ガラス供給工程と、
前記成形金型で前記溶融ガラスを加圧成形し、前記上型の成形面が転写された第1の光学面を有する成形体を形成する成形工程とを有し、
前記下型の前記受け面は、中心部が凹面又は平面であり、且つ、前記凹面又は平面よりも外側に、前記凹面又は平面の端部よりも高さが低い領域を有し、
前記溶融ガラス供給工程において供給された前記溶融ガラスは、前記受け面の中心部に溜まり、その後前記高さが低い領域に供給されることを特徴とする光学素子の製造方法。
A molding die comprising a lower mold having a receiving surface for receiving molten glass and an upper mold having a concave molding surface for forming the first optical surface of the optical element is lower than the temperature of the molten glass. A heating step of heating to a predetermined temperature;
A molten glass supply step of supplying the molten glass to the receiving surface of the lower mold;
Pressing the molten glass with the molding die, and forming a molded body having a first optical surface onto which the molding surface of the upper mold is transferred, and
The receiving surface of the lower mold has a central portion that is a concave surface or a flat surface, and has an area outside the concave surface or the flat surface that is lower in height than the end portion of the concave surface or the flat surface,
Wherein the molten glass supplied in molten glass supplying step, accumulates in the central portion of the receiving surface, the manufacturing method of the subsequent optical elements in which the height is characterized Rukoto is supplied to a lower area.
前記成形工程の後に、追加工によって前記成形体の第1の光学面の裏面側に第2の光学面を形成する追加工工程を有することを特徴とする請求項1に記載の光学素子の製造方法。 2. The optical element manufacturing method according to claim 1, further comprising an additional processing step of forming a second optical surface on the back surface side of the first optical surface of the molded body by additional processing after the molding step. Method. 前記成形金型は、前記溶融ガラスの外径を規制するための外径規制面を有する外径規制部材を備え、
前記溶融ガラス供給工程において、前記下型の受け面に供給された前記溶融ガラスが、前記外径規制部材の外径規制面に接触することを特徴とする請求項1又は2の何れか1項に記載の光学素子の製造方法。
The molding die includes an outer diameter regulating member having an outer diameter regulating surface for regulating the outer diameter of the molten glass,
In the molten glass supplying step, the molten glass supplied to the receiving surface of the lower mold, the outer size specification system any one of claims 1 or 2, characterized in that contact with the outer size specification system surface of the member The manufacturing method of the optical element of description.
溶融ガラスを受けるための受け面を有する下型と、光学素子の第1の光学面を形成するための凹面の成形面を有する上型とを備える成形金型と、
前記成形金型を溶融ガラスの温度よりも低い所定温度に加熱するための加熱手段と、
前記下型の受け面に前記溶融ガラスを供給するための溶融ガラス供給手段と、
前記成形金型で前記溶融ガラスを加圧成形し、前記上型の成形面が転写された第1の光学面を有する成形体を形成するための加圧手段とを有し、
前記下型の前記受け面は、中心部が凹面又は平面であり、且つ、前記凹面又は平面よりも外側に、前記凹面又は平面の端部よりも高さが低い領域を有し、
前記溶融ガラス供給手段により供給された前記溶融ガラスは、前記受け面の中心部に溜まり、その後前記高さが低い領域に供給されることを特徴とする光学素子の製造装置。
A molding die comprising a lower mold having a receiving surface for receiving molten glass, and an upper mold having a concave molding surface for forming the first optical surface of the optical element;
Heating means for heating the molding die to a predetermined temperature lower than the temperature of the molten glass;
Molten glass supply means for supplying the molten glass to the receiving surface of the lower mold,
Pressurizing the molten glass with the molding die, and forming a molded body having a first optical surface to which the molding surface of the upper mold is transferred, and
The receiving surface of the lower mold has a central portion that is a concave surface or a flat surface, and has an area outside the concave surface or the flat surface that is lower in height than the end portion of the concave surface or the flat surface,
Wherein the molten glass supplied by molten glass supply means, collects in the center of the receiving surface, apparatus for producing a subsequent optical elements in which the height is characterized Rukoto is supplied to a lower area.
JP2006252497A 2006-09-19 2006-09-19 Optical element manufacturing method and manufacturing apparatus Expired - Fee Related JP4784454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006252497A JP4784454B2 (en) 2006-09-19 2006-09-19 Optical element manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006252497A JP4784454B2 (en) 2006-09-19 2006-09-19 Optical element manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2008074637A JP2008074637A (en) 2008-04-03
JP4784454B2 true JP4784454B2 (en) 2011-10-05

Family

ID=39347082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006252497A Expired - Fee Related JP4784454B2 (en) 2006-09-19 2006-09-19 Optical element manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4784454B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071885A (en) * 2011-09-29 2013-04-22 Nippon Electric Glass Co Ltd Method for producing glass material and glass material
WO2021084586A1 (en) * 2019-10-28 2021-05-06 株式会社ダイテック Display lens molding method and display lens mold set

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745328B2 (en) * 1990-07-17 1995-05-17 松下電器産業株式会社 Method and apparatus for manufacturing optical glass element
JPH08208248A (en) * 1995-01-25 1996-08-13 Olympus Optical Co Ltd Glass lens and formation of the lens
JP2001278631A (en) * 2000-03-30 2001-10-10 Canon Inc Glass forming die manufacturing method of glass formed body and glass optical element
JP3849669B2 (en) * 2003-05-19 2006-11-22 コニカミノルタオプト株式会社 Optical element manufacturing method

Also Published As

Publication number Publication date
JP2008074637A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
JP4784454B2 (en) Optical element manufacturing method and manufacturing apparatus
CN101801862B (en) Process for producing glass shaped article
JP2008074636A (en) Method and device for producing optical element
JP4992035B2 (en) Optical element manufacturing method
JP4368368B2 (en) Manufacturing method of glass lump, manufacturing apparatus thereof, and manufacturing method of optical element
JP5321301B2 (en) Optical element manufacturing method
WO2010122844A1 (en) Apparatus for manufacturing glass molding
JP4779861B2 (en) Manufacturing method of glass optical element
JP2008094654A (en) Method and apparatus for manufacturing optical element
JP5381706B2 (en) Optical element manufacturing method
JP4289716B2 (en) Glass element molding method
JP4779836B2 (en) Optical element manufacturing method
JP2008230874A (en) Method for producing optical element
JP2010070434A (en) Mold, and method for producing glass molding
JP5652398B2 (en) Method for producing glass gob and method for producing glass molded body
JP2501585B2 (en) Optical element molding method
JP2010100499A (en) Molding mold and method of manufacturing glass molded body
JP5197696B2 (en) Precision press molding preform manufacturing method and optical element manufacturing method
JP2010184830A (en) Method and apparatus for producing glass molded body
JP5263165B2 (en) Method for producing glass molded body
JP2011251887A (en) Apparatus and method for producing optical element
JP2008239423A (en) Method for manufacturing optical element
JPH01153539A (en) Molding device for optical element
JP2008230863A (en) Method for manufacturing optical element, and forming mold
WO2011021550A1 (en) Method for manufacturing a molded glass body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees