JP4779836B2 - Optical element manufacturing method - Google Patents

Optical element manufacturing method Download PDF

Info

Publication number
JP4779836B2
JP4779836B2 JP2006185309A JP2006185309A JP4779836B2 JP 4779836 B2 JP4779836 B2 JP 4779836B2 JP 2006185309 A JP2006185309 A JP 2006185309A JP 2006185309 A JP2006185309 A JP 2006185309A JP 4779836 B2 JP4779836 B2 JP 4779836B2
Authority
JP
Japan
Prior art keywords
temperature
optical element
transfer member
mold
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006185309A
Other languages
Japanese (ja)
Other versions
JP2008013392A (en
Inventor
修志 池永
俊也 富阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2006185309A priority Critical patent/JP4779836B2/en
Publication of JP2008013392A publication Critical patent/JP2008013392A/en
Application granted granted Critical
Publication of JP4779836B2 publication Critical patent/JP4779836B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

本発明は、成形金型によりガラス素材を加圧成形して光学素子を得る光学素子の製造方法に関する。   The present invention relates to a method of manufacturing an optical element that obtains an optical element by pressure-molding a glass material with a molding die.

今日、ガラス製の光学素子は、デジタルカメラ用レンズ、DVD等の光ピックアップレンズ、携帯電話用カメラレンズ、光通信用のカップリングレンズなどとして広範にわたって利用されている。   Today, glass optical elements are widely used as lenses for digital cameras, optical pickup lenses such as DVDs, camera lenses for mobile phones, and coupling lenses for optical communication.

かかるガラス製の光学素子は、加熱、軟化したガラス素材を成形金型で加圧成形するプレス成形法により製造されることが多くなってきた。ガラス製光学素子のプレス成形法として、(1)予め所定質量及び形状を有する成形用ガラス素材を作製し、該成形用ガラス素材を成形金型とともにガラスが変形可能な温度まで加熱した後、成形用ガラス素材を成形金型にて加圧成形してガラス成形体に光学面を転写させる方法や、(2)予め成形金型を所定温度に加熱しておき、成形金型の表面に溶融ガラス滴を滴下して、滴下されたガラス素材が未だ変形可能な温度にある間に成形金型にて加圧成形して光学面を転写させる方法などが知られている。   Such glass optical elements are often manufactured by a press molding method in which a heated and softened glass material is pressure-molded with a molding die. As a press molding method for a glass optical element, (1) a molding glass material having a predetermined mass and shape is prepared in advance, the molding glass material is heated together with a molding die to a temperature at which the glass can be deformed, and then molded. A method of pressure-molding a glass material in a molding die and transferring the optical surface to the glass molding, or (2) heating the molding die to a predetermined temperature in advance, and then melting glass on the surface of the molding die A method is known in which a drop is dropped and the optical surface is transferred by pressure molding with a molding die while the dropped glass material is still at a deformable temperature.

一方、近年の各種光学機器の小型化、高精度化に伴って、ガラス製の光学素子に要求される性能もますます高くなり、光学素子に形成される二つの光学面の光軸ずれ量(以下、「面間偏心量」という。)や、光学素子の外周側面部に形成される組み立て基準面の中心軸と光学面の光軸とのずれ量(以下、「外周偏心量」という。)についても、一層高い精度が要求されるようになってきた。このため、面間偏心量や外周偏心量を十分に低減させることのできる光学素子の製造方法の検討が行われてきている。   On the other hand, with the recent miniaturization and high precision of various optical devices, the performance required for glass optical elements is also increasing, and the optical axis misalignment between the two optical surfaces formed on the optical elements ( Hereinafter, it is referred to as “the amount of decentering between surfaces”) and the amount of deviation between the central axis of the assembly reference surface formed on the outer peripheral side surface portion of the optical element and the optical axis of the optical surface (hereinafter referred to as “the amount of eccentricity of the outer periphery”). With regard to the above, higher accuracy has been demanded. For this reason, studies have been made on methods for producing optical elements that can sufficiently reduce the amount of eccentricity between the surfaces and the amount of eccentricity of the outer periphery.

面間偏心量や外周偏心量を低減させるための光学素子の製造方法として、素材の熱膨張率に注目した成形型を用いる成形方法が提案されている(例えば、特許文献1参照。)。   As a method of manufacturing an optical element for reducing the amount of eccentricity between the surfaces and the amount of eccentricity of the outer periphery, a molding method using a mold that focuses on the thermal expansion coefficient of the material has been proposed (for example, see Patent Document 1).

そのような光学素子の成形方法について、図8を参照して説明する。図8は、特許文献1記載の光学素子の成形方法に用いられる成形型と成形された光学素子の断面を示した図である。この成形型は、摺動成形型1、非摺動成形型2、胴型3からなり、摺動成形型1の熱膨張率をα1、非摺動成形型2の熱膨張率をα2、胴型3の熱膨張率をα3とするとき、α2>α1≧α3の関係になるように各部材の材料が選択されている。   A method for molding such an optical element will be described with reference to FIG. FIG. 8 is a view showing a cross section of a molding die used in the method of molding an optical element described in Patent Document 1 and the molded optical element. This mold comprises a sliding mold 1, a non-sliding mold 2, and a body mold 3. The sliding mold 1 has a coefficient of thermal expansion α1, a non-sliding mold 2 has a coefficient of thermal expansion α2, When the coefficient of thermal expansion of the mold 3 is α3, the material of each member is selected so that α2> α1 ≧ α3.

成形温度までの加熱による膨張によって、非摺動成形型2と胴型3のクリアランスが実質的に0となるように寸法を設定しておく。また、摺動成形型1と胴型3のクリアランスは摺動可能な程度に残るように寸法を設定しておく。このように各部材の熱膨張率と寸法を設定した成形型を用いてガラス素材を成形することによって、成形される光学素子の面間偏心量や外周偏心量の低減を図ることが可能となる。
特開2005−231933号公報
The dimensions are set so that the clearance between the non-sliding mold 2 and the body mold 3 is substantially zero due to expansion by heating up to the molding temperature. The dimensions are set so that the clearance between the sliding mold 1 and the body mold 3 remains slidable. By molding the glass material using the molding die in which the coefficient of thermal expansion and the dimensions of each member are set in this way, it becomes possible to reduce the amount of eccentricity between the surfaces of the optical element to be molded and the amount of eccentricity of the outer periphery. .
JP 2005-231933 A

しかしながら、ガラス製光学素子をプレス成形するための成形金型の材料は、高温でガラスと反応しにくいこと、酸化しにくいこと、鏡面が得られること、加工性が良いこと、硬いこと、脆くないことなど、多くの条件を満足している必要がある。実際にこれらの諸条件を満足する材料は、炭化タングステンや炭化珪素などを含んだ一部のセラミックス材料や、特殊な耐熱合金などに限られており、特許文献1に記載されているような熱膨張率の関係を満たすような材料を選択することは困難であった。   However, the molding die material for press-molding a glass optical element is not easily reacted with glass at high temperatures, is not easily oxidized, has a mirror surface, has good workability, is hard, and is not brittle. It is necessary to satisfy many conditions. The materials that actually satisfy these various conditions are limited to some ceramic materials including tungsten carbide and silicon carbide, special heat-resistant alloys, and the like. It has been difficult to select a material that satisfies the relationship of expansion coefficient.

