JPH0729782B2 - Optical element molding method - Google Patents

Optical element molding method

Info

Publication number
JPH0729782B2
JPH0729782B2 JP14304787A JP14304787A JPH0729782B2 JP H0729782 B2 JPH0729782 B2 JP H0729782B2 JP 14304787 A JP14304787 A JP 14304787A JP 14304787 A JP14304787 A JP 14304787A JP H0729782 B2 JPH0729782 B2 JP H0729782B2
Authority
JP
Japan
Prior art keywords
molding
temperature
mold member
molded product
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14304787A
Other languages
Japanese (ja)
Other versions
JPS63307130A (en
Inventor
勇 執行
瑞和 余語
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14304787A priority Critical patent/JPH0729782B2/en
Publication of JPS63307130A publication Critical patent/JPS63307130A/en
Publication of JPH0729782B2 publication Critical patent/JPH0729782B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はレンズ、プリズム、ミラー及びフィルタ等の光
学素子を成形する方法に関し、特に研削及び研摩等の工
程を経ることなしに溶融ガラス材料からプレスにより表
面精度の良好な光学機能面を有する光学素子を成形する
方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for molding optical elements such as lenses, prisms, mirrors and filters, and in particular from a molten glass material without going through steps such as grinding and polishing. The present invention relates to a method of molding an optical element having an optical functional surface with good surface accuracy by pressing.

[従来の技術] 一般に、レンズ、プリズム、ミラー及びフィルタ等の光
学素子は、ガラス素材を研削して外形を所望の形状とし
た後に、機能面即ち光が透過及び/または反射する面を
研摩して光学面とすることにより製造されている。
[Prior Art] Generally, in optical elements such as lenses, prisms, mirrors, and filters, after a glass material is ground to have a desired external shape, a functional surface, that is, a surface through which light is transmitted and / or reflected is polished. It is manufactured by making it an optical surface.

しかして、以上の様な光学素子の製造においては、研削
及び研摩により所望の表面精度(即ち表面形状及び表面
粗さ等の精度)を得るためには、熟練した作業者が相当
の時間加工を行なうことが必要であった。また、機能面
が非球面である光学素子を製造する場合には、一層高度
な研削及び研摩の技術が要求され且つ加工時間も長くな
らざるを得なかった。
In the production of the optical element as described above, in order to obtain a desired surface precision (that is, precision such as surface shape and surface roughness) by grinding and polishing, a skilled worker needs a considerable amount of time to process the surface. It was necessary to do. Further, in the case of manufacturing an optical element having an aspherical functional surface, more sophisticated grinding and polishing techniques are required and the processing time must be extended.

そこで、最近では、上記の様な伝統的な光学素子製造方
法に代って、所定の表面精度を有する成形用金型装置内
に光学素子材料を収容して加熱及び加圧することにより
プレス成形にて直ちに機能面を含む全体的形状を形成す
ることが行なわれる様になってきている。これによれ
ば、機能面が非球面である場合でさえも比較的簡単且つ
短時間で光学素子を製造することができる。
Therefore, recently, in place of the traditional optical element manufacturing method as described above, press molding is performed by accommodating the optical element material in a molding die device having a predetermined surface accuracy and heating and pressing. Immediately thereafter, it is becoming possible to form an overall shape including a functional surface. According to this, an optical element can be manufactured relatively easily and in a short time even when the functional surface is an aspherical surface.

プレス成形により光学機能面を形成して光学素子を製造
する方法には、一旦光学ガラス素材を目的形状の近似形
状として予備成形品(プレフォーム)を得た上で該プレ
フォームを成形用型装置内に収容してプレスにより最終
的目的形状とする方式と、溶融光学ガラスを直ちに成形
用型装置内に収容してプレスし成形を行なう方式とがあ
る。
In the method of manufacturing an optical element by forming an optical functional surface by press molding, a preform product (preform) is once obtained by making an optical glass material into an approximate shape to a target shape, and then the preform is molded by a molding apparatus. There are a method in which the molten optical glass is housed inside and pressed into a final target shape, and a method in which the molten optical glass is immediately housed in a molding die apparatus and pressed to perform molding.

