JP2008094654A - Method and apparatus for manufacturing optical element - Google Patents

Method and apparatus for manufacturing optical element Download PDF

Info

Publication number
JP2008094654A
JP2008094654A JP2006277353A JP2006277353A JP2008094654A JP 2008094654 A JP2008094654 A JP 2008094654A JP 2006277353 A JP2006277353 A JP 2006277353A JP 2006277353 A JP2006277353 A JP 2006277353A JP 2008094654 A JP2008094654 A JP 2008094654A
Authority
JP
Japan
Prior art keywords
molten glass
molding
cooling
optical
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006277353A
Other languages
Japanese (ja)
Inventor
Hideki Sonoda
英樹 薗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2006277353A priority Critical patent/JP2008094654A/en
Publication of JP2008094654A publication Critical patent/JP2008094654A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing optical elements, by which optical elements each having a high precision optical surface can be manufactured at high manufacturing efficiency by uniformizing the cooling rates at the center part and the end part of molten glass. <P>SOLUTION: The method for manufacturing the optical elements includes: a heating process for heating a forming mold to a prescribed temperature; a molten glass supply process for supplying molten glass to the forming mold; a cooling process for cooling the molten glass by bringing a cooling member into contact with the upper surface of the supplied molten glass; and a forming process for press-forming the molten glass. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、溶融ガラスを成形金型で加圧成形してガラス製の光学素子を得る光学素子の製造方法及び製造装置に関する。   The present invention relates to an optical element manufacturing method and apparatus for obtaining glass optical elements by pressure molding molten glass with a molding die.

今日、ガラス製の光学素子は、デジタルカメラ用レンズ、DVD等の光ピックアップレンズ、携帯電話用カメラレンズ、光通信用のカップリングレンズ、各種ミラーなどとして広範にわたって利用されている。かかるガラス製の光学素子は、ガラス素材を成形金型で加圧成形するプレス成形法により製造されることが多くなってきた。特に、光学面として非球面を有する光学素子は、研削・研磨加工による面形成が容易でないことから、成形金型によるプレス成形法による製造が一般的になりつつある。その中でも、溶融ガラスを成形金型で直接加圧成形してガラス製の光学素子を得るダイレクトプレス法は、高い生産効率を期待できることから注目されている。   Today, glass optical elements are widely used as digital camera lenses, optical pickup lenses such as DVDs, mobile phone camera lenses, optical communication coupling lenses, various mirrors, and the like. Such glass optical elements are often manufactured by a press molding method in which a glass material is pressure-molded with a molding die. In particular, an optical element having an aspheric surface as an optical surface is not easily formed by grinding / polishing, and therefore is generally manufactured by a press molding method using a molding die. Among them, a direct press method for obtaining a glass optical element by directly pressure-molding molten glass with a molding die is attracting attention because high production efficiency can be expected.

溶融ガラスを成形金型で直接加圧成形してガラス製の光学素子を得る方法として、ノズル先端からの溶融ガラスを支持部材に滞留させたあと、該支持部材をノズル先端から退避させ、得られたガラスゴブを上型と下型とで加圧成形する方法が知られている(例えば、特許文献1を参照。)。   As a method for obtaining a glass optical element by directly pressure-molding molten glass with a molding die, the molten glass from the nozzle tip is retained in the support member, and then the support member is withdrawn from the nozzle tip. A method of pressure-molding a glass gob with an upper mold and a lower mold is known (see, for example, Patent Document 1).

しかし、成形の過程で溶融ガラスが冷却される速度が、溶融ガラスの上面と下面、あるいは中心部と端部において異なり、冷却による収縮量が不均一になることから、かかる方法により精度の高い光学面を形成することは困難であった。特に、溶融ガラスが最初に支持部材に接触して急冷される下面側に精度の高い光学面を形成することは非常に困難であった。   However, the speed at which the molten glass is cooled during the molding process is different between the upper and lower surfaces of the molten glass, or the center and ends, and the amount of shrinkage due to cooling becomes uneven. It was difficult to form a surface. In particular, it has been very difficult to form a highly accurate optical surface on the lower surface side where the molten glass first contacts with the support member and is rapidly cooled.

また、受け型に供給された溶融ガラスを下型の上に搬送した後、上下金型で加圧成形することによって、溶融ガラスの温度が比較的安定する上面側の光学面のみを上型の成形面の転写によって形成し、下面側の光学面は追加工(研削・研磨加工)によって形成してガラスレンズを製造する方法が提案されている(例えば、特許文献2を参照。)。   In addition, after conveying the molten glass supplied to the receiving mold onto the lower mold, only the upper optical surface on which the temperature of the molten glass is relatively stable is formed by pressing with the upper and lower molds. There has been proposed a method of manufacturing a glass lens by forming a molding surface by transfer and forming an optical surface on the lower surface side by additional processing (grinding / polishing) (see, for example, Patent Document 2).

特許文献2には、更に、成形されるレンズの肉厚が全面にわたって均一になるように下型の受け面を形成することで、レンズの径方向の冷却速度の分布が小さくなり、レンズの上面側に高精度な光学面が得られる旨が開示されている。
特開平6−206730号公報 特開平8−208248号公報
In Patent Document 2, the distribution of the cooling rate in the radial direction of the lens is reduced by forming the receiving surface of the lower mold so that the thickness of the molded lens is uniform over the entire surface. It is disclosed that a highly accurate optical surface can be obtained on the side.
JP-A-6-206730 JP-A-8-208248

しかしながら、実際には、たとえ成形される光学素子の肉厚が全面にわたって均一になるように下型の受け面を形成したとしても、溶融ガラスを下型の受け面に溜めた状態においては、溶融ガラスの表面張力によって端部よりも中心部の肉厚の方が大きくなるのが一般的である。従って、上型と下型とで加圧成形される段階では、既に中心部よりも端部の方が冷却が進んだ状態になっていることから、成形時における収縮量が均一にならず、光学素子の上面側に高精度な光学面を得ることはできないという問題があった。   However, in practice, even if the lower mold receiving surface is formed so that the thickness of the optical element to be molded is uniform over the entire surface, the molten glass is melted in the state where the molten glass is stored on the lower mold receiving surface. Generally, the thickness of the central portion is larger than the end portion due to the surface tension of the glass. Therefore, at the stage where pressure molding is performed with the upper mold and the lower mold, the end portion is already cooled more than the center portion, so the amount of shrinkage during molding is not uniform, There was a problem that a highly accurate optical surface could not be obtained on the upper surface side of the optical element.

また、例えば外径がφ20mm以上といった比較的大きな光学素子を製造する場合には、下型の受け面に多量の溶融ガラスを溜める必要があることから、溶融ガラスの外径を規制するための外径規制面を有する外径規制部材を備えた成形金型を使用する必要がある。この場合、供給された溶融ガラスは下型の受け面と接触するだけでなく、外径規制部材の外径規制面とも接触することになる。溶融ガラスは、これら成形金型との接触面から急速に冷却されるため、このような外径規制部材を備えた成形金型を使用する場合には、溶融ガラスの端部の冷却がいっそう急速に進むことになる。このように、溶融ガラスの中心部と端部の冷却速度に大きな差が生じることから、成形時における溶融ガラスの収縮量が均一にならず、光学素子の上面側に高精度な光学面を得ることは更に困難となっていた。   Further, when manufacturing a relatively large optical element having an outer diameter of, for example, φ20 mm or more, it is necessary to store a large amount of molten glass on the receiving surface of the lower mold, so that the outer diameter for regulating the outer diameter of the molten glass is limited. It is necessary to use a molding die provided with an outer diameter regulating member having a diameter regulating surface. In this case, the supplied molten glass not only contacts the receiving surface of the lower mold but also contacts the outer diameter regulating surface of the outer diameter regulating member. Since the molten glass is rapidly cooled from the contact surface with these molding dies, when using a molding die having such an outer diameter regulating member, the end of the molten glass is cooled more rapidly. Will proceed to. As described above, a large difference occurs in the cooling rate between the central portion and the end portion of the molten glass, so that the amount of shrinkage of the molten glass during molding is not uniform, and a high-precision optical surface is obtained on the upper surface side of the optical element. That was even more difficult.