また、上記の熱膨張率の関係を満たす材料を選択できた場合であっても、各部材の熱膨張率の差を十分に大きく設定することができないために、非摺動成形型2と胴型3のクリアランスが実質的に0となるように寸法を設定しておくためには、非常に高い加工精度が必要になるという問題があった。   Further, even when a material satisfying the above relationship of the thermal expansion coefficient can be selected, the difference in the thermal expansion coefficient of each member cannot be set sufficiently large. In order to set the dimensions so that the clearance of the mold 3 is substantially zero, there is a problem that extremely high processing accuracy is required.

本発明は上記のような技術的課題に鑑みてなされたものであり、本発明の目的は、成形金型の材料の選択肢を狭めることなく、また、徒に高い加工精度を必要としないで面間偏心量や外周偏心量を低減させることができる光学素子の製造方法を提供することである。   The present invention has been made in view of the technical problems as described above, and the object of the present invention is to reduce the choice of material for the molding die and to avoid the need for high processing accuracy. An object of the present invention is to provide a method of manufacturing an optical element that can reduce the amount of eccentricity and the amount of eccentricity of the outer periphery.

上記の課題を解決するために、本発明は以下の特徴を有するものである。   In order to solve the above problems, the present invention has the following features.

1. 光学素子の第1の光学面を形成するための第1転写面を有する第1転写部材と、前記第1転写部材に対向して配置され、前記光学素子の第2の光学面を形成するための第2転写面を有する第2転写部材と、成形時に前記第1転写部材及び前記第2転写部材が挿入される胴型部材と、を備えた成形金型を所定温度に加熱する加熱工程と、前記成形金型にガラス素材を供給するガラス素材供給工程と、前記成形金型で前記ガラス素材を加圧成形する加圧工程と、前記加圧工程で得られた光学素子を前記成形金型から取り出す取り出し工程とを有する光学素子の製造方法において、前記加圧工程は、前記胴型部材の温度を前記第2転写部材の温度よりも低くして、前記胴型部材と前記第2転写部材とを密着させた状態で、前記第1転写部材を前記胴型部材内で摺動させてガラス素材を加圧成形する工程であり、前記取り出し工程における前記胴型部材の温度が、前記加圧工程における前記胴型部材の温度よりも高いことを特徴とする光学素子の製造方法。 1. A first transfer member having a first transfer surface for forming a first optical surface of the optical element; and a first transfer member disposed opposite the first transfer member to form a second optical surface of the optical element. A heating step of heating a molding die having a second transfer surface having a second transfer surface and a body mold member into which the first transfer member and the second transfer member are inserted during molding to a predetermined temperature; A glass material supply step for supplying a glass material to the molding die, a pressure step for pressure-molding the glass material with the molding die , and an optical element obtained in the pressure step as the molding die. In the method of manufacturing an optical element having a take-out step that is taken out from the cylinder, the pressurizing step includes lowering the temperature of the drum-shaped member lower than the temperature of the second transfer member, so that the drum-shaped member and the second transfer member And the first transfer member is A step of pressure molding the glass material is slid within the member, optics temperature of the barrel die member in the extraction step, being higher than the temperature of the barrel die member in the pressing process Device manufacturing method.

2. 前記第2転写部材の材料と、前記胴型部材の材料が同じであることを特徴とする1記載の光学素子の製造方法。   2. 2. The method of manufacturing an optical element according to 1, wherein the material of the second transfer member and the material of the body member are the same.

3. 光学素子の第1の光学面を形成するための第1転写面を有する第1転写部材と、前記第1転写部材に対向して配置され、前記光学素子の第2の光学面を形成するための第2転写面を有する第2転写部材と、前記第2転写部材が挿入され、前記光学素子の外周側面部の少なくとも一部を形成するための側面部転写面を有する側面部転写部材と、を備えた成形金型を所定温度に加熱する加熱工程と、前記成形金型にガラス素材を供給するガラス素材供給工程と、前記成形金型で前記ガラス素材を加圧成形する加圧工程と、前記加圧工程で得られた光学素子を前記成形金型から取り出す取り出し工程とを有する光学素子の製造方法において、前記加圧工程は、前記側面部転写部材の温度を前記第2転写部材の温度よりも低くして、前記側面部転写部材と前記第2転写部材とを密着させた状態でガラス素材を加圧成形する工程であり、前記取り出し工程における前記側面部転写部材の温度が、前記加圧工程における前記側面部転写部材の温度よりも高いことを特徴とする光学素子の製造方法。 3. A first transfer member having a first transfer surface for forming a first optical surface of the optical element; and a first transfer member disposed opposite the first transfer member to form a second optical surface of the optical element. A second transfer member having a second transfer surface; a side transfer member having a side transfer surface into which the second transfer member is inserted and forming at least a part of an outer peripheral side surface of the optical element; A heating step of heating a molding die provided with a predetermined temperature, a glass material supply step of supplying a glass material to the molding die, and a pressing step of press-molding the glass material with the molding die , And a step of taking out the optical element obtained in the pressing step from the molding die , wherein the pressing step sets the temperature of the side surface transfer member to the temperature of the second transfer member. Lower than the side transfer portion A step of pressure molding the glass material in the state of being in close contact with the second transfer member and the temperature of the side surface portion transfer member in the extraction step is, than the temperature of the side surface portion transfer member in the pressing process The manufacturing method of the optical element characterized by being high .

4. 前記第2転写部材の材料と、前記側面部転写部材の材料が同じであることを特徴とする3記載の光学素子の製造方法。   4). 4. The method of manufacturing an optical element according to 3, wherein the material of the second transfer member and the material of the side surface transfer member are the same.

本発明の光学素子の製造方法によれば、胴型部材の温度を第2転写部材の温度よりも低くして、加熱による両者の膨張量に差をつけることによって、胴型部材と第2転写部材とを密着させた状態でガラス素材を加圧するため、胴型部材に挿入される第1転写部材と第2転写部材の位置ずれを最小限に抑えることができることから、成形金型の材料の選択肢を狭めることなく、また、徒に高い加工精度を必要としないで光学素子の二つの光学面の光軸ずれ量を低減することができる。   According to the method for manufacturing an optical element of the present invention, the temperature of the body mold member is made lower than the temperature of the second transfer member, and the expansion amount of the both is differentiated by heating, whereby the body mold member and the second transfer member are made. Since the glass material is pressed in a state in which the member is in close contact with each other, the positional deviation between the first transfer member and the second transfer member inserted into the barrel member can be minimized, so that the molding die material The amount of optical axis misalignment between the two optical surfaces of the optical element can be reduced without narrowing the options and without requiring high processing accuracy.

本発明の別の光学素子の製造方法によれば、側面部転写部材の温度を第2転写部材の温度よりも低くして、加熱による両者の膨張量に差をつけることによって、側面部転写部材と第2転写部材とを密着させた状態でガラス素材を加圧するため、成形金型の材料の選択肢を狭めることなく、また、徒に高い加工精度を必要としないで光学素子の外周側面部に形成される組み立て基準面の中心軸と光学面の光軸とのずれ量を低減することができる。   According to another method for manufacturing an optical element of the present invention, the temperature of the side surface transfer member is made lower than the temperature of the second transfer member, and the expansion amount of both is differentiated by heating. Since the glass material is pressed in a state where the second transfer member and the second transfer member are in close contact with each other, the selection of the material for the molding die is not narrowed, and the high-precision processing is not required. The amount of deviation between the central axis of the assembly reference surface to be formed and the optical axis of the optical surface can be reduced.

以下、本発明の実施の形態について図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施形態1)
先ず、本発明の第1の実施形態である光学素子の製造方法に用いる成形金型について説明する。図1は、本実施形態で用いる成形金型の断面図であり、加圧工程においてガラス素材を加圧している状態を示している。
(Embodiment 1)
First, the molding die used for the manufacturing method of the optical element which is the 1st Embodiment of this invention is demonstrated. FIG. 1 is a cross-sectional view of a molding die used in the present embodiment, and shows a state where a glass material is being pressed in a pressing step.