プレフォームを用いる方式では、特公昭61-32263号公報
に記載されている様に、適宜の方法たとえば研削及び研
摩によりプレフォームを得、該プレフォーム及び最終成
形用型装置の型部材を別々にあるいは該プレフォームを
型装置内に収容した状態で所定の温度まで加熱し、かく
して軟化したプレフォームを型装置により適宜の圧力で
プレスし、そして冷却させることが必要である。
In the method using a preform, as described in JP-B-61-32263, a preform is obtained by an appropriate method such as grinding and polishing, and the preform and the mold member of the final molding die device are separately provided. Alternatively, it is necessary to heat the preform in a mold apparatus to a predetermined temperature, press the softened preform with a mold apparatus at an appropriate pressure, and then cool the preform.

しかし、この方法ではプレフォームを得る際に従来の伝
統的方法と同様な工程を必要とするので、製造コストの
面では未だ十分とはいえない。
However, this method requires the same steps as those in the conventional method for obtaining the preform, and therefore, it is not sufficient in terms of manufacturing cost.

これに対し、溶融ガラスを直接型装置内に収容してプレ
ス成形する方式は、工程所用時間が短縮され、特に連続
的成形に好適である。
On the other hand, the method in which the molten glass is directly housed in the mold device and press-molded reduces the time required for the process and is particularly suitable for continuous molding.

ところで、プレス成形により高精度の光学機能面を形成
するためには、型部材の表面精度を高めることに加え
て、プレス時の型部材及びガラス材料の温度管理を厳密
に行なうことが必要である。特に、上記溶融ガラスを直
接型内に収容してプレス成形する方式では温度の変化が
大きいので十分な温度管理が必要である。
By the way, in order to form a highly accurate optical function surface by press molding, in addition to improving the surface accuracy of the mold member, it is necessary to strictly control the temperature of the mold member and the glass material during pressing. . In particular, in the method in which the molten glass is directly contained in the mold and press-molded, the temperature changes greatly, so that sufficient temperature control is necessary.

この様な温度管理を容易にするために、プレス成形を2
以上の工程に分けて連続的に行なうことが提案されてい
る。たとえば、特開昭60-118639号公報には、大略の外
形を得る第1次の成形(ガラス粘度10〜103ポアズ、プ
レス圧2〜10kg/cm2)を行ない、該第1次成形で得られ
た成形品の粘度が108.5〜1011ポアズである間にガラス
転移点温度以上の温度の型部材を用いて第2次の成形を
行ない、かくして目的とする形状及び精度の光学素子を
得る方法が開示されている。
In order to facilitate such temperature control, press molding is
It has been proposed that the above steps be divided and performed continuously. For example, in Japanese Patent Laid-Open No. 60-118639, the first molding (glass viscosity 10 to 10 3 poise, press pressure 2 to 10 kg / cm 2 ) is performed to obtain a roughly external shape, and the first molding is performed. While the viscosity of the obtained molded product is 10 8.5 to 10 11 poise, the second molding is performed by using the mold member having the temperature of the glass transition temperature or higher, and thus the optical element having the desired shape and accuracy is obtained. A method of obtaining is disclosed.

しかしながら、この様な従来のプレス成形方法では、外
径寸法公差が0.05mm以内、光学面の表面粗さがRmax0.02
μm以下、光学面の面精度がニュートンリング2本以
内、該光学面の非対称性(アス)及び部分的面変化(ク
セ)がいずれもニュートンリング0.5本以内の、写真レ
ンズの様な高精度な光学素子を安定して得ることは困難
である。
However, in such a conventional press molding method, the outer diameter dimension tolerance is within 0.05 mm, and the surface roughness of the optical surface is Rmax0.02.
μm or less, the surface accuracy of the optical surface is within 2 Newton rings, and the asymmetry (as) and partial surface change (habit) of the optical surface are within 0.5 Newton rings. It is difficult to stably obtain an optical element.

更に、プレス成形により高精度の光学素子を良好に得る
ためには以下の諸点が満足されるのが好ましい。
Furthermore, it is preferable that the following points be satisfied in order to favorably obtain a highly accurate optical element by press molding.