本発明は上記のような技術的課題に鑑みてなされたものであり、本発明の目的は、溶融ガラスの中心部と端部の冷却速度を均一化して、高精度な光学面を有する光学素子を高い生産効率で製造することができる光学素子の製造方法を提供することである。   The present invention has been made in view of the technical problems as described above, and an object of the present invention is to provide an optical element having a high-precision optical surface by uniformizing the cooling rate of the center portion and the end portion of the molten glass. It is providing the manufacturing method of the optical element which can be manufactured with high production efficiency.

上記の課題を解決するために、本発明は以下の特徴を有するものである。   In order to solve the above problems, the present invention has the following features.

1. 溶融ガラスを受けるための受け面を有する下型、及び、光学素子の第1の光学面を形成するための成形面を有する上型を備える成形金型を、溶融ガラスの温度よりも低い所定温度に加熱する加熱工程と、前記下型の受け面に前記溶融ガラスを供給する溶融ガラス供給工程と、供給された前記溶融ガラスの上面に冷却部材を接触させることにより前記溶融ガラスを冷却する冷却工程と、前記成形金型で前記溶融ガラスを加圧成形し、前記上型の成形面が転写された第1の光学面を有する成形体を形成する成形工程とを有することを特徴とする光学素子の製造方法。   1. A molding die comprising a lower mold having a receiving surface for receiving molten glass and an upper mold having a molding surface for forming the first optical surface of the optical element, a predetermined temperature lower than the temperature of the molten glass A heating step for heating the molten glass, a molten glass supplying step for supplying the molten glass to the receiving surface of the lower mold, and a cooling step for cooling the molten glass by bringing a cooling member into contact with the upper surface of the supplied molten glass And a molding step of press-molding the molten glass with the molding die to form a molded body having a first optical surface to which the molding surface of the upper mold is transferred. Manufacturing method.

2. 前記溶融ガラスと前記冷却部材との接触部の直径をφD、前記溶融ガラスと前記下型の受け面との接触部の直径をφGとしたとき、0.3≦φD/φG≦0.9を満足することを特徴とする前記1に記載の光学素子の製造方法。   2. When the diameter of the contact portion between the molten glass and the cooling member is φD, and the diameter of the contact portion between the molten glass and the lower mold receiving surface is φG, 0.3 ≦ φD / φG ≦ 0.9 2. The method for producing an optical element according to 1 above, wherein the method is satisfied.

3. 前記成形工程の後に、追加工によって前記成形体の第1の光学面の裏面側に第2の光学面を形成する追加工工程を有することを特徴とする前記1又は2に記載の光学素子の製造方法。   3. 3. The optical element according to 1 or 2, further comprising an additional processing step of forming a second optical surface on a back surface side of the first optical surface of the molded body by additional processing after the molding step. Production method.

4. 前記成形金型は、前記溶融ガラスの外径を規制するための外径規制面を有する外径規制部材を備え、前記溶融ガラス供給工程において、前記下型の受け面に供給された前記溶融ガラスが、前記外径規制部材の外径規制面に接触することを特徴とする前記1乃至3の何れか1項に記載の光学素子の製造方法。   4). The molding die includes an outer diameter regulating member having an outer diameter regulating surface for regulating the outer diameter of the molten glass, and the molten glass supplied to the receiving surface of the lower mold in the molten glass supply step The method for manufacturing an optical element according to any one of 1 to 3, wherein the outer diameter regulating member contacts an outer diameter regulating surface of the outer diameter regulating member.

5. 溶融ガラスを受けるための受け面を有する下型、及び、光学素子の第1の光学面を形成するための成形面を有する上型を備える成形金型と、前記成形金型を溶融ガラスの温度よりも低い所定温度に加熱するための加熱手段と、前記下型の受け面に前記溶融ガラスを供給するための溶融ガラス供給手段と、供給された前記溶融ガラスの上面に冷却部材を接触させることにより前記溶融ガラスを冷却するための冷却手段と、前記成形金型で前記溶融ガラスを加圧成形し、前記上型の成形面が転写された第1の光学面を有する成形体を形成するための加圧手段とを有することを特徴とする光学素子の製造装置。   5. A mold having a lower mold having a receiving surface for receiving molten glass and an upper mold having a molding surface for forming the first optical surface of the optical element, and the temperature of the molten glass as the mold A heating means for heating to a lower predetermined temperature, a molten glass supply means for supplying the molten glass to the receiving surface of the lower mold, and a cooling member in contact with the upper surface of the supplied molten glass To form a molded body having a first optical surface to which the molding surface of the upper mold is transferred by pressure-molding the molten glass with the cooling mold and cooling means for cooling the molten glass. An optical element manufacturing apparatus.

本発明の光学素子の製造方法によれば、成形工程に先立って溶融ガラスの上面に冷却部材を接触させることで、成形金型に供給された溶融ガラスの温度分布を均一化でき、成形時における溶融ガラスの収縮量を均一化することができる。そのため、成形によって少なくとも上面側の光学面が高精度に形成された成形体を得ることができ、高精度な光学面を有する光学素子を高い生産効率で製造することができる。   According to the method for producing an optical element of the present invention, the temperature distribution of the molten glass supplied to the molding die can be made uniform by bringing the cooling member into contact with the upper surface of the molten glass prior to the molding step. The amount of shrinkage of the molten glass can be made uniform. Therefore, a molded body in which at least the optical surface on the upper surface side is formed with high accuracy by molding can be obtained, and an optical element having a high accuracy optical surface can be manufactured with high production efficiency.

以下、本発明の実施の形態について図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(光学素子)
本発明の方法により製造される光学素子の形状に特に制限はなく、両凸形状、メニスカス形状、両凹形状、平面等、各種の形状の光学素子を製造することができる。ここで、光学素子とは、レンズのような透過型の光学素子の他、ミラーのような反射型の光学素子も含む。
(Optical element)
The shape of the optical element produced by the method of the present invention is not particularly limited, and optical elements having various shapes such as a biconvex shape, a meniscus shape, a biconcave shape, and a flat surface can be produced. Here, the optical element includes a transmissive optical element such as a lens and a reflective optical element such as a mirror.

図3は、本実施形態で製造する光学素子の一例であるメニスカス形状のレンズ10を示している。レンズ10は、成形によって形成される第1の光学面11と追加工によって形成される第2の光学面12及びコバ面13とを有している。第1の光学面11は凹の非球面であり、第2の光学面12は凸の球面である。   FIG. 3 shows a meniscus lens 10 which is an example of an optical element manufactured in the present embodiment. The lens 10 has a first optical surface 11 formed by molding, a second optical surface 12 and an edge surface 13 formed by additional machining. The first optical surface 11 is a concave aspheric surface, and the second optical surface 12 is a convex spherical surface.

光学素子の有する二つの光学面のうちいずれの面を成形によって形成される第1の光学面とするかについては、特に制限はない。ただし、レンズ10のように、一方の面が非球面や回折面などの追加工による形成が困難な形状であり、他方の面が一般的な球面である場合には、前者を成形によって形成される第1の光学面とし、後者を追加工によって形成する第2の光学面とすることが、生産性の観点から好ましい。尤も、製造する光学素子がミラーのような反射型の光学素子であって一つの光学面のみを有する物の場合には、その面を第1の光学面として成形によって形成すれば良い。   There is no particular limitation as to which one of the two optical surfaces of the optical element is the first optical surface formed by molding. However, as in the lens 10, when one surface has a shape that is difficult to be formed by additional processing such as an aspherical surface or a diffractive surface, and the other surface is a general spherical surface, the former is formed by molding. It is preferable from the viewpoint of productivity that the first optical surface is a second optical surface formed by additional machining. However, when the optical element to be manufactured is a reflective optical element such as a mirror and has only one optical surface, the surface may be formed as a first optical surface by molding.

図4は、レンズ10を製造するための成形工程で得られた成形体を示す図である。本発明において成形体の肉厚は、必ずしも全面にわたって均一にする必要はない。図4(a)は全面にわたって肉厚がほぼ均一な成形体14a、図4(b)は、中心よりも端部の肉厚の方が大きい成形体14b、図4(c)は、端部よりも中心の肉厚の方が大きい成形体14cを示している。本発明においては、レンズ10を製造するための成形体として、成形体14a、14b、14cのいずれを用いても良い。いずれの場合であっても、図の波線で示すように、追加工によって第2の光学面12とコバ面13とを形成することで目的とするレンズ10が完成する。   FIG. 4 is a view showing a molded body obtained in a molding process for manufacturing the lens 10. In the present invention, the thickness of the molded body is not necessarily uniform over the entire surface. 4A shows a molded body 14a having a substantially uniform thickness over the entire surface, FIG. 4B shows a molded body 14b whose end portion is thicker than the center, and FIG. 4C shows an end portion. A molded body 14c having a larger thickness at the center is shown. In the present invention, any of the molded bodies 14a, 14b, and 14c may be used as a molded body for manufacturing the lens 10. In either case, the target lens 10 is completed by forming the second optical surface 12 and the edge surface 13 by additional machining as indicated by the wavy line in the figure.