本実施形態で用いる成形金型10は、第1転写部材である上型11、第2転写部材である下型12、及び、胴型部材13により構成されている。上型11は、光学素子17の第1の光学面を形成するための第1転写面14を有しており、胴型部材13に挿入された状態で図示しないエアシリンダにより下方に移動して光学素子17を加圧する。下型12は、光学素子17の第2の光学面を形成するための第2転写面15を有し、胴型部材13に挿入された状態で上型11に対向して配置されている。胴型部材13は、挿入される上型11と下型12の位置を合わせる機能と、光学素子17の外周側面部を形成するための側面部転写面16を有する側面部転写部材としての機能を兼ね備えている。   The molding die 10 used in this embodiment includes an upper mold 11 that is a first transfer member, a lower mold 12 that is a second transfer member, and a body mold member 13. The upper mold 11 has a first transfer surface 14 for forming a first optical surface of the optical element 17, and is moved downward by an air cylinder (not shown) while being inserted into the body mold member 13. The optical element 17 is pressurized. The lower mold 12 has a second transfer surface 15 for forming a second optical surface of the optical element 17, and is disposed facing the upper mold 11 while being inserted into the body mold member 13. The body mold member 13 has a function of aligning the positions of the upper mold 11 and the lower mold 12 to be inserted, and a function as a side surface transfer member having a side surface transfer surface 16 for forming the outer peripheral side surface of the optical element 17. Have both.

上型11、下型12、及び胴型部材13は、それぞれヒーター41と温度センサー42とを有している。ヒーター41と温度センサー42は温度調節装置43に接続されており、それぞれの部材を独立して温度調節することができる。本実施形態においては、ヒーター41として部材の内部に埋め込んで使用するカートリッジヒーターを用いているが、上型11、下型12、及び胴型部材13をそれぞれ加熱することができる構成であればこれに限定されるものではない。例えば、部材の外側に接触させて使用するシート状のヒーターを用いても良い。また、温度センサー42としては、種々の熱電対の他、白金測温抵抗体、各種サーミスタなど公知の手段を適宜選択して使用することができる。   The upper mold 11, the lower mold 12, and the body mold member 13 each have a heater 41 and a temperature sensor 42. The heater 41 and the temperature sensor 42 are connected to a temperature adjusting device 43, and the temperature of each member can be adjusted independently. In this embodiment, a cartridge heater that is used by being embedded in the member is used as the heater 41. However, if the upper die 11, the lower die 12, and the body die member 13 can be heated, this can be used. It is not limited to. For example, a sheet-like heater that is used in contact with the outside of the member may be used. Further, as the temperature sensor 42, known means such as a platinum resistance thermometer and various thermistors can be appropriately selected and used in addition to various thermocouples.

上型11、下型12、及び胴型部材13の材料は、炭化タングステンを主成分とする超硬材料、炭化珪素、窒化珪素、窒化アルミニウムなど、ガラス製光学素子をプレス成形するための成形金型として公知の材料の中から用途に応じて適宜選択して用いることができる。また、これらの材料の表面に各種金属やセラミックス、カーボンなどの保護膜を形成したものを用いることもできる。本発明においては、加圧工程における胴型部材13の温度を下型12の温度よりも低く設定して、熱膨張量に差を設けることで下型12と胴型部材13とを密着させるため、下型12と胴型部材13の材料の線膨張係数を異ならせる必要はなく、同じ材料で構成することができる。本実施形態においては、上型11、下型12、及び胴型部材13の材料として、いずれも炭化タングステンを主成分とする超硬材料を用いた。用いた超硬材料の0℃から600℃における平均線膨張係数は6.2×10-6/℃である。 The upper mold 11, the lower mold 12, and the body mold member 13 are made of cemented carbide for press-molding a glass optical element such as a super hard material mainly composed of tungsten carbide, silicon carbide, silicon nitride, aluminum nitride, or the like. It can be appropriately selected from materials known as molds according to the intended use. Moreover, what formed protective films, such as various metals, ceramics, and carbon, on the surface of these materials can also be used. In the present invention, the temperature of the body mold member 13 in the pressurizing step is set lower than the temperature of the lower mold 12, and the lower mold 12 and the body mold member 13 are brought into close contact with each other by providing a difference in the amount of thermal expansion. The materials of the lower mold 12 and the body mold member 13 do not need to have different linear expansion coefficients, and can be made of the same material. In the present embodiment, as the material for the upper mold 11, the lower mold 12, and the body mold member 13, all are super hard materials mainly composed of tungsten carbide. The average linear expansion coefficient of the used superhard material from 0 ° C. to 600 ° C. is 6.2 × 10 −6 / ° C.

下型12と胴型部材13の嵌め合い部の寸法は、室温においてセッティングに必要なクリアランスが存在すると共に、加圧工程における温度において熱膨張によって下型12と胴型部材13とが密着するように設定する。ここでは、室温(25℃)において、下型12の外径を20mm、胴型部材13の内径を20.005mmとした。従って、室温(25℃)においては下型12と胴型部材13との間に片側2.5μmのクリアランスが存在し、容易にセッティングすることが可能である。   As for the size of the fitting portion of the lower mold 12 and the barrel mold member 13, there is a clearance necessary for setting at room temperature, and the lower mold 12 and the barrel mold member 13 are in close contact with each other by thermal expansion at the temperature in the pressurizing process. Set to. Here, at room temperature (25 ° C.), the outer diameter of the lower mold 12 was 20 mm, and the inner diameter of the body member 13 was 20.005 mm. Therefore, at room temperature (25 ° C.), there is a clearance of 2.5 μm on one side between the lower mold 12 and the body mold member 13, and it can be easily set.

一般に、熱膨張量は線膨張係数と温度差と外径との積で計算される。下型12の外径と線膨張係数から計算すると、下型12の温度を胴型部材13の温度よりも10℃高くする毎にクリアランスが片側約0.6μm小さくなることになる。従って、胴型部材13の温度を下型12の温度よりも約40℃以上低くすることでクリアランスが0となり、下型12と胴型部材13とを密着させることができる。   Generally, the amount of thermal expansion is calculated by the product of the linear expansion coefficient, the temperature difference, and the outer diameter. When calculated from the outer diameter of the lower mold 12 and the linear expansion coefficient, the clearance decreases by about 0.6 μm on one side every time the temperature of the lower mold 12 is increased by 10 ° C. from the temperature of the body mold member 13. Therefore, the clearance is reduced to 0 by lowering the temperature of the body mold member 13 by about 40 ° C. or more than the temperature of the lower mold 12, and the lower mold 12 and the body mold member 13 can be brought into close contact with each other.

一方、上型11と胴型部材13との間には、加圧工程において摺動可能な程度のクリアランスが必要である。ここでは、室温(25℃)において上型11の外径を直径19.99mm、胴型部材13の内径を直径20mmに設定している。上型11と胴型部材13とは同一素材で構成されているため、加圧工程における加圧時の温度においてもクリアランス量はほとんど変化しない。そのため、加圧工程におけるクリアランス量は片側で0.005mmであり、良好に摺動可能であると同時に、上型11と胴型部材13の位置ずれを0.005mm以下に抑えることができる。   On the other hand, between the upper mold | type 11 and the trunk | drum mold member 13, the clearance of the grade which can be slid in a pressurization process is required. Here, the outer diameter of the upper mold 11 is set to a diameter of 19.99 mm and the inner diameter of the body mold member 13 is set to a diameter of 20 mm at room temperature (25 ° C.). Since the upper mold 11 and the body mold member 13 are made of the same material, the clearance amount hardly changes even at the temperature during pressurization in the pressurization process. Therefore, the clearance amount in the pressurizing step is 0.005 mm on one side, and it can slide well, and at the same time, the positional deviation between the upper mold 11 and the barrel mold member 13 can be suppressed to 0.005 mm or less.