即ち、高温にさらされる型の寿命を延ばし、型のコスト
をできるだけ低減すること、成形された光学素子にヒケ
による変形やバリ、ワレ等が生じないこと、成形光学素
子の表面汚染を生じさせないために離型剤等を使用しな
いで型部材との融着を防止すること、ガラス材料成分の
揮発等による表面変化層の厚さが光学的用途に支障を来
さない程度であること、成形光学素子を型から取出した
後も表面精度が低下せず更に屈折率調整のためのファイ
ンアニールを行なっても面精度を維持できること、ガラ
ス材料の種類によらず十分な精度で成形が行なわれるこ
と、温度サイクルに無駄が少なく低消費エネルギー量に
て連続成形が可能であること、が好ましい。
That is, in order to extend the life of the mold exposed to high temperature, to reduce the cost of the mold as much as possible, to prevent deformation of the molded optical element due to sink marks, burrs, cracks, etc., and to prevent surface contamination of the molded optical element. To prevent fusion with the mold member without using a mold release agent, etc., the thickness of the surface change layer due to volatilization of glass material components, etc. to such an extent that optical applications are not hindered. The surface accuracy does not decrease even after taking out the element from the mold, the surface accuracy can be maintained even if fine annealing for adjusting the refractive index is performed, and the molding is performed with sufficient accuracy regardless of the type of glass material, It is preferable that the temperature cycle is less wasteful and continuous molding is possible with low energy consumption.

本発明は上記の実情に鑑みてなされたものであり、溶融
ガラス材料からプレス成形により良好な効率にて安定し
て高精度の光学素子を得ることを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to obtain a stable and highly accurate optical element from a molten glass material by press molding with good efficiency.

[問題点を解決するための手段] 本発明によれば、以上の如き目的は、 ガラス材料を第1次成形用型装置を用いて第1次成形し
て第1次成形品を得、更に該第1次成形品を第2次成形
用型装置を用いて第2次成形して第2次成形品を得る光
学素子の成形方法であって、 第1次成形において第1次成形用型装置の型部材の温度
をガラス材料のガラス転移点温度と該温度より110℃低
い温度との間の温度に維持した状態で該型装置内に溶融
ガラス材料を収容して成形し第1次成形品を得、 第2次成形において第2次成形用型装置の型部材の温度
を上記ガラス転移点温度と該温度より50℃低い温度との
間の温度に維持した状態で該型装置内に上記第1次成形
品を収容して成形し第2次成形品を得る、 ことを特徴とする、光学素子の成形方法、 により達成される。
[Means for Solving the Problems] According to the present invention, the above-mentioned object is to perform a primary molding of a glass material by using a primary molding die device to obtain a primary molded product, and A method of molding an optical element, wherein a secondary molding product is obtained by subjecting the primary molding product to secondary molding using a secondary molding die device. Primary molding by accommodating and molding a molten glass material in the mold device while maintaining the temperature of the mold member of the device at a temperature between the glass transition temperature of the glass material and a temperature 110 ° C. lower than the temperature. In a second molding process, the temperature of the mold member of the second molding device is maintained at a temperature between the glass transition temperature and a temperature 50 ° C. lower than the glass transition temperature in the second molding device. A method for molding an optical element, characterized in that the primary molded article is housed and molded to obtain a secondary molded article. It is achieved.

[実施例] 以下、図面を参照しながら本発明の具体的実施例を説明
する。
[Examples] Specific examples of the present invention will be described below with reference to the drawings.

第1図は本発明による光学素子成形方法を実施するため
の成形用型装置の一実施例の要部の構成図である。本装
置は第2図に示される様な光学素子(第1面の曲率半径
52mm、第2面の曲率半径40mmの両凸レンズ)2の第1次
成形のために用いられるものである。
FIG. 1 is a configuration diagram of a main part of an embodiment of a molding die apparatus for carrying out an optical element molding method according to the present invention. This device has an optical element as shown in Fig. 2 (the radius of curvature of the first surface).
It is used for the primary molding of a biconvex lens 2 having a diameter of 52 mm and a radius of curvature of 40 mm on the second surface.