図5は、本実施形態で製造する光学素子の別の例である両凸形状のレンズ20を示している。レンズ20は、成形によって形成される第1の光学面21と追加工によって形成される第2の光学面22及びコバ面23とを有している。第1の光学面21は凸の非球面であり、第2の光学面22は凸の球面である。   FIG. 5 shows a biconvex lens 20 which is another example of the optical element manufactured in the present embodiment. The lens 20 has a first optical surface 21 formed by molding, a second optical surface 22 and an edge surface 23 formed by additional machining. The first optical surface 21 is a convex aspheric surface, and the second optical surface 22 is a convex spherical surface.

図6は、レンズ20を製造するための成形工程で得られた成形体を示す図である。図6(a)は肉厚がほぼ均一な成形体24a、図6(b)は、中心よりも端部の肉厚の方が大きい成形体24b、図6(c)は、端部よりも中心の肉厚の方が大きい成形体24cを示している。この場合も、レンズ20を製造するための成形体として、成形体24a、24b、24cのいずれを用いても良い。いずれの場合であっても、図の波線で示すように、追加工によって第2の光学面22とコバ面23とを形成することで目的とするレンズ20が完成する。   FIG. 6 is a view showing a molded body obtained in a molding process for manufacturing the lens 20. 6A shows a molded body 24a having a substantially uniform thickness, FIG. 6B shows a molded body 24b whose end portion is thicker than the center, and FIG. A molded body 24c having a larger central thickness is shown. Also in this case, any of the molded bodies 24a, 24b, and 24c may be used as the molded body for manufacturing the lens 20. In either case, the target lens 20 is completed by forming the second optical surface 22 and the edge surface 23 by additional machining as indicated by the wavy line in the figure.

(成形金型)
図7は、本実施形態で用いる成形金型30を示す図である。成形金型30は、レンズ10用の成形体14aを成形するための成形金型である。この成形金型30は、下型31と上型32とを有し、更に、外径規制部材33を備えている。下型31は溶融ガラスを受けるための受け面37を有し、上型32は光学素子の第1の光学面を形成するための成形面38を有している。外径規制部材33は、溶融ガラスの外径を規制するための外径規制面39を有し、下型31に組み合わされて固定されている。また、下型31、上型32、外径規制部材33は、加熱手段としてのヒーター34a、34b、34c及び温度センサー35a、35b、35cをそれぞれ有している。
(Molding mold)
FIG. 7 is a view showing a molding die 30 used in the present embodiment. The molding die 30 is a molding die for molding the molded body 14 a for the lens 10. The molding die 30 includes a lower die 31 and an upper die 32, and further includes an outer diameter regulating member 33. The lower mold 31 has a receiving surface 37 for receiving molten glass, and the upper mold 32 has a molding surface 38 for forming a first optical surface of the optical element. The outer diameter regulating member 33 has an outer diameter regulating surface 39 for regulating the outer diameter of the molten glass, and is fixed in combination with the lower mold 31. The lower mold 31, the upper mold 32, and the outer diameter regulating member 33 have heaters 34a, 34b, 34c and temperature sensors 35a, 35b, 35c as heating means, respectively.

外径規制部材33は、本発明の製造方法において必ずしも必須の部材ではないが、例えば外径がφ20mm以上といった比較的大きな光学素子を製造する場合には、下型31の受け面37に多量の溶融ガラスを溜める必要があることから、溶融ガラスの外径を規制するための外径規制面39を有する外径規制部材33を備えていることが好ましい。外径規制部材は、図7のように下型と別部材で構成しても良いし、同一部材に受け面と外径規制面とを形成し、下型と外径規制部材の両方の機能を兼ね備えた部材を用いても良い。また、下型と固定せずに脱着可能な構成としても良いし、下型とは別に独立して上下に移動できる機構を備えた構成とすることも好ましい。   The outer diameter regulating member 33 is not necessarily an essential member in the manufacturing method of the present invention. However, for example, when a relatively large optical element having an outer diameter of φ20 mm or more is manufactured, a large amount is provided on the receiving surface 37 of the lower mold 31. Since it is necessary to store molten glass, it is preferable to include an outer diameter regulating member 33 having an outer diameter regulating surface 39 for regulating the outer diameter of the molten glass. As shown in FIG. 7, the outer diameter regulating member may be constituted by a member separate from the lower mold, or the receiving surface and the outer diameter regulating surface are formed on the same member, so that both the lower mold and the outer diameter regulating member function. You may use the member which combined these. Moreover, it is good also as a structure which can be attached or detached, without fixing with a lower mold | type, and it is also preferable to set it as the structure provided with the mechanism which can be moved up and down independently separately from a lower mold | type.

下型31、上型32、及び外径規制部材33の材質は、炭化タングステンを主成分とする超硬材料、炭化珪素、窒化珪素、窒化アルミニウム、カーボンなど、ガラス製光学素子を加圧成形するための成形金型として公知の材料の中から用途に応じて適宜選択して用いることができる。また、これらの材料の表面に各種金属やセラミックス、カーボンなどの保護膜を形成したものを用いることもできる。下型31、上型32、及び外径規制部材33を全て同一の材料で構成しても良いし、それぞれ別の材料で構成しても良い。   The material of the lower mold 31, the upper mold 32, and the outer diameter regulating member 33 is formed by press-molding a glass optical element such as a super hard material mainly composed of tungsten carbide, silicon carbide, silicon nitride, aluminum nitride, or carbon. As a molding die for this purpose, it can be appropriately selected from known materials according to the use. Moreover, what formed protective films, such as various metals, ceramics, and carbon, on the surface of these materials can also be used. The lower mold 31, the upper mold 32, and the outer diameter regulating member 33 may all be made of the same material, or may be made of different materials.

上型32の成形面38は、レンズ10の第1の光学面11に対応した形状とする。これに対して、レンズ10の第2の光学面12は成形後の追加工によって形成するため、下型31の受け面37は第2の光学面12に対応した形状とする必要はない。   The molding surface 38 of the upper mold 32 has a shape corresponding to the first optical surface 11 of the lens 10. On the other hand, since the second optical surface 12 of the lens 10 is formed by additional machining after molding, the receiving surface 37 of the lower mold 31 does not need to have a shape corresponding to the second optical surface 12.

(加熱工程)
加熱工程は、成形金型を溶融ガラスの温度よりも低い所定温度に加熱する工程である。下型31、上型32、外径規制部材33は、加熱手段としてのヒーター34a、34b、34c及び温度センサー35a、35b、35cをそれぞれ有している。このように、それぞれの部材を独立して温度調節することができる構成としても良いし、成形金型全体を一つ、あるいは複数のヒーターでまとめて加熱するような構成としても良い。ヒーターは、公知の各種のヒーターの中から適宜選択して用いることができる。例えば、部材の内部に埋め込んで使用するカートリッジヒーターや、部材の外側に接触させて使用するシート状のヒーターなどを用いることができる。また、温度センサーとしては、種々の熱電対の他、白金測温抵抗体、各種サーミスタなど公知の手段を使用することができる。
(Heating process)
The heating step is a step of heating the molding die to a predetermined temperature lower than the temperature of the molten glass. The lower mold 31, the upper mold 32, and the outer diameter regulating member 33 have heaters 34a, 34b, and 34c as heating means and temperature sensors 35a, 35b, and 35c, respectively. Thus, it is good also as a structure which can adjust temperature of each member independently, and it is good also as a structure which heats the whole shaping die collectively with one or several heaters. The heater can be appropriately selected from known various heaters. For example, a cartridge heater that is used by being embedded inside the member, or a sheet heater that is used while being in contact with the outside of the member can be used. In addition to various thermocouples, known means such as a platinum resistance thermometer and various thermistors can be used as the temperature sensor.