次に、本実施形態における光学素子の製造方法の工程を説明する。図2に、本実施形態における光学素子の製造方法の工程を示す。ここで、T12とあるのは下型12の温度、T13とあるのは胴型部材13の温度である。また、T13(S103)とあるのは加圧工程S103における胴型部材13の温度、T13(S105)とあるのは取り出し工程S105における胴型部材13の温度である。   Next, the process of the manufacturing method of the optical element in this embodiment will be described. In FIG. 2, the process of the manufacturing method of the optical element in this embodiment is shown. Here, T 12 is the temperature of the lower mold 12, and T 13 is the temperature of the body mold member 13. Further, T13 (S103) is the temperature of the barrel member 13 in the pressurizing step S103, and T13 (S105) is the temperature of the barrel member 13 in the extracting step S105.

加熱工程S101は、成形金型を所定温度に加熱する工程である。成形金型10のうち、上型11と下型12は、ガラス素材に光学面を良好に転写できる範囲の温度を選択すればよい。一般的には、上型11や下型12の温度が低すぎるとガラス素材に光学面を良好に転写させることが困難になってくる。逆に、必要以上に温度を高くしすぎることは、ガラス素材と金型との融着を防止する観点や、金型寿命の観点から好ましくない。実際には、ガラス素材の材料や、形状、大きさ、成形金型の材料、保護膜の種類、光学素子の形状、大きさ等種々の条件によって適正な温度が異なるため、実験的に求めることが好ましい。   The heating step S101 is a step of heating the molding die to a predetermined temperature. Of the molding die 10, the upper die 11 and the lower die 12 may be selected at a temperature within a range where the optical surface can be satisfactorily transferred to the glass material. In general, if the temperature of the upper mold 11 and the lower mold 12 is too low, it becomes difficult to transfer the optical surface to the glass material satisfactorily. On the contrary, it is not preferable to raise the temperature more than necessary from the viewpoint of preventing fusion between the glass material and the mold and the life of the mold. In practice, the appropriate temperature depends on various conditions such as the glass material, shape, size, molding die material, protective film type, optical element shape, size, etc. Is preferred.

胴型部材13の温度T13は下型12の温度T12よりも低く設定する。胴型部材13と下型12との温度差による熱膨張量の違いによって、室温において存在していた下型12と胴型部材13とのクリアランスがなくなり、両者が密着状態となるような温度であれば良い。上述のように、胴型部材13の温度を下型12の温度よりも約40℃以上低くすることでクリアランスが0となり、下型12と胴型部材13とを密着させることができる。ここでは、胴型部材13の温度を下型12の温度よりも50℃低く設定した。   The temperature T13 of the trunk mold member 13 is set lower than the temperature T12 of the lower mold 12. Due to the difference in thermal expansion due to the temperature difference between the body mold member 13 and the lower mold 12, the clearance between the lower mold 12 and the body mold member 13 that existed at room temperature disappears, and at a temperature at which they are in close contact with each other. I just need it. As described above, by setting the temperature of the body mold member 13 to be lower by about 40 ° C. or more than the temperature of the lower mold 12, the clearance becomes 0, and the lower mold 12 and the body mold member 13 can be brought into close contact with each other. Here, the temperature of the body mold member 13 was set to be 50 ° C. lower than the temperature of the lower mold 12.

ガラス素材供給工程S102は、成形金型にガラス素材を供給する工程である。本実施形態では、予め加熱されて軟化状態にあるガラス素材を、加熱工程S101で所定温度に加熱された成形金型に供給する。溶融ガラスをノズル先端より自然滴下させて供給しても良いし、ノズルから流出する溶融ガラスを所定量溜めた後、成形金型に供給しても良い。また、一旦固化した所定質量のガラス素材を加熱して軟化状態として供給することもできる。   The glass material supply step S102 is a step of supplying the glass material to the molding die. In the present embodiment, a glass material that has been heated in advance and in a softened state is supplied to a molding die that has been heated to a predetermined temperature in the heating step S101. The molten glass may be supplied by being dripped naturally from the tip of the nozzle, or after a predetermined amount of molten glass flowing out from the nozzle is accumulated, it may be supplied to the molding die. Further, a glass material having a predetermined mass once solidified can be heated and supplied in a softened state.

なお、本実施形態においては、加熱工程S101を行った後に、ガラス素材供給工程S102を行っているが、本発明はこの順番に限られるものではない。例えば、加熱工程S101に先だってガラス素材供給工程S102を行っても良いし、加熱工程S101において金型を加熱している途中の段階でガラス素材供給工程S102を行っても良い。   In the present embodiment, the glass material supply step S102 is performed after the heating step S101. However, the present invention is not limited to this order. For example, the glass material supply step S102 may be performed prior to the heating step S101, or the glass material supply step S102 may be performed in the middle of heating the mold in the heating step S101.

加圧工程S103は、成形金型でガラス素材を加圧成形する工程である。この加圧工程S103において、胴型部材13の温度T13は下型12の温度T12よりも低く、下型12と胴型部材13とが密着した状態にある。この状態で上型11を図示しないエアシリンダによって駆動し、胴型部材13内で摺動させてガラス素材を所定時間の間、加圧成形する。   The pressurizing step S103 is a step of press-molding a glass material with a molding die. In the pressurizing step S103, the temperature T13 of the trunk mold member 13 is lower than the temperature T12 of the lower mold 12, and the lower mold 12 and the trunk mold member 13 are in close contact with each other. In this state, the upper die 11 is driven by an air cylinder (not shown) and is slid within the body die member 13 to press-mold the glass material for a predetermined time.

このように、加圧工程S103における胴型部材13の温度T13が下型12の温度T12よりも低く設定され、下型12と胴型部材13とが密着した状態となって位置決めされるため、胴型部材13に挿入される上型11と下型12の位置ずれを最小限に抑えることができ、光学素子17の二つの光学面の光軸ずれ量を低減することができる。また、胴型部材13の側面部転写面16によって形成される光学素子の組み立て基準面の中心軸と下型12の第2転写面によって形成される第2の光学面の光軸とのずれ量も低減することができる。   Thus, the temperature T13 of the body mold member 13 in the pressurizing step S103 is set lower than the temperature T12 of the lower mold 12, and the lower mold 12 and the body mold member 13 are positioned in close contact with each other. The positional deviation between the upper mold 11 and the lower mold 12 inserted into the body mold member 13 can be minimized, and the optical axis deviation amount of the two optical surfaces of the optical element 17 can be reduced. Further, the amount of deviation between the central axis of the assembly reference surface of the optical element formed by the side surface transfer surface 16 of the body member 13 and the optical axis of the second optical surface formed by the second transfer surface of the lower mold 12. Can also be reduced.

S104は胴型部材13を昇温する工程である。次の取り出し工程S105における光学素子17の取り出しを容易にするため、胴型部材13の温度を加圧工程S103よりも上昇させる。   S104 is a step of raising the temperature of the body member 13. In order to facilitate the removal of the optical element 17 in the next removal step S105, the temperature of the body mold member 13 is raised more than that in the pressurization step S103.