第1図において、12は上型部材であり、その下面には上
記光学素子2の第1面に対応した形状の成形作用面12a
が形成されている。14は下型部材であり、その上面には
上記光学素子2の第2面に対応した形状の成形作用面14
aが形成されている。これら型部材はたとえばSUS310S等
からなる。上記上下の型部材中にはそれぞれそれらの型
部材の温度を測定するための熱電対16,18の測定点が埋
め込まれており、また各型部材の周囲にはそれぞれ該型
部材の加熱のためのヒータ20,22が付設されている。該
ヒータ20はコントローラ24により発熱量を制御され、ま
たヒータ22はコントローラ26により発熱量を制御され
る。上記コントローラ24には上記熱電対16から検出温度
信号が入力され、同様に上記コントローラ26には上記熱
電対18から検出温度信号が入力される。また、28は上記
各型部材加熱のためのヒータ20,22に対し上記コントロ
ーラ24,26を介して電力を供給するための電源である。
In FIG. 1, reference numeral 12 is an upper mold member, and the lower surface of the upper mold member 12 has a molding working surface 12a having a shape corresponding to the first surface of the optical element 2.
Are formed. Reference numeral 14 denotes a lower mold member, the upper surface of which has a molding surface 14 having a shape corresponding to the second surface of the optical element 2.
a is formed. These mold members are made of, for example, SUS310S. Measuring points of thermocouples 16 and 18 for measuring the temperature of the mold members are embedded in the upper and lower mold members, respectively, and around each mold member for heating the mold members. Heaters 20 and 22 are attached. The heater 20 is controlled in heat generation amount by a controller 24, and the heater 22 is controlled in heat generation amount by a controller 26. The detected temperature signal is input from the thermocouple 16 to the controller 24, and similarly, the detected temperature signal is input from the thermocouple 18 to the controller 26. Reference numeral 28 is a power source for supplying electric power to the heaters 20 and 22 for heating the die members via the controllers 24 and 26.

上記上型部材12は支持部材30により支持されており、該
支持部材に接続されている不図示の駆動源により上下方
向に移動せしめられる。同様に、上記下型部材14は支持
部材32により支持されており、該支持部材に接続されて
いる不図示の駆動源により上下方向に移動せしめられ
る。以上の様な上型部材12及び/または下型部材14の上
下方向移動により型の開閉が行なわれる。
The upper mold member 12 is supported by a supporting member 30 and is moved in the vertical direction by a drive source (not shown) connected to the supporting member. Similarly, the lower mold member 14 is supported by a support member 32, and is vertically moved by a drive source (not shown) connected to the support member. The mold is opened and closed by the vertical movement of the upper mold member 12 and / or the lower mold member 14 as described above.

以上の型装置においては、上型部材12と下型部材14とを
閉じた時に、両型部材の成形作用面12a,14a間に形成さ
れるキャビティの形状が第2図で示される最終的レンズ
形状の中心厚2.9mmに対し約5%厚い3.05mmの中心厚と
なる様な形状とされている。
In the above mold apparatus, when the upper mold member 12 and the lower mold member 14 are closed, the shape of the cavity formed between the molding action surfaces 12a and 14a of both mold members is the final lens shown in FIG. The center thickness of the shape is 3.05 mm, which is about 5% thicker than the center thickness of 2.9 mm.

型部材12,14の成形作用面12a,14aの表面粗さはRmax10μ
m以下たとえば6.3μmとされている。この様な型部材
は通常の機械加工で容易に製作することができる。
The surface roughness of the molding working surfaces 12a, 14a of the mold members 12, 14 is Rmax 10μ.
m or less, for example, 6.3 μm. Such a mold member can be easily manufactured by ordinary machining.

第3図及び第4図は上記第1図の成形用型装置を用いて
行なわれる第1次成形までの工程を説明するための図で
ある。
3 and 4 are views for explaining the steps up to the primary molding performed using the molding die apparatus of FIG.