成形金型30の内、上型32の加熱温度は、溶融ガラスに成形面38の形状を良好に転写できる温度範囲に設定する必要がある。通常、成形するガラスのTg(ガラス転移点)−100℃からTg+100℃程度の温度範囲とすることが好ましい。加熱温度が低すぎると溶融ガラスに成形面38の形状を良好に転写させることが困難になってくる。逆に、必要以上に温度を高くしすぎることは、ガラスと成形金型との融着を防止する観点や、成形金型の寿命の観点から好ましくない。実際には、成形するガラスの材質や、成形体の形状、大きさ、成形金型の材質、保護膜の種類、ヒーターや温度センサーの位置等種々の条件を考慮に入れて適正な温度を決定する。   Among the molding dies 30, the heating temperature of the upper mold 32 needs to be set in a temperature range in which the shape of the molding surface 38 can be satisfactorily transferred to the molten glass. Usually, it is preferable to make it the temperature range of Tg (glass transition point) -100 degreeC of glass to shape | mold to about Tg + 100 degreeC. If the heating temperature is too low, it becomes difficult to transfer the shape of the molding surface 38 to the molten glass. On the contrary, it is not preferable to raise the temperature more than necessary from the viewpoint of preventing fusion between the glass and the molding die and the life of the molding die. In practice, the appropriate temperature is determined taking into account various conditions such as the glass material to be molded, the shape and size of the molded body, the material of the molding die, the type of protective film, the position of the heater and temperature sensor, etc. To do.

下型31と外径規制部材33の加熱温度については、上型32とは異なり成形面の転写性を考慮する必要はないが、溶融ガラスの冷却速度に影響することから、上型32と同様に、成形するガラスのTg−100℃からTg+100℃程度の温度範囲とすることが好ましい。   Unlike the upper mold 32, the heating temperature of the lower mold 31 and the outer diameter regulating member 33 does not need to consider the transferability of the molding surface, but it affects the cooling rate of the molten glass and is the same as the upper mold 32. Furthermore, it is preferable that the glass to be molded has a temperature range of about Tg-100 ° C to about Tg + 100 ° C.

(溶融ガラス供給工程)
溶融ガラス供給工程は、下型31の受け面37に溶融ガラスを供給する工程である。供給された溶融ガラスは、下型31の受け面37に接触して冷却される。成形金型が、溶融ガラスの外径を規制するための外径規制面39を有する外径規制部材33を備えている場合には、外径規制面39にも接触して冷却される。
(Molten glass supply process)
The molten glass supply step is a step of supplying molten glass to the receiving surface 37 of the lower mold 31. The supplied molten glass comes into contact with the receiving surface 37 of the lower mold 31 and is cooled. When the molding die includes the outer diameter regulating member 33 having the outer diameter regulating surface 39 for regulating the outer diameter of the molten glass, the molding die is also brought into contact with the outer diameter regulating surface 39 and cooled.

溶融ガラスを供給する方法について特に制限はなく、公知の手法を適宜選択して用いることができる。図8は、溶融ガラスを供給する方法の一例を示す模式図である。溶融槽41に溶融ガラスが貯蔵されており、溶融槽41の下部に設けられたノズル42の先端から溶融状態のガラス滴が自重により落下する状態となっている。このとき、溶融槽41とノズル42はヒーター43により所定温度に加熱されている。この状態で、下型31をノズルの先端に接近させて受け面37に所定量の溶融ガラスを滞留させた後、下型31を下方に引き下げて溶融ガラスを切断することで溶融ガラスを供給することができる(特許文献1を参照。)。図8(a)は、下型31をノズルの先端に接近させた状態を示す図であり、図8(b)は、下型31を下方に引き下げて溶融ガラスを切断した状態を示す図である。また、別の方法として、ノズルの先端から溶融ガラスが液線状態で流出する状態で、下型に所定量の溶融ガラスを滞留させた後、金属ブレードによって溶融ガラスを切断する方法によって溶融ガラスを供給することもできる。   There is no restriction | limiting in particular about the method of supplying molten glass, A well-known method can be selected suitably and can be used. FIG. 8 is a schematic diagram illustrating an example of a method for supplying molten glass. Molten glass is stored in the melting tank 41, and a molten glass droplet falls from the tip of the nozzle 42 provided in the lower part of the melting tank 41 by its own weight. At this time, the melting tank 41 and the nozzle 42 are heated to a predetermined temperature by the heater 43. In this state, the lower mold 31 is brought close to the tip of the nozzle to retain a predetermined amount of molten glass on the receiving surface 37, and then the lower mold 31 is pulled downward to cut the molten glass to supply molten glass. (See Patent Document 1). FIG. 8A is a view showing a state where the lower die 31 is brought close to the tip of the nozzle, and FIG. 8B is a view showing a state where the molten glass is cut by lowering the lower die 31 downward. is there. As another method, after a predetermined amount of molten glass is retained in the lower mold in a state where the molten glass flows out from the tip of the nozzle in a liquid line state, the molten glass is cut by a metal blade. It can also be supplied.

図8(b)のように、供給された溶融ガラス44は、下型31の受け面37と外径規制部材33の外径規制面39とに接触する。下型31と外径規制部材33の温度は供給される溶融ガラス44よりも低温であることから、溶融ガラス44は主にこれらの接触面から冷却される。また、溶融ガラス44は、表面張力によって中心部が盛り上がった形状となるのが普通である。そのため、供給された溶融ガラス44には、中心部が高温で端部が低温という温度分布が生じることになる。   As shown in FIG. 8B, the supplied molten glass 44 comes into contact with the receiving surface 37 of the lower mold 31 and the outer diameter regulating surface 39 of the outer diameter regulating member 33. Since the temperature of the lower mold 31 and the outer diameter regulating member 33 is lower than that of the supplied molten glass 44, the molten glass 44 is mainly cooled from these contact surfaces. Moreover, it is normal that the molten glass 44 becomes a shape where the center part rose by surface tension. For this reason, the supplied molten glass 44 has a temperature distribution in which the central portion has a high temperature and the end portion has a low temperature.

なお、使用できるガラスの種類に特に制限はなく、光学的用途に用いられる公知のガラスを用途に応じて選択して用いることができる。例えば、リン酸系ガラス、ランタン系ガラスなどが挙げられる
(冷却工程)
冷却工程は、供給された溶融ガラスの上面に冷却部材を接触させることにより溶融ガラスを冷却する工程である。
In addition, there is no restriction | limiting in particular in the kind of glass which can be used, The well-known glass used for an optical use can be selected and used according to a use. For example, phosphate glass, lanthanum glass, etc. (cooling process)
The cooling step is a step of cooling the molten glass by bringing a cooling member into contact with the upper surface of the supplied molten glass.

上述の通り、溶融ガラス供給工程で成形金型に供給された溶融ガラスには、中心部が高温で端部が低温という温度分布が生じている。このような状態の溶融ガラスを直接成形してしまうと、成形時における溶融ガラスの収縮量が均一にならず、高精度な光学面を得ることは困難である。本発明の製造方法においては、成形工程に先立って溶融ガラスの上面に冷却部材を接触させることにより、溶融ガラスの特に中心部が冷却されて溶融ガラスの温度分布を解消することができ、高精度な光学面を得ることができる。   As described above, the molten glass supplied to the molding die in the molten glass supply step has a temperature distribution in which the central part is high temperature and the end part is low temperature. If the molten glass in such a state is directly molded, the shrinkage amount of the molten glass at the time of molding is not uniform, and it is difficult to obtain a highly accurate optical surface. In the production method of the present invention, by bringing the cooling member into contact with the upper surface of the molten glass prior to the molding step, the center portion of the molten glass is cooled and the temperature distribution of the molten glass can be eliminated. An optical surface can be obtained.

図1は、溶融ガラスに冷却部材が接触している状態を示した模式図である。外径規制部材33が下型31に固定されている。図1(a)は、端部が平坦な円柱状の冷却部材51を用いた場合の図であり、図1(b)は、端部が凸の球面であり冷却部材51よりも径の大きな冷却部材52を用いた場合の図である。   FIG. 1 is a schematic view showing a state in which a cooling member is in contact with molten glass. An outer diameter regulating member 33 is fixed to the lower mold 31. FIG. 1A is a diagram when a cylindrical cooling member 51 having a flat end is used, and FIG. 1B is a spherical surface having a convex end and a diameter larger than that of the cooling member 51. It is a figure at the time of using the cooling member 52. FIG.