取り出し工程S105は、得られた光学素子17を取り出す工程である。加圧工程S103の終了後、上型11を上昇させて胴型部材13への挿入部分を抜出し、得られた光学素子を取り出す際、光学素子17の外周側面部と胴型部材13の側面部転写面16が密着して、光学素子17の取り出しが困難となる場合がある。その場合、取り出し工程S105における胴型部材13の温度T13(S103)を、加圧工程S103における胴型部材13の温度T13(S103)よりも高くし、熱膨張により胴型部材13の内径を広げることで密着状態が解除され容易に取り出すことができる。昇温する温度が低すぎると効果が得られにくいが、逆に昇温する温度が高すぎると、次の工程で胴型部材13の温度を再び加圧工程S103時の温度まで降温させるのに必要な時間が長くなり生産性の観点から好ましくない。好ましい温度は種々の条件によって異なるが、通常、5℃〜50℃程度の昇温で良好に光学素子17を取り出すことができる。   The extraction step S105 is a step of extracting the obtained optical element 17. After the pressurization step S103 is completed, when the upper mold 11 is raised to remove the insertion part into the barrel member 13 and the obtained optical element is taken out, the outer peripheral side surface of the optical element 17 and the side surface portion of the barrel member 13 The transfer surface 16 may be in close contact, making it difficult to remove the optical element 17. In that case, the temperature T13 (S103) of the trunk mold member 13 in the take-out process S105 is made higher than the temperature T13 (S103) of the trunk mold member 13 in the pressurization process S103, and the inner diameter of the trunk mold member 13 is expanded by thermal expansion. Thus, the close contact state is released and can be easily taken out. If the temperature to be raised is too low, it is difficult to obtain the effect. Conversely, if the temperature to be raised is too high, the temperature of the barrel member 13 is lowered again to the temperature at the pressurizing step S103 in the next step. The required time becomes longer, which is not preferable from the viewpoint of productivity. Although a preferable temperature varies depending on various conditions, the optical element 17 can be normally taken out with a temperature increase of about 5 ° C. to 50 ° C.

S106は胴型部材13の温度を、加圧工程S103における胴型部材13の温度T13(S103)まで降温する工程である。降温が完了して本工程が終了した後、再びガラス素材供給工程S102から本工程S106を繰り返すことで、連続的に光学素子17を製造することができる。   S106 is a process of lowering the temperature of the trunk mold member 13 to the temperature T13 (S103) of the trunk mold member 13 in the pressurizing process S103. The optical element 17 can be continuously manufactured by repeating this process S106 again from glass raw material supply process S102, after temperature reduction is completed and this process is complete | finished.

なお、本発明は、S101〜S106の工程以外に他の工程を含んでいても良い。例えば、加圧工程S103の後に、光学素子の検査工程を設けても良いし、取り出し工程S105の後に、成形金型のクリーニング工程を設けても良い。   In addition, this invention may include another process other than the process of S101-S106. For example, an optical element inspection step may be provided after the pressurizing step S103, or a molding die cleaning step may be provided after the take-out step S105.

(実施形態2)
本発明の第2の実施形態である光学素子の製造方法について説明する。図3は、本実施形態で用いる成形金型の断面図であり、加圧工程においてガラス素材を加圧している状態を示している。
(Embodiment 2)
A method for manufacturing an optical element according to the second embodiment of the present invention will be described. FIG. 3 is a cross-sectional view of a molding die used in the present embodiment, and shows a state where a glass material is being pressed in the pressing step.

本実施形態で用いる成形金型20は、上型21の第1転写面24が平面であること、及び、側面部転写面26を有する側面部転写部材23を胴型部材13の代わりに備えること、とを除いて上記第1の実施形態で用いる成形金型10と同様である。   The molding die 20 used in the present embodiment includes a first transfer surface 24 of the upper mold 21 that is a flat surface, and a side surface transfer member 23 having a side surface transfer surface 26 instead of the body member 13. Are the same as the molding die 10 used in the first embodiment except for.

上型21、下型12、及び側面部転写部材23は、第1の実施形態と同様に、それぞれヒーター41と温度センサー42とを有している。また、上型21と側面部転写部材23の材料は、下型12と同じく炭化タングステンを主成分とする超硬材料からなる。0℃から600℃における平均線膨張係数は6.2×10-6/℃である。その他の部材の材料は全て第1の実施形態で用いる成形金型10と同じである。また、下型12と側面部転写部材23の嵌め合い部の寸法は、第1の実施形態における下型12と胴型部材13の嵌め合い部の寸法と同じである。 The upper mold 21, the lower mold 12, and the side surface transfer member 23 have a heater 41 and a temperature sensor 42, respectively, as in the first embodiment. Further, the material of the upper mold 21 and the side surface transfer member 23 is made of a super hard material containing tungsten carbide as a main component, like the lower mold 12. The average linear expansion coefficient from 0 ° C. to 600 ° C. is 6.2 × 10 −6 / ° C. The other members are all the same as the molding die 10 used in the first embodiment. In addition, the size of the fitting portion between the lower mold 12 and the side surface transfer member 23 is the same as the size of the fitting portion between the lower mold 12 and the barrel member 13 in the first embodiment.

本実施形態においては、上型21の第1転写面24が平面であるため、上型21と下型12の位置ずれは必ずしも最小限に抑える必要はない。そのため、図3に示すように、加圧工程においても上型21は側面部転写部材23に挿入されない構成となっている。   In the present embodiment, since the first transfer surface 24 of the upper mold 21 is a flat surface, the positional deviation between the upper mold 21 and the lower mold 12 is not necessarily minimized. Therefore, as shown in FIG. 3, the upper mold 21 is not inserted into the side surface transfer member 23 even in the pressing step.

本実施形態において得られる光学素子27の断面図を図4(a)に示す。光学素子27は、上型21の第1転写面24の転写によって得られる第1の光学面51及び下型12の第2転写面15の転写によって得られる第2の光学面52に加え、側面部転写部材23の側面部転写面26の転写によって得られる外周側面部53を有している。外周側面部53は、光学素子25の組み立て基準面として用いることができる。なお、本発明においては、組み立て基準面として用いることができる領域は、光学素子の外周側面部の厚み方向に全域にわたって形成される場合に限られず、図4(b)に示すように、光学素子の外周側面部55の少なくとも一部に組み立て基準面として用いることができる領域54が形成されていれば良い。   A sectional view of the optical element 27 obtained in the present embodiment is shown in FIG. The optical element 27 has a side surface in addition to the first optical surface 51 obtained by the transfer of the first transfer surface 24 of the upper mold 21 and the second optical surface 52 obtained by the transfer of the second transfer surface 15 of the lower mold 12. The outer peripheral side surface 53 is obtained by transferring the side surface transfer surface 26 of the partial transfer member 23. The outer peripheral side surface portion 53 can be used as an assembly reference surface for the optical element 25. In the present invention, the region that can be used as the assembly reference surface is not limited to the case where it is formed over the entire area in the thickness direction of the outer peripheral side surface portion of the optical element, and as shown in FIG. It is only necessary that a region 54 that can be used as an assembly reference surface is formed on at least a part of the outer peripheral side surface portion 55.