第3図において、33はガラス溶融槽(ルツボ)であり、
該ツルボの周囲にはヒータ34が付設されている。ルツボ
32の下部には流出部36が接続されており、該流出部の周
囲にはヒータ38が付設されている。そして、上記流出部
36の下方には連続的に流出する溶融ガラスを適宜の長さ
に切断するためのカッター40が配置されている。
In FIG. 3, 33 is a glass melting tank (crucible),
A heater 34 is attached around the crucible. Crucible
An outflow portion 36 is connected to the lower portion of 32, and a heater 38 is attached around the outflow portion. And the outflow part
Below the 36, a cutter 40 for cutting the continuously flowing molten glass into an appropriate length is arranged.

ルツボ33内に所望の光学ガラスの原料を入れ、ヒータ34
を作用させて適宜の温度に加熱する。これにより、ルツ
ボ33内に溶融光学ガラスGが形成される。該ガラスGの
粘度はたとえば104ポアズ以下とされる。尚、この際に
必要に応じて適宜攪拌し且つ脱泡処理を行なうことによ
り、より均質性の高い光学ガラスが得られる。
Put the raw material of the desired optical glass in the crucible 33 and
To heat to an appropriate temperature. As a result, the fused optical glass G is formed in the crucible 33. The viscosity of the glass G is, for example, 10 4 poise or less. At this time, an optical glass having higher homogeneity can be obtained by appropriately stirring and performing defoaming treatment if necessary.

溶融ガラスは重力の作用により流出部36内を次第に流下
し、該流出部下端の流出口から押し出される。この際
に、該流出口の下方に上記第1図の装置の下型部材14を
配置しておく。
The molten glass gradually flows down in the outflow portion 36 due to the action of gravity, and is extruded from the outflow port at the lower end of the outflow portion. At this time, the lower mold member 14 of the apparatus shown in FIG. 1 is arranged below the outlet.

該下型部材14は予めヒータ22により上記光学ガラスが粘
度1013ポアズを示す温度(ガラス転移点温度)と該温度
より110℃低い温度との間の温度に調整しておく。
The lower mold member 14 is previously adjusted by a heater 22 to a temperature between a temperature at which the optical glass exhibits a viscosity of 10 13 poise (glass transition temperature) and a temperature 110 ° C. lower than the temperature.

上記溶融軟化したガラスが流出部36の流出口から押し出
され、その先端部が上記カッター40よりも下方の適宜の
高さに到達した時点で、該カッターを作用させ溶融ガラ
スの切断を行なう。かくして切断されたガラスブロック
4は上記下型部材14の成形作用面14a上に落下する。
The melted and softened glass is extruded from the outlet of the outflow section 36, and when the tip reaches an appropriate height below the cutter 40, the cutter is operated to cut the molten glass. The glass block 4 thus cut falls on the molding surface 14a of the lower mold member 14.

次に、第4図に示される様に、下型部材14に対し上記上
型部材12を押圧して型を閉じ第1次成形を行ない、第1
次成形品6を得る。尚、この成形に先立ち予め上型部材
12も下型部材14と同様に予めヒータ20により上記光学ガ
ラスのガラス転移点温度と該温度より110℃低い温度と
の間の温度に調整しておく。
Next, as shown in FIG. 4, the upper mold member 12 is pressed against the lower mold member 14 to close the mold, and the primary molding is performed.
The next molded product 6 is obtained. In addition, prior to this molding, the upper die member
Similarly to the lower mold member 14, the heater 12 is adjusted to a temperature between the glass transition temperature of the optical glass and 110 ° C. lower than the glass transition temperature by the heater 20 in advance.