また、図2は、溶融ガラスに冷却部材が接触している状態の別の例を示した模式図である。図1の場合と異なり、溶融ガラスの端部がある程度冷却されて粘度が高くなった後に外径規制部材を取り外し、その後に冷却部材を接触させている。図2(a)は、端部が平坦で径の大きな円柱状の冷却部材53を用いた場合の図であり、図2(b)は、端部が円錐台形状の冷却部材54を用いた場合の図である。   Moreover, FIG. 2 is the schematic diagram which showed another example of the state which the cooling member is contacting the molten glass. Unlike the case of FIG. 1, the outer diameter regulating member is removed after the end of the molten glass is cooled to some extent to increase the viscosity, and then the cooling member is brought into contact therewith. 2A is a diagram in the case where a cylindrical cooling member 53 having a flat end portion and a large diameter is used, and FIG. 2B uses a cooling member 54 having a truncated cone shape at the end portion. FIG.

溶融ガラスと冷却部材との接触部の径φDについて特に制限はない。溶融ガラスのうち、特に高温となっている中心部を効果的に冷却するという観点からは、溶融ガラスと冷却部材との接触部の径φDは、溶融ガラスと下型の受け面との接触部の径φGよりも小さい方が好ましい。更に、0.3≦φD/φG≦0.9を満足する範囲とすることが特に好ましい。   There is no particular limitation on the diameter φD of the contact portion between the molten glass and the cooling member. From the viewpoint of effectively cooling the center portion of the molten glass that is particularly hot, the diameter φD of the contact portion between the molten glass and the cooling member is the contact portion between the molten glass and the lower mold receiving surface. It is preferable that the diameter is smaller than the diameter φG. Furthermore, it is particularly preferable that the range satisfies 0.3 ≦ φD / φG ≦ 0.9.

なお、一般的に、成形体や下型の受け面は円形の外径を有する場合が多く、溶融ガラスと冷却部材との接触部や、溶融ガラスと下型の受け面との接触部についても円形の場合が多いが、本発明はそれに限定されるものではなく、多角形など円形以外の形状であっても良い。その場合、φD、φGは、それぞれの部分が面積の等しい円形であると仮定した場合における円の直径を意味する。   In general, the receiving surface of the molded body and the lower mold often has a circular outer diameter, and the contact portion between the molten glass and the cooling member and the contact portion between the molten glass and the lower mold receiving surface are also included. In many cases, the shape is circular, but the present invention is not limited thereto, and may be a shape other than a circle, such as a polygon. In this case, φD and φG mean the diameters of the circles when it is assumed that each part is a circle having the same area.

冷却部材が溶融ガラスに接触する部分の形状に特に制限はなく、平面、球面、円錐、円錐台など種々の形状とすることができる。溶融ガラスの表面付近だけでなく、内部まで効率的に冷却できるという観点からは、球面や円錐、円錐台のように接触部の端部よりも中心部が出っ張っている形状とすることが好ましい。   The shape of the portion where the cooling member contacts the molten glass is not particularly limited, and may be various shapes such as a flat surface, a spherical surface, a cone, and a truncated cone. From the viewpoint of efficiently cooling not only near the surface of the molten glass but also to the inside, it is preferable to have a shape in which the central portion protrudes from the end portion of the contact portion such as a spherical surface, a cone, or a truncated cone.

冷却部材と接触させている時間については、溶融ガラスの種類や温度、成形金型の温度、得ようとする成形体の径や肉厚などの条件を考慮に入れて適切な値を選択する。通常、冷却部材を退避させ溶融ガラスとの接触を解除させると、溶融ガラスは表面張力によって再び中心部の肉厚が厚い液滴状に戻り、冷却部材に接触した痕跡も問題にならない。しかし、接触時間が長すぎて冷却が進みすぎると溶融ガラスの粘性が高くなりすぎ、冷却部材に接触した痕跡がそのまま成形体に残ってしまう場合があり問題となる。逆に、接触時間が短すぎると溶融ガラスの冷却が不十分となり、溶融ガラスの温度分布が解消されない場合がある。一般的には、1秒〜20秒程度が好ましい範囲である。   For the time of contact with the cooling member, an appropriate value is selected in consideration of conditions such as the type and temperature of the molten glass, the temperature of the molding die, and the diameter and thickness of the molded product to be obtained. Normally, when the cooling member is retracted and the contact with the molten glass is released, the molten glass returns to the form of a thick droplet at the center due to the surface tension, and the trace of contact with the cooling member is not a problem. However, if the contact time is too long and the cooling proceeds too much, the viscosity of the molten glass becomes too high, and the trace of contact with the cooling member may remain in the molded body as it is, which causes a problem. On the other hand, when the contact time is too short, the molten glass is not sufficiently cooled, and the temperature distribution of the molten glass may not be eliminated. Generally, about 1 to 20 seconds is a preferable range.

冷却部材は、内部に水やオイル等の流体用配管を備えたり、ヒーター、温度センサーを備える等によって、温度調節機構を有していても良い。冷却部材の温度を一定に保つことにより、溶融ガラスの冷却を安定的に行うことができる。冷却部材の温度に特に制限はないが、効果的かつ安定的に冷却を行うという観点から、0℃〜500℃が好ましく、10℃〜300℃が更に好ましい。   The cooling member may have a temperature adjusting mechanism by providing a pipe for fluid such as water or oil, a heater, a temperature sensor, or the like. By keeping the temperature of the cooling member constant, the molten glass can be cooled stably. Although there is no restriction | limiting in particular in the temperature of a cooling member, From a viewpoint that it cools effectively and stably, 0 to 500 degreeC is preferable and 10 to 300 degreeC is still more preferable.

冷却部材の材質は、耐熱性が高く、また溶融ガラスとの接触によって劣化しにくいものが好ましい。また、溶融ガラスの熱を効率的に奪うためには、熱伝導率が高く、比熱が高いものが更に好ましい。冷却部材として用いることができる材質として、例えば、ステンレス鋼などの耐熱鋼、ニッケル基やコバルト基の耐熱合金、炭化タングステンを主成分とする超硬材料、炭化珪素や窒化珪素などのセラミックス、カーボンなどが挙げられる。また、これらの材料の表面に各種金属やセラミックス、カーボンなどの保護膜を形成したものを用いることもできる。   The material of the cooling member is preferably one that has high heat resistance and is not easily deteriorated by contact with molten glass. Moreover, in order to take away the heat | fever of a molten glass efficiently, what has high heat conductivity and high specific heat is still more preferable. Materials that can be used as cooling members include, for example, heat-resistant steel such as stainless steel, nickel-based and cobalt-based heat-resistant alloys, superhard materials mainly composed of tungsten carbide, ceramics such as silicon carbide and silicon nitride, and carbon. Is mentioned. Moreover, what formed protective films, such as various metals, ceramics, and carbon, on the surface of these materials can also be used.

なお、上型を冷却部材として用いることもできるが、冷却部材と上型とを別の部材とする方が好ましい。冷却部材を上型と別の部材とすることで、接触部の形状や温度を自由に設定することができ、また、上型の劣化を最小限に抑えることができる。   Although the upper mold can be used as a cooling member, it is preferable that the cooling member and the upper mold are separate members. By making the cooling member a member different from the upper mold, the shape and temperature of the contact portion can be freely set, and deterioration of the upper mold can be minimized.

(成形工程)
成形工程は、成形金型で溶融ガラスを加圧成形し、上型の成形面が転写された第1の光学面を有する成形体を形成する工程である。
(Molding process)
The molding step is a step of forming a molded body having a first optical surface on which the molding surface of the upper mold is transferred by pressure-molding molten glass with a molding die.

加圧の手段に特に制限はなく、エアシリンダ、油圧シリンダ、サーボモータを用いた電動シリンダ等の公知の加圧手段を適宜選択して用いることができる。   There is no particular limitation on the pressurizing means, and known pressurizing means such as an air cylinder, a hydraulic cylinder, and an electric cylinder using a servo motor can be appropriately selected and used.