本実施形態における光学素子の製造方法の工程を図5に示す。胴型部材13に代えて側面部転写部材23を用いている以外は、図2に示した第1の実施形態の工程と同じである。ここで、T12とあるのは下型12の温度、T23とあるのは側面部転写部材23の温度である。また、T23(S103)とあるのは加圧工程S103における側面部転写部材23の温度、T23(S105)とあるのは取り出し工程S105における側面部転写部材23の温度である。   The steps of the method for manufacturing an optical element in this embodiment are shown in FIG. The steps are the same as those in the first embodiment shown in FIG. 2 except that the side surface transfer member 23 is used instead of the body member 13. Here, T 12 is the temperature of the lower mold 12, and T 23 is the temperature of the side surface transfer member 23. Further, T23 (S103) is the temperature of the side surface transfer member 23 in the pressurizing step S103, and T23 (S105) is the temperature of the side surface portion transfer member 23 in the take-out step S105.

本実施形態の場合、加圧工程S103における側面部転写部材23の温度が下型12の温度よりも低く設定され、下型12と側面部転写部材23とが密着した状態となって位置決めされるため、光学素子17の外周側面部に形成される組み立て基準面の中心軸と第2の光学面52の光軸とのずれ量を低減することができる。   In the present embodiment, the temperature of the side surface transfer member 23 in the pressurizing step S103 is set lower than the temperature of the lower mold 12, and the lower mold 12 and the side surface transfer member 23 are positioned in close contact with each other. Therefore, the amount of deviation between the central axis of the assembly reference surface formed on the outer peripheral side surface portion of the optical element 17 and the optical axis of the second optical surface 52 can be reduced.

また、取り出し工程S105においては、取り出し工程S105における側面部転写部材23の温度T23(S103)を、加圧工程S103における側面部転写部材23の温度T23(S103)よりも高くして、熱膨張により側面部転写部材23の内径を広げているため、光学素子27を容易に取り出すことができる。   Further, in the extraction step S105, the temperature T23 (S103) of the side surface transfer member 23 in the extraction step S105 is set higher than the temperature T23 (S103) of the side surface transfer member 23 in the pressurization step S103. Since the inner diameter of the side surface transfer member 23 is increased, the optical element 27 can be easily taken out.

(実施形態3)
本発明の第3の実施形態である光学素子の製造方法について説明する。図6は、本実施形態で用いる成形金型の断面図であり、加圧工程においてガラス素材を加圧している状態を示している。
(Embodiment 3)
A method for manufacturing an optical element according to the third embodiment of the present invention will be described. FIG. 6 is a cross-sectional view of a molding die used in the present embodiment, and shows a state where a glass material is being pressed in the pressing step.

本実施形態で用いる成形金型30は、第1転写部材である下型32、第2転写部材である上型31、及び胴型部材33により構成されている。上型31は、光学素子37の第2の光学面を形成するための第2転写面35を有し、胴型部材33に挿入されて固定された状態で、図示しないエアシリンダにより下方に移動して光学素子35を加圧する。下型32は、光学素子35の第1の光学面を形成するための第1転写面34を有し、上型31に対向して配置されており、胴型部材33が上型31と共に下方に移動することで胴型部材33に挿入される。   The molding die 30 used in this embodiment includes a lower mold 32 that is a first transfer member, an upper mold 31 that is a second transfer member, and a body mold member 33. The upper mold 31 has a second transfer surface 35 for forming a second optical surface of the optical element 37, and is moved downward by an air cylinder (not shown) while being inserted and fixed in the body mold member 33. Then, the optical element 35 is pressurized. The lower mold 32 has a first transfer surface 34 for forming a first optical surface of the optical element 35, and is disposed to face the upper mold 31. Is inserted into the body member 33.

第1の実施形態の場合と異なり、胴型部材33は、光学素子35の外周側面部を形成するための側面部転写面は有しておらず、成形完了時においても光学素子35の外周側面部は胴型部材33とは接触しない。   Unlike the case of the first embodiment, the body member 33 does not have a side surface transfer surface for forming the outer peripheral side surface portion of the optical element 35, and the outer peripheral side surface of the optical element 35 even when molding is completed. The part does not come into contact with the body member 33.

上型31、下型32、及び胴型部材33は、それぞれヒーター41と温度センサー42とを有している。ヒーター41と温度センサー42は温度調節装置43に接続されており、それぞれの部材を独立して温度調節することができる。本実施形態においては、上型31と下型32には埋め込み型のカートリッジヒーターを、胴型部材33には、外側に接触させて使用するシート状のヒーターを用いている。   The upper mold 31, the lower mold 32, and the body mold member 33 each include a heater 41 and a temperature sensor 42. The heater 41 and the temperature sensor 42 are connected to a temperature adjusting device 43, and the temperature of each member can be adjusted independently. In the present embodiment, an embedded cartridge heater is used for the upper mold 31 and the lower mold 32, and a sheet-like heater that is used in contact with the outside is used for the body mold member 33.

本実施形態においては、上型31、下型32、及び胴型部材33の材料は、全て炭化珪素を用いている。加圧工程における胴型部材33の温度を上型31の温度よりも低く設定して、熱膨張量に差を設けることで上型31と胴型部材33とを密着させるため、上型31と胴型部材33の材料の線膨張係数を異ならせる必要はなく、同じ材料で構成することができる。用いた炭化珪素の0℃から600℃における平均線膨張係数は4.6×10-6/℃である。 In the present embodiment, silicon carbide is used for the materials of the upper mold 31, the lower mold 32, and the trunk mold member 33. In order to bring the upper die 31 and the barrel member 33 into close contact with each other by setting the temperature of the barrel member 33 in the pressurizing step lower than the temperature of the upper die 31 and providing a difference in thermal expansion amount, It is not necessary to change the linear expansion coefficient of the material of the trunk-shaped member 33, and it can be composed of the same material. The silicon carbide used has an average coefficient of linear expansion of 4.6 × 10 −6 / ° C. from 0 ° C. to 600 ° C.

上型31と胴型部材33の嵌め合い部の寸法は、室温においてセッティングに必要なクリアランスが存在すると共に、加圧工程における温度において熱膨張によって上型31と胴型部材33とが密着するように設定する。ここでは、室温(25℃)において、上型31の外径を30mm、胴型部材33の内径を30.004mmとした。従って、室温(25℃)においては上型31と胴型部材33との間に片側2μmのクリアランスが存在し、容易にセッティングすることが可能である。   As for the size of the fitting portion between the upper die 31 and the barrel member 33, there is a clearance necessary for setting at room temperature, and the upper die 31 and the barrel member 33 are in close contact with each other due to thermal expansion at the temperature in the pressurizing step. Set to. Here, at room temperature (25 ° C.), the outer diameter of the upper mold 31 was 30 mm, and the inner diameter of the body mold member 33 was 30.004 mm. Therefore, at room temperature (25 ° C.), there is a clearance of 2 μm on one side between the upper mold 31 and the barrel mold member 33, and it is possible to set easily.

第1の実施形態の場合と同様に熱膨張量を計算すると、上型31の温度を胴型部材33の温度よりも10℃高くする毎にクリアランスが片側約0.7μm小さくなることになる。従って、胴型部材13の温度を下型12の温度よりも約30℃以上低くすることでクリアランスが0となり、下型12と胴型部材13とを密着させることができる。   When the amount of thermal expansion is calculated in the same manner as in the first embodiment, the clearance decreases by about 0.7 μm on one side each time the temperature of the upper mold 31 is increased by 10 ° C. from the temperature of the body mold member 33. Therefore, the clearance is reduced to 0 by lowering the temperature of the body mold member 13 by about 30 ° C. or more than the temperature of the lower mold 12, and the lower mold 12 and the body mold member 13 can be brought into close contact with each other.