以上の様な第1次成形では、型部材12,14がガラス転移
点温度と該温度より110℃低い温度との間の温度に調整
されているので、該型部材間に供給される高温の溶融ガ
ラスブロック4は表面部分のみ温度が急激に低下し固化
する。このため、該型部材の成形作用面12a,14aの表面
粗さは第1次成形品6に忠実に転写されることはなく該
成形品の表面粗さは比較的小さくなり、更に型合せ部に
おけるバリ発生もなくなる。そして、型部材の成形作用
面12a,14aの表面粗さをRmax10μm以下としておくこと
により第2次成形で十分に良好な表面粗さの第2次成形
品を得ることができる。従って、上記第1次成形用型装
置の型部材の成形作用面を鏡面仕上げする必要がなく、
該型部材製作のコストダウンが可能である。
In the above-described primary molding, since the mold members 12 and 14 are adjusted to a temperature between the glass transition temperature and a temperature 110 ° C. lower than the temperature, the temperature of the high temperature supplied between the mold members is high. The temperature of the molten glass block 4 is rapidly lowered only at the surface portion and solidified. For this reason, the surface roughness of the molding action surfaces 12a, 14a of the mold member is not faithfully transferred to the primary molded product 6, and the surface roughness of the molded product becomes relatively small. No burr is generated. Then, by setting the surface roughness of the molding action surfaces 12a, 14a of the mold member to Rmax of 10 μm or less, it is possible to obtain a secondary molded product having a sufficiently good surface roughness in the secondary molding. Therefore, it is not necessary to mirror-finish the molding operation surface of the mold member of the primary molding mold device,
The cost of manufacturing the mold member can be reduced.

また、上記第1次成形ではガラス材料は表面部分のみ温
度が急激に低下し固化するので、ガラス表面からのガラ
ス成分の揮発等により第1次成形品6の表面に形成され
る表面変質層の厚さを、通常の用途には全く問題ない程
度に十分に薄くすることが可能である。
Further, in the above-mentioned primary molding, since the temperature of the glass material is rapidly lowered and solidified only in the surface portion, the surface-altered layer formed on the surface of the primary molded article 6 due to volatilization of the glass component from the glass surface or the like. It is possible to make the thickness sufficiently thin that there is no problem for normal use.

更に、上記第1次成形ではガラス材料は表面部分のみ温
度が急激に低下し固化するが内部はそれ程温度低下がな
いため大きな変形が可能である。
Further, in the above-mentioned primary molding, the temperature of the glass material is rapidly lowered only at the surface portion and solidifies, but since the temperature does not drop so much inside, a large deformation is possible.

そして、上記第1次成形では型部材とガラスブロック4
との間にある程度の温度差があるので第1次成形品の表
面には部分的にヒケが発生するが、上記の様な第1次成
形条件を用いることにより、ヒケは第2次成形において
2%以上の上下方向押し代にて十分に解消することがで
きる。
Then, in the above-mentioned primary molding, the mold member and the glass block 4 are
Since there is a certain temperature difference between and, a sink mark is partially generated on the surface of the primary molded product. However, by using the above-mentioned primary molding conditions, the sink mark will not be generated in the secondary molding. It can be sufficiently solved with a vertical pressing margin of 2% or more.

尚、上記第1次成形の開始時点の型部材温度をガラス転
移点温度を越える温度とすると、上記ヒケが少なくなる
という利点が生ずるけれども、型部材とガラスとの融着
が生じやすくなり、また第1次成形品の型部材合せ部に
おけるバリ発生が顕著となる。更に、型部材成形作用面
の転写の忠実度が高まるので、該成形作用面の表面粗さ
を十分に高く(たとえば鏡面仕上げ)する必要が生ず
る。
When the mold member temperature at the start of the primary molding is set to a temperature higher than the glass transition temperature, there is an advantage that the number of sink marks is reduced, but fusion between the mold member and glass is likely to occur. Burrs are remarkable at the mold member mating portion of the primary molded product. Furthermore, since the fidelity of the transfer of the molding member working surface is enhanced, it becomes necessary to make the surface roughness of the molding working surface sufficiently high (for example, mirror finish).

一方、上記第1次成形開始時の型温度をガラス転移点温
度より110℃低い温度未満とすると、第1次成形品にワ
レやピリを生じやすくなり、さらにヒケも第2次成形で
解消できない程度に増大するおそれがある。
On the other hand, when the mold temperature at the start of the primary molding is less than 110 ° C. lower than the glass transition temperature, cracks and pits are likely to occur on the primary molded product, and sink marks cannot be eliminated by the secondary molding. It may increase to some extent.