加圧の間に溶融ガラスの冷却が更に進む。溶融ガラスが十分固化する温度まで冷却された後、加圧を解除して成形金型から成形体を取り出す。加圧を解除する際の成形体の温度は、ガラスの種類や、成形体の大きさや形状、必要な精度等によるが、通常はガラスのTg近傍の温度まで冷却されていれば良い。必要な加圧時間、荷重も種々の条件によって異なるが、通常は、加圧時間が10秒〜300秒、荷重が500N〜20000Nの範囲の中から適切な値を選択すれば良い。   Cooling of the molten glass further proceeds during pressing. After being cooled to a temperature at which the molten glass is sufficiently solidified, the pressure is released and the molded body is taken out from the molding die. The temperature of the molded body at the time of releasing the pressure depends on the type of glass, the size and shape of the molded body, the required accuracy, and the like, but it may be usually cooled to a temperature in the vicinity of Tg of the glass. Necessary pressurization time and load vary depending on various conditions, but normally, an appropriate value may be selected from the range of pressurization time of 10 seconds to 300 seconds and load of 500 N to 20000 N.

なお、溶融ガラスと外径規制部材が接触した状態のままで加圧を行っても良いし、成形工程の前に外径規制部材を退避させて溶融ガラスと外径規制部材との接触を解除した後に加圧を行っても良い。後者の場合、溶融ガラスが外部に流れ出さない程度の粘度になるまで冷却された後に外径規制部材を退避させる必要がある。   Note that pressurization may be performed while the molten glass and the outer diameter regulating member are in contact with each other, or the outer diameter regulating member is retracted before the molding process to release the contact between the molten glass and the outer diameter regulating member. After that, pressurization may be performed. In the latter case, it is necessary to retract the outer diameter regulating member after cooling until the viscosity reaches a level at which the molten glass does not flow outside.

また、得られた成形体に残存する歪みを除去し、屈折率等の品質を均一化して更に高精度の光学素子とするために、成形体をアニールする工程を設けることもできる。   In addition, a step of annealing the molded body can be provided in order to remove distortion remaining in the obtained molded body and to make the quality such as the refractive index uniform and to obtain a more accurate optical element.

(追加工工程)
追加工工程とは、成形工程の後に、成形体の第1の光学面の裏面側に第2の光学面を形成する工程である。
(Additional process)
The additional processing step is a step of forming the second optical surface on the back side of the first optical surface of the molded body after the molding step.

一般的には、高速研削機(カーブジェネレータ)等を用いた粗摺工程、ダイヤモンドペレット等を用いた精研削工程、研磨剤で表面を仕上げる研磨工程といった工程によって光学面を形成することができるが、これに限定されることはなく、公知の手法を適宜選択して用いることができる。   In general, an optical surface can be formed by a process such as a roughing process using a high-speed grinding machine (curve generator), a fine grinding process using diamond pellets, or a polishing process for finishing the surface with an abrasive. However, the present invention is not limited to this, and a known method can be appropriately selected and used.

また、研削等によって光学素子のコバ面を形成する工程を備えていても良い。   Moreover, you may provide the process of forming the edge surface of an optical element by grinding etc.

(実施例1)
図7に示した成形金型30を用いて、図4(a)に示す成形体14aを作製し、上型の成形面の転写によって形成された第1の光学面11の形状精度の評価を行った。第1の光学面11は、通常、非球面とすることが多いが、ここでは評価を容易にするため曲率半径30mmの球面とした。
(Example 1)
Using the molding die 30 shown in FIG. 7, the molded body 14a shown in FIG. 4A is produced, and the shape accuracy of the first optical surface 11 formed by transferring the molding surface of the upper mold is evaluated. went. The first optical surface 11 is usually an aspheric surface in many cases, but here a spherical surface having a curvature radius of 30 mm is used for easy evaluation.

成形体14aの外径はφ25mm、中心部の肉厚は6mmとした。下型31の受け面37の中心部は曲率半径30mmの凹面である。下型31、上型32、外径規制部材33は、いずれも炭化タングステンを主成分とする超硬材料を用いた。加熱温度は、下型31と外径規制部材33が520℃、上型32が430℃に設定した。   The outer diameter of the molded body 14a was 25 mm, and the wall thickness at the center was 6 mm. The center portion of the receiving surface 37 of the lower mold 31 is a concave surface having a curvature radius of 30 mm. The lower mold 31, the upper mold 32, and the outer diameter regulating member 33 are all made of super hard material mainly composed of tungsten carbide. The heating temperature was set to 520 ° C. for the lower die 31 and the outer diameter regulating member 33, and 430 ° C. for the upper die 32.

ガラス材料には、Tgが495℃のリン酸系ガラスを用いた。ノズルを1000℃に加熱し、溶融状態のガラス滴が自重により落下する状態で、下型31をノズルの先端に接近させて受け面37に溶融ガラスを滞留させた後、下型31を下方に引き下げて溶融ガラスを切断し、所定量の溶融ガラスを供給した。   As the glass material, phosphoric acid glass having a Tg of 495 ° C. was used. In a state where the nozzle is heated to 1000 ° C. and the molten glass droplet falls due to its own weight, the lower mold 31 is brought close to the tip of the nozzle and the molten glass is retained on the receiving surface 37, and then the lower mold 31 is moved downward. The molten glass was cut down to supply a predetermined amount of molten glass.

供給された溶融ガラスに冷却部材を接触させた。冷却部材は、図1(a)に示した冷却部材51を用いた。冷却部材51の材質はSUS310Sとした。冷却部材51は特に温度制御の手段を備えておらず、溶融ガラスと接触する前の温度は約28℃であった。溶融ガラスと冷却部材との接触部の径φDは10mm、接触時間は5秒とした。   The cooling member was brought into contact with the supplied molten glass. As the cooling member, the cooling member 51 shown in FIG. The material of the cooling member 51 was SUS310S. The cooling member 51 was not particularly equipped with a temperature control means, and the temperature before contact with the molten glass was about 28 ° C. The diameter φD of the contact portion between the molten glass and the cooling member was 10 mm, and the contact time was 5 seconds.

冷却部材を上昇させて溶融ガラスとの接触を解除すると、溶融ガラスは表面張力によって接触前と同様の液滴状の形状に戻った。その後、下型31を上型32に対向する位置まで移動し、1800Nの荷重で70秒の間溶融ガラスを加圧した。   When the contact with the molten glass was released by raising the cooling member, the molten glass returned to the same droplet shape as before the contact due to the surface tension. Then, the lower mold | type 31 was moved to the position facing the upper mold | type 32, and the molten glass was pressurized for 70 second with the load of 1800N.

取り出した成形体の光学面11の形状精度を評価した。評価は、テーラーホブソン株式会社製の表面形状測定器PGI840を用いて球面からのずれ量の最大値を求め、球面からのずれ量の最大値が150nm以下であり極めて良好な場合を◎、150nmより大きく300nm以下であり良好な場合を○、300nmより大きく問題となる場合を×とした。   The shape accuracy of the optical surface 11 of the removed molded body was evaluated. For evaluation, the maximum value of the deviation from the spherical surface was obtained using a surface shape measuring instrument PGI840 manufactured by Taylor Hobson Co., Ltd., and the maximum value of the deviation from the spherical surface was 150 nm or less. The case where it was large and 300 nm or less and good was rated as ○, and the case where the problem was larger than 300 nm was marked as x.

評価結果を表1に示す。光学面11の形状精度は95nmと極めて良好であり、本発明の方法によって高精度な光学面を形成することができることが確認された。   The evaluation results are shown in Table 1. The shape accuracy of the optical surface 11 is extremely good at 95 nm, and it was confirmed that a highly accurate optical surface can be formed by the method of the present invention.

Figure 2008094654
Figure 2008094654

(実施例2)
冷却部材として図1(b)に示した冷却部材52を用いた以外は、実施例1と同じ条件で成形体14aを作製した。冷却部材52の溶融ガラスと接触する面は、曲率半径20mmの凸の球面とした。材質、温度は実施例1で用いた冷却部材51と同様である。溶融ガラスと冷却部材との接触部の径φDは15mm、接触時間は3秒とした。
(Example 2)
A molded body 14a was produced under the same conditions as in Example 1 except that the cooling member 52 shown in FIG. 1B was used as the cooling member. The surface of the cooling member 52 that contacts the molten glass was a convex spherical surface with a curvature radius of 20 mm. The material and temperature are the same as those of the cooling member 51 used in the first embodiment. The diameter φD of the contact portion between the molten glass and the cooling member was 15 mm, and the contact time was 3 seconds.