一方、下型32と胴型部材33との間には、加圧工程において摺動可能な程度のクリアランスが必要である。ここでは、室温(25℃)において下型32の外径を直径39.99mm、胴型部材33の内径を直径40mmに設定している。下型32と胴型部材33とは同一素材で構成されているため、加圧工程における加圧時の温度においてもクリアランス量はほとんど変化しない。そのため、加圧工程におけるクリアランス量は片側で0.005mmであり、良好に摺動可能であると同時に、上型11と胴型部材13の位置ずれを0.005mm以下に抑えることができる。   On the other hand, a clearance is required between the lower mold 32 and the body mold member 33 so as to be slidable in the pressurizing process. Here, the outer diameter of the lower mold 32 is set to a diameter of 39.99 mm and the inner diameter of the body mold member 33 is set to a diameter of 40 mm at room temperature (25 ° C.). Since the lower mold 32 and the body mold member 33 are made of the same material, the clearance amount hardly changes even at the temperature at the time of pressurization in the pressurization process. Therefore, the clearance amount in the pressurizing step is 0.005 mm on one side, and it can slide well, and at the same time, the positional deviation between the upper mold 11 and the barrel mold member 13 can be suppressed to 0.005 mm or less.

次に、本実施形態における光学素子の製造方法の工程を説明する。図7に、本実施形態における光学素子の製造方法の工程を示す。ここで、T31とあるのは上型31の温度、T33とあるのは胴型部材33の温度である。   Next, the process of the manufacturing method of the optical element in this embodiment will be described. In FIG. 7, the process of the manufacturing method of the optical element in this embodiment is shown. Here, T31 is the temperature of the upper mold 31, and T33 is the temperature of the body mold member 33.

ガラス素材供給工程S201は、成形金型にガラス素材を供給する工程である。本実施形態では、予め作製された所定質量及び形状を有するガラス素材を室温状態で供給する。この際、成形金型の温度も室温の状態でガラス素材の供給を行い、次の加熱工程S202において、加圧の際に必要な所定の温度まで加熱しても良いし、予め成形金型を所定の温度にまで加熱した後、ガラス素材を供給しても良い。また、所定温度に加熱する途中の温度でガラス素材を供給して、その後、所定温度まで加熱を行っても良い。   Glass material supply process S201 is a process of supplying a glass material to a molding die. In this embodiment, a glass material having a predetermined mass and shape prepared in advance is supplied at room temperature. At this time, the glass material is supplied in a state where the temperature of the molding die is also room temperature, and in the next heating step S202, it may be heated to a predetermined temperature required for pressurization, or the molding die may be preliminarily used. After heating to a predetermined temperature, the glass material may be supplied. Further, the glass material may be supplied at a temperature in the middle of heating to a predetermined temperature, and then heated to the predetermined temperature.

加熱工程S202は、成形金型及びガラス素材を加圧の際に必要な所定の温度まで加熱する工程である。上述のように、ガラス素材供給工程S201と加熱工程S202の順序はこれに限定されるものではない。第1の実施形態の場合と同様に、適切な温度は種々の条件に影響されるため、予め実験的に求めておくことが好ましい。なお、ガラス素材はヒーターに直接は接触していないが、成形金型と接触しており、成形金型から熱を受け取って所定温度まで加熱される。   The heating step S202 is a step of heating the molding die and the glass material to a predetermined temperature necessary for pressurization. As described above, the order of the glass material supply step S201 and the heating step S202 is not limited to this. As in the case of the first embodiment, since an appropriate temperature is affected by various conditions, it is preferable to obtain it experimentally in advance. Although the glass material is not in direct contact with the heater, it is in contact with the molding die and receives heat from the molding die and is heated to a predetermined temperature.

加圧工程S203は、成形金型でガラス素材を加圧成形する工程である。この加圧工程S203において、胴型部材33の温度T33は上型31の温度T31よりも低く、上型31と胴型部材33とが密着した状態にある。この状態で上型31を図示しないエアシリンダによって下方に駆動し、下型32を胴型部材33内で挿入して、上型31と下型32とによってガラス素材を所定時間の間、加圧成形する。   The pressurizing step S203 is a step of press-molding a glass material with a molding die. In the pressurizing step S203, the temperature T33 of the trunk mold member 33 is lower than the temperature T31 of the upper mold 31 and the upper mold 31 and the trunk mold member 33 are in close contact with each other. In this state, the upper mold 31 is driven downward by an air cylinder (not shown), the lower mold 32 is inserted into the body mold member 33, and the glass material is pressed by the upper mold 31 and the lower mold 32 for a predetermined time. Mold.

このように、加圧工程S203における胴型部材33の温度T33が上型31の温度T31よりも低く設定され、上型31と胴型部材33とが密着した状態となって位置決めされるため、胴型部材33に挿入される上型31と下型32の位置ずれを最小限に抑えることができ、光学素子37の二つの光学面の光軸ずれ量を低減することができる。   As described above, the temperature T33 of the body mold member 33 in the pressurizing step S203 is set lower than the temperature T31 of the upper mold 31, and the upper mold 31 and the body mold member 33 are positioned in close contact. The positional deviation between the upper mold 31 and the lower mold 32 inserted into the body mold member 33 can be minimized, and the amount of optical axis deviation between the two optical surfaces of the optical element 37 can be reduced.

S204は、成形金型を冷却する工程である。加圧工程S203で形成された光学素子37が十分に固化する温度になるまで成形金型を冷却する。   S204 is a step of cooling the molding die. The molding die is cooled until the temperature at which the optical element 37 formed in the pressing step S203 is sufficiently solidified.

取り出し工程S205は、固化した光学素子37を成形金型から取り出す工程である。S204で成形金型が冷却された後、上型31と胴型部材33を上方に駆動し、下型32上に残った光学素子37を吸着装置等によって取り出し、回収する。本工程が終了した後、再び、ガラス素材供給工程S201から本工程S205までを繰り返すことで、連続的に光学素子37を製造することができる。   The taking-out step S205 is a step of taking out the solidified optical element 37 from the molding die. After the molding die is cooled in S204, the upper die 31 and the barrel member 33 are driven upward, and the optical element 37 remaining on the lower die 32 is taken out and collected by an adsorption device or the like. After this process is completed, the optical element 37 can be continuously manufactured by repeating the glass material supply process S201 to the process S205 again.

第1の実施形態で用いる成形金型の断面図Sectional drawing of the molding die used in the first embodiment 第1の実施形態における光学素子の製造方法の工程を示す図The figure which shows the process of the manufacturing method of the optical element in 1st Embodiment. 第2の実施形態で用いる成形金型の断面図Sectional view of a molding die used in the second embodiment 第2の実施形態において得られる光学素子の断面図Sectional drawing of the optical element obtained in 2nd Embodiment 第2の実施形態における光学素子の製造方法の工程を示す図The figure which shows the process of the manufacturing method of the optical element in 2nd Embodiment. 第3の実施形態で用いる成形金型の断面図Sectional drawing of the molding die used in 3rd Embodiment 第3の実施形態における光学素子の製造方法の工程を示す図The figure which shows the process of the manufacturing method of the optical element in 3rd Embodiment. 従来の製造方法で用いられる成形金型の断面図Sectional view of a molding die used in a conventional manufacturing method

符号の説明Explanation of symbols

11、21、31 上型
12、32 下型
13、33 胴型部材
14、24、34 第1転写面
15、35 第2転写面
16、26 側面部転写面
17、27、37 光学素子
23 側面部転写部材
41 ヒーター
42 温度センサー
43 温度調節装置
11, 21, 31 Upper mold 12, 32 Lower mold 13, 33 Body member 14, 24, 34 First transfer surface 15, 35 Second transfer surface 16, 26 Side surface transfer surface 17, 27, 37 Optical element 23 Side surface Part transfer member 41 Heater 42 Temperature sensor 43 Temperature control device