第5図及び第6図は第1次成形後第2次成形までの工程
を説明するための図である。第2次成形は上記第1図に
示されると同様の型装置を用いて行なわれる。但し、上
型部材13及び下型部材15として上記第1図の装置の型部
材12,14と異なるものが用いられる。型部材13,15はたと
えば炭化タングステンに代表される超硬合金等からな
る。また、上型部材13と下型部材15とを閉じた時に、両
型部材の成形作用面13a,15a間に形成されるキャビティ
の形状が第2図で示される最終的レンズ形状となる様な
形状とされている。
5 and 6 are views for explaining the steps from the primary molding to the secondary molding. Secondary molding is performed using the same mold device as that shown in FIG. However, as the upper mold member 13 and the lower mold member 15, those different from the mold members 12 and 14 of the apparatus shown in FIG. 1 are used. The mold members 13 and 15 are made of, for example, cemented carbide represented by tungsten carbide. Further, when the upper mold member 13 and the lower mold member 15 are closed, the shape of the cavity formed between the molding action surfaces 13a and 15a of both mold members becomes the final lens shape shown in FIG. It is shaped.

型部材13,15の成形作用面の表面粗さは目的とする光学
素子の光学的機能面の表面粗さと同程度またはそれ以下
とされ(鏡面仕上げ)、たとえばRmax0.01μm以下とさ
れている。
The surface roughness of the molding action surface of the mold members 13 and 15 is set to be equal to or less than the surface roughness of the optically functional surface of the target optical element (mirror finish), for example, Rmax 0.01 μm or less.

上記第1次成形で得られた第1次成形品6は、その表面
近傍の粘度が108〜1014.5ポアズとなった時点で、第5
図に示される様に、第2次成形用型装置の下型部材15の
成形作用面15a上に所定の姿勢で載置されるのが好まし
い。尚、この時点で第1次成形品6の中心部分の粘度は
105〜1012ポアズであるのが好ましい。
The primary molded product 6 obtained by the above-mentioned primary molding has a viscosity of 10 8 to 10 14.5 poise near its surface,
As shown in the drawing, it is preferable to place the secondary molding device on the molding surface 15a of the lower mold member 15 in a predetermined posture. At this point, the viscosity of the central part of the primary molded product 6 is
It is preferably 10 5 to 10 12 poise.

この型装置からの取出し時の第1次成形品6の表面近傍
の粘度が108ポアズ未満であると、型からの取出し時及
び第2次成形用型装置への搬入時に生ずる変形が大きく
なりがちであり、第2次成形において良好な成形を行な
えなくなる場合がある。また、型装置からの取出し時の
第1次成形品6の表面近傍の粘度が1014.5ポアズを越え
ると、型からの取出し時及び第2次成形時にワレを生じ
やすくなり、更に第2次成形に要する時間も長くなりが
ちである。この様な不利は上記条件にて型装置からの取
出しを行なうことにより解消される。
If the viscosity of the vicinity of the surface of the primary molded product 6 at the time of taking out from the mold device is less than 10 8 poise, the deformation caused at the time of taking out from the mold and at the time of carrying in to the secondary molding die device becomes large. However, the secondary molding may not be performed well in some cases. Further, when the viscosity of the surface of the primary molded product 6 near the surface when it is taken out from the mold device exceeds 10 14.5 poise, cracks are likely to occur at the time of being taken out from the mold and at the time of secondary molding. It takes a long time to get there. Such disadvantages can be eliminated by taking out from the mold device under the above conditions.

第2次成形に先立ち、第2次成形用型装置の上型部材13
及び下型部材15はそれぞれ予めヒータ21,23により上記
ガラス転移点温度と該温度より50℃低い温度との間の温
度に調整しておく。
Prior to the secondary molding, the upper mold member 13 of the secondary molding mold device 13
The lower mold member 15 is adjusted in advance by the heaters 21 and 23 to a temperature between the glass transition temperature and a temperature 50 ° C. lower than the glass transition temperature.

次に、第6図に示される様に、下型部材15に対し上記上
型部材13を押圧して型を閉じ第2次成形を行なう。この
第2次成形は、その終了時点において上型部材13及び下
型部材15が第2次成形品8の粘