得られた成形体の光学面11の形状精度を評価した。評価は、実施例1と同様の方法で行った。評価結果を表1に併せて示す。形状制度は70nmであり、実施例1と比較して更に高精度な光学面を形成することができた。   The shape accuracy of the optical surface 11 of the obtained molded body was evaluated. Evaluation was performed in the same manner as in Example 1. The evaluation results are also shown in Table 1. The shape system was 70 nm, and an optical surface with higher accuracy than that of Example 1 could be formed.

(比較例1)
冷却工程を設けず、供給された溶融ガラスを直接成型して成形体を作製した。その他の条件は実施例1と同じである。得られた成形体の光学面11の形状精度を評価した。評価は、実施例1と同様の方法で行った。
(Comparative Example 1)
Without providing a cooling step, the supplied molten glass was directly molded to produce a molded body. Other conditions are the same as those in the first embodiment. The shape accuracy of the optical surface 11 of the obtained molded body was evaluated. Evaluation was performed in the same manner as in Example 1.

評価結果を表1に併せて示す。実施例1、2の場合と異なり、光学面の形状精度は300nmよりも大きく、高精度な光学面を形成することはできなかった。   The evaluation results are also shown in Table 1. Unlike the cases of Examples 1 and 2, the shape accuracy of the optical surface was larger than 300 nm, and a highly accurate optical surface could not be formed.

(実施例3〜7)
図6(c)に示す成形体24cを作製し、上型の成形面の転写によって形成された第1の光学面21の形状精度の評価を行った。第1の光学面21は、曲率半径30mmの球面とした。
(Examples 3 to 7)
A molded body 24c shown in FIG. 6C was produced, and the shape accuracy of the first optical surface 21 formed by transferring the molding surface of the upper mold was evaluated. The first optical surface 21 was a spherical surface having a curvature radius of 30 mm.

成形体24cの外径はφ40mm、中心部の肉厚は8mmとした。下型の受け面の中心部は曲率半径30mmの凹面である。下型、上型、外径規制部材の材質は、いずれも炭化珪素とした。加熱温度は、下型が710℃、外径規制部材が730℃、上型が680℃に設定した。   The outer diameter of the molded body 24c was φ40 mm, and the thickness of the central portion was 8 mm. The center part of the receiving surface of the lower mold is a concave surface with a curvature radius of 30 mm. The materials of the lower mold, the upper mold, and the outer diameter regulating member were all silicon carbide. The heating temperature was set to 710 ° C. for the lower mold, 730 ° C. for the outer diameter regulating member, and 680 ° C. for the upper mold.

ガラス材料には、Tgが650℃のランタン系ガラスを用いた。ノズル先端を1200℃に加熱し、ノズル先端から溶融ガラスが液線状態で流出する状態で下型に溶融ガラスを滞留させた後、金属ブレードによって溶融ガラスを切断し、所定量の溶融ガラスを供給した。切断してから約10秒後に外径規制部材を取り外した。   As the glass material, lanthanum glass having a Tg of 650 ° C. was used. After the nozzle tip is heated to 1200 ° C and molten glass flows out from the nozzle tip in a liquid line state, the molten glass is retained in the lower mold, and then the molten glass is cut with a metal blade to supply a predetermined amount of molten glass. did. About 10 seconds after cutting, the outer diameter regulating member was removed.

供給された溶融ガラスに冷却部材を接触させた。冷却部材は、図2(a)に示した冷却部材53を用いた。冷却部材53の材質は炭化タングステンを主成分とする超硬材料とした。冷却部材53は内部に温度調節のためのオイルを流す配管が備えられている。オイルの温度を調節し、冷却部材53の温度を100℃に設定した。溶融ガラスと冷却部材との接触部の径φDが10mm(実施例3)、12mm(実施例4)、24mm(実施例5)、36mm(実施例6)、40mm(実施例7)となる5種類の条件で成形体を作製した。接触時間はいずれも12秒とした。   The cooling member was brought into contact with the supplied molten glass. As the cooling member, the cooling member 53 shown in FIG. The material of the cooling member 53 was a super hard material mainly composed of tungsten carbide. The cooling member 53 is provided with a pipe through which oil for temperature adjustment flows. The temperature of the oil was adjusted, and the temperature of the cooling member 53 was set to 100 ° C. The diameter φD of the contact portion between the molten glass and the cooling member is 10 mm (Example 3), 12 mm (Example 4), 24 mm (Example 5), 36 mm (Example 6), and 40 mm (Example 7). Molded bodies were produced under various conditions. All contact times were 12 seconds.

冷却部材を上昇させて溶融ガラスとの接触を解除すると、溶融ガラスは表面張力によって接触前と同様の液滴状の形状に戻った。その後、下型を上型に対向する位置まで移動し、3200Nの荷重で110秒の間溶融ガラスを加圧した。   When the contact with the molten glass was released by raising the cooling member, the molten glass returned to the same droplet shape as before the contact due to the surface tension. Thereafter, the lower mold was moved to a position facing the upper mold, and the molten glass was pressurized with a load of 3200 N for 110 seconds.

得られた成形体の光学面21の形状精度を評価した。評価は、実施例1と同様の方法で行った。評価結果を表2に示す。光学面21の形状精度はいずれも良好であった。特に、溶融ガラスと冷却部材との接触部の径をφD、溶融ガラスと下型の受け面との接触部の径をφGとしたとき、0.3≦φD/φG≦0.9を満足する実施例4、5、6の場合は極めて良好な結果が得られた。   The shape accuracy of the optical surface 21 of the obtained molded body was evaluated. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 2. The shape accuracy of the optical surface 21 was good. In particular, when the diameter of the contact portion between the molten glass and the cooling member is φD and the diameter of the contact portion between the molten glass and the lower mold receiving surface is φG, 0.3 ≦ φD / φG ≦ 0.9 is satisfied. In Examples 4, 5, and 6, extremely good results were obtained.

Figure 2008094654
Figure 2008094654

(比較例2)
冷却工程を設けず、供給された溶融ガラスを直接成型して成形体を作製した。その他の条件は実施例3〜7と同じである。得られた成形体の光学面21の形状精度を評価した。評価は、実施例1と同様の方法で行った。
(Comparative Example 2)
Without providing a cooling step, the supplied molten glass was directly molded to produce a molded body. Other conditions are the same as in Examples 3-7. The shape accuracy of the optical surface 21 of the obtained molded body was evaluated. Evaluation was performed in the same manner as in Example 1.

評価結果を表2に併せて示す。実施例3〜7の場合と異なり、光学面の形状精度は300nmよりも大きく、高精度な光学面を形成することはできなかった。   The evaluation results are also shown in Table 2. Unlike the cases of Examples 3 to 7, the shape accuracy of the optical surface was larger than 300 nm, and a highly accurate optical surface could not be formed.

溶融ガラスに冷却部材が接触している状態の例を示した模式図Schematic showing an example of the state where the cooling member is in contact with the molten glass 溶融ガラスに冷却部材が接触している状態の別の例を示した模式図Schematic diagram showing another example of the state in which the cooling member is in contact with the molten glass 本実施形態で製造する光学素子の一例を示す断面図Sectional drawing which shows an example of the optical element manufactured by this embodiment レンズ10を製造するための成形体の断面図Sectional drawing of the molded object for manufacturing the lens 10 本実施形態で製造する光学素子の別の例を示す断面図Sectional drawing which shows another example of the optical element manufactured by this embodiment レンズ20を製造するための成形体の断面図Sectional drawing of the molded object for manufacturing the lens 20 本実施形態で用いる成形金型の断面図Sectional view of the molding die used in this embodiment 溶融ガラスを供給する方法の一例を示す模式図Schematic diagram showing an example of a method for supplying molten glass

符号の説明Explanation of symbols

10、20 レンズ(光学素子)
11、21 第1の光学面
12、22 第2の光学面
14a、14b、14c 成形体
24a、24b、24c 成形体
30 成形金型
31 下型
32 上型
33 外径規制部材
37 受け面
38 成形面
39 外径規制面
44 溶融ガラス
51、52、53、54 冷却部材
φD 溶融ガラスと冷却部材との接触部の径
φG 溶融ガラスと下型の受け面との接触部の径
10, 20 Lens (optical element)
DESCRIPTION OF SYMBOLS 11, 21 1st optical surface 12, 22 2nd optical surface 14a, 14b, 14c Molding body 24a, 24b, 24c Molding body 30 Molding die 31 Lower mold 32 Upper mold 33 Outer diameter control member 37 Receiving surface 38 Molding Surface 39 Outer diameter regulating surface 44 Molten glass 51, 52, 53, 54 Cooling member φD Diameter of contact portion between molten glass and cooling member φG Diameter of contact portion between molten glass and lower mold receiving surface

Claims (5)

溶融ガラスを受けるための受け面を有する下型、及び、光学素子の第1の光学面を形成するための成形面を有する上型を備える成形金型を、溶融ガラスの温度よりも低い所定温度に加熱する加熱工程と、
前記下型の受け面に前記溶融ガラスを供給する溶融ガラス供給工程と、
供給された前記溶融ガラスの上面に冷却部材を接触させることにより前記溶融ガラスを冷却する冷却工程と、
前記成形金型で前記溶融ガラスを加圧成形し、前記上型の成形面が転写された第1の光学面を有する成形体を形成する成形工程とを有することを特徴とする光学素子の製造方法。
A molding die comprising a lower mold having a receiving surface for receiving molten glass and an upper mold having a molding surface for forming the first optical surface of the optical element, a predetermined temperature lower than the temperature of the molten glass A heating step of heating to
A molten glass supply step of supplying the molten glass to the receiving surface of the lower mold;
A cooling step of cooling the molten glass by bringing a cooling member into contact with the upper surface of the supplied molten glass;
And a molding step of pressing the molten glass with the molding die to form a molded body having a first optical surface to which the molding surface of the upper mold is transferred. Method.
前記溶融ガラスと前記冷却部材との接触部の直径をφD、前記溶融ガラスと前記下型の受け面との接触部の直径をφGとしたとき、0.3≦φD/φG≦0.9を満足することを特徴とする請求項1に記載の光学素子の製造方法。 When the diameter of the contact portion between the molten glass and the cooling member is φD, and the diameter of the contact portion between the molten glass and the lower mold receiving surface is φG, 0.3 ≦ φD / φG ≦ 0.9 The method for manufacturing an optical element according to claim 1, wherein the method is satisfied. 前記成形工程の後に、追加工によって前記成形体の第1の光学面の裏面側に第2の光学面を形成する追加工工程を有することを特徴とする請求項1又は2に記載の光学素子の製造方法。 3. The optical element according to claim 1, further comprising an additional processing step of forming a second optical surface on a back surface side of the first optical surface of the molded body by additional processing after the molding step. Manufacturing method. 前記成形金型は、前記溶融ガラスの外径を規制するための外径規制面を有する外径規制部材を備え、
前記溶融ガラス供給工程において、前記下型の受け面に供給された前記溶融ガラスが、前記外径規制部材の外径規制面に接触することを特徴とする請求項1乃至3の何れか1項に記載の光学素子の製造方法。
The molding die includes an outer diameter regulating member having an outer diameter regulating surface for regulating the outer diameter of the molten glass,
The molten glass supplied to the receiving surface of the lower mold is in contact with an outer diameter regulating surface of the outer diameter regulating member in the molten glass supply step. The manufacturing method of the optical element of description.
溶融ガラスを受けるための受け面を有する下型、及び、光学素子の第1の光学面を形成するための成形面を有する上型を備える成形金型と、
前記成形金型を溶融ガラスの温度よりも低い所定温度に加熱するための加熱手段と、
前記下型の受け面に前記溶融ガラスを供給するための溶融ガラス供給手段と、
供給された前記溶融ガラスの上面に冷却部材を接触させることにより前記溶融ガラスを冷却するための冷却手段と、
前記成形金型で前記溶融ガラスを加圧成形し、前記上型の成形面が転写された第1の光学面を有する成形体を形成するための加圧手段とを有することを特徴とする光学素子の製造装置。
A molding die comprising a lower mold having a receiving surface for receiving molten glass, and an upper mold having a molding surface for forming the first optical surface of the optical element;
Heating means for heating the molding die to a predetermined temperature lower than the temperature of the molten glass;
Molten glass supply means for supplying the molten glass to the receiving surface of the lower mold,
Cooling means for cooling the molten glass by bringing a cooling member into contact with the upper surface of the supplied molten glass;
Pressurizing means for press-molding the molten glass with the molding die and forming a molded body having a first optical surface onto which the molding surface of the upper mold has been transferred. Device manufacturing equipment.
JP2006277353A 2006-10-11 2006-10-11 Method and apparatus for manufacturing optical element Pending JP2008094654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006277353A JP2008094654A (en) 2006-10-11 2006-10-11 Method and apparatus for manufacturing optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006277353A JP2008094654A (en) 2006-10-11 2006-10-11 Method and apparatus for manufacturing optical element

Publications (1)

Publication Number Publication Date
JP2008094654A true JP2008094654A (en) 2008-04-24

Family

ID=39377888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006277353A Pending JP2008094654A (en) 2006-10-11 2006-10-11 Method and apparatus for manufacturing optical element

Country Status (1)

Country Link
JP (1) JP2008094654A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021084586A1 (en) * 2019-10-28 2021-11-18 株式会社ダイテック How to mold display lenses, display lens mold set

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562815A (en) * 1978-11-06 1980-05-12 Ohara Inc Press molding method for thick optical glass molding
JPH07133121A (en) * 1993-11-08 1995-05-23 Ohara Inc Method for press-forming discoid glass product
JP2000233934A (en) * 1998-12-09 2000-08-29 Hoya Corp Method for press-forming glass product and device therefor
JP2002068757A (en) * 2000-09-01 2002-03-08 Hoya Corp Method of producing glass molded product, apparatus of producing the same, and method of producing glass product
JP2004339039A (en) * 2003-05-19 2004-12-02 Minolta Co Ltd Optical element manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562815A (en) * 1978-11-06 1980-05-12 Ohara Inc Press molding method for thick optical glass molding
JPH07133121A (en) * 1993-11-08 1995-05-23 Ohara Inc Method for press-forming discoid glass product
JP2000233934A (en) * 1998-12-09 2000-08-29 Hoya Corp Method for press-forming glass product and device therefor
JP2002068757A (en) * 2000-09-01 2002-03-08 Hoya Corp Method of producing glass molded product, apparatus of producing the same, and method of producing glass product
JP2004339039A (en) * 2003-05-19 2004-12-02 Minolta Co Ltd Optical element manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021084586A1 (en) * 2019-10-28 2021-11-18 株式会社ダイテック How to mold display lenses, display lens mold set

Similar Documents

Publication Publication Date Title
JP4684014B2 (en) Precision press molding preform manufacturing method and optical element manufacturing method
JP4368368B2 (en) Manufacturing method of glass lump, manufacturing apparatus thereof, and manufacturing method of optical element
JP4992035B2 (en) Optical element manufacturing method
JP4951166B2 (en) Lens blank and lens manufacturing method
JP2008074636A (en) Method and device for producing optical element
JP4784454B2 (en) Optical element manufacturing method and manufacturing apparatus
JP4792139B2 (en) Glass lens, glass lens manufacturing method, and mold press mold
JP2008094654A (en) Method and apparatus for manufacturing optical element
WO2010122844A1 (en) Apparatus for manufacturing glass molding
JP2010254519A (en) Apparatus for manufacturing glass molding and method for manufacturing the glass molding
JP5381706B2 (en) Optical element manufacturing method
JP2011016699A (en) Method for manufacturing optical device and optical device
JP4289716B2 (en) Glass element molding method
JP5476993B2 (en) Optical element manufacturing method and manufacturing apparatus
JP2008230874A (en) Method for producing optical element
JP5197696B2 (en) Precision press molding preform manufacturing method and optical element manufacturing method
JP2010184830A (en) Method and apparatus for producing glass molded body
JP2001278631A (en) Glass forming die manufacturing method of glass formed body and glass optical element
JP5652398B2 (en) Method for producing glass gob and method for producing glass molded body
JP4919942B2 (en) Manufacturing method of glass molded body, precision press molding preform and optical element
JP2011251887A (en) Apparatus and method for producing optical element
JPS63315524A (en) Method for feeding glass gob
JPH10158019A (en) Formation of optical element, optical element, production of optical element forming material, formation of precision element and precision element
JP2008239423A (en) Method for manufacturing optical element
JP2008230863A (en) Method for manufacturing optical element, and forming mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110927