Claims (4)

光学素子の第1の光学面を形成するための第1転写面を有する第1転写部材と、前記第1転写部材に対向して配置され、前記光学素子の第2の光学面を形成するための第2転写面を有する第2転写部材と、成形時に前記第1転写部材及び前記第2転写部材が挿入される胴型部材と、を備えた成形金型を所定温度に加熱する加熱工程と、
前記成形金型にガラス素材を供給するガラス素材供給工程と、
前記成形金型で前記ガラス素材を加圧成形する加圧工程と
前記加圧工程で得られた光学素子を前記成形金型から取り出す取り出し工程とを有する光学素子の製造方法において、
前記加圧工程は、前記胴型部材の温度を前記第2転写部材の温度よりも低くして、前記胴型部材と前記第2転写部材とを密着させた状態で、前記第1転写部材を前記胴型部材内で摺動させてガラス素材を加圧成形する工程であり、
前記取り出し工程における前記胴型部材の温度が、前記加圧工程における前記胴型部材の温度よりも高いことを特徴とする光学素子の製造方法。
A first transfer member having a first transfer surface for forming a first optical surface of the optical element; and a first transfer member disposed opposite the first transfer member to form a second optical surface of the optical element. A heating step of heating a molding die having a second transfer surface having a second transfer surface and a body mold member into which the first transfer member and the second transfer member are inserted during molding to a predetermined temperature; ,
A glass material supply step of supplying a glass material to the molding die;
A pressurizing step of press-molding the glass material with the molding die ;
In the method of manufacturing an optical element having an extraction step of taking out the optical element obtained in the pressing step from the molding die ,
In the pressurizing step, the temperature of the drum mold member is made lower than the temperature of the second transfer member, and the first transfer member is placed in a state where the drum mold member and the second transfer member are in close contact with each other. A step of pressure-molding a glass material by sliding in the body-shaped member ,
The method of manufacturing an optical element , wherein the temperature of the body member in the extracting step is higher than the temperature of the body member in the pressing step .
前記第2転写部材の材料と、前記胴型部材の材料が同じであることを特徴とする請求項1記載の光学素子の製造方法。   2. The method of manufacturing an optical element according to claim 1, wherein a material of the second transfer member and a material of the body member are the same. 光学素子の第1の光学面を形成するための第1転写面を有する第1転写部材と、前記第1転写部材に対向して配置され、前記光学素子の第2の光学面を形成するための第2転写面を有する第2転写部材と、前記第2転写部材が挿入され、前記光学素子の外周側面部の少なくとも一部を形成するための側面部転写面を有する側面部転写部材と、を備えた成形金型を所定温度に加熱する加熱工程と、
前記成形金型にガラス素材を供給するガラス素材供給工程と、
前記成形金型で前記ガラス素材を加圧成形する加圧工程と
前記加圧工程で得られた光学素子を前記成形金型から取り出す取り出し工程とを有する光学素子の製造方法において、
前記加圧工程は、前記側面部転写部材の温度を前記第2転写部材の温度よりも低くして、前記側面部転写部材と前記第2転写部材とを密着させた状態でガラス素材を加圧成形する工程であり、
前記取り出し工程における前記側面部転写部材の温度が、前記加圧工程における前記側面部転写部材の温度よりも高いことを特徴とする光学素子の製造方法。
A first transfer member having a first transfer surface for forming a first optical surface of the optical element; and a first transfer member disposed opposite the first transfer member to form a second optical surface of the optical element. A second transfer member having a second transfer surface; a side transfer member having a side transfer surface into which the second transfer member is inserted and forming at least a part of an outer peripheral side surface of the optical element; A heating step of heating a molding die provided with a predetermined temperature;
A glass material supply step of supplying a glass material to the molding die;
A pressurizing step of press-molding the glass material with the molding die ;
In the method of manufacturing an optical element having an extraction step of taking out the optical element obtained in the pressing step from the molding die ,
In the pressing step, the glass material is pressed in a state where the temperature of the side surface transfer member is lower than the temperature of the second transfer member and the side surface transfer member and the second transfer member are in close contact with each other. Molding process ,
The method of manufacturing an optical element , wherein the temperature of the side surface transfer member in the take-out step is higher than the temperature of the side surface transfer member in the pressurization step .
前記第2転写部材の材料と、前記側面部転写部材の材料が同じであることを特徴とする請求項3記載の光学素子の製造方法。   4. The method of manufacturing an optical element according to claim 3, wherein the material of the second transfer member is the same as the material of the side surface transfer member.
JP2006185309A 2006-07-05 2006-07-05 Optical element manufacturing method Expired - Fee Related JP4779836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006185309A JP4779836B2 (en) 2006-07-05 2006-07-05 Optical element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006185309A JP4779836B2 (en) 2006-07-05 2006-07-05 Optical element manufacturing method

Publications (2)

Publication Number Publication Date
JP2008013392A JP2008013392A (en) 2008-01-24
JP4779836B2 true JP4779836B2 (en) 2011-09-28

Family

ID=39070788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006185309A Expired - Fee Related JP4779836B2 (en) 2006-07-05 2006-07-05 Optical element manufacturing method

Country Status (1)

Country Link
JP (1) JP4779836B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2272807A1 (en) * 2008-03-31 2011-01-12 Sumitomo Electric Industries, Ltd. Die assembly and molding method
JP2012086996A (en) * 2010-10-18 2012-05-10 Konica Minolta Opto Inc Molding die and method for manufacturing glass molded article

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3618936B2 (en) * 1996-11-21 2005-02-09 キヤノン株式会社 Optical element molding method
JP2006282472A (en) * 2005-04-01 2006-10-19 Olympus Imaging Corp Glass lens molding apparatus and method for molding glass lens
JP2007238389A (en) * 2006-03-09 2007-09-20 Fujifilm Corp Method and apparatus for molding optical component

Also Published As

Publication number Publication date
JP2008013392A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP5382276B1 (en) Method for manufacturing lens barrel-integrated lens
CN1807297B (en) Method of manufacturing glass shaped article
JP4779836B2 (en) Optical element manufacturing method
JP5326773B2 (en) Method for producing glass molded body
JP4779861B2 (en) Manufacturing method of glass optical element
JP2011105559A (en) Mold for optical device and method for molding the optical device
JP4559784B2 (en) Optical element manufacturing method
JP4223967B2 (en) Manufacturing method of glass optical element
TWI388415B (en) Molding method for an optical element and optical element molding apparatus
WO2012026263A1 (en) Method and device for manufacturing molded glass object
WO2010122844A1 (en) Apparatus for manufacturing glass molding
JP3875306B2 (en) Method for manufacturing mold for molding optical element and method for molding optical element
JP4832939B2 (en) Method for manufacturing optical element molding die
JP4784454B2 (en) Optical element manufacturing method and manufacturing apparatus
JP2008074636A (en) Method and device for producing optical element
JP4426910B2 (en) Mold press mold, optical element manufacturing method, and mold press lens
JP4992035B2 (en) Optical element manufacturing method
JP2006206394A (en) Optical device forming mold, method of manufacturing the same and method of manufacturing optical device using the same
JP2007076945A (en) Method and apparatus for molding glass lens
JP2010241614A (en) Production method of glass molding
JPH0451495B2 (en)
JP2008230874A (en) Method for producing optical element
JP2006206346A (en) Mold for glass molding and optical element molding device and method using the same
JP2009063816A (en) Glass optical element and method of manufacturing glass optical element
JP2006327847A (en) Optical glass element forming die

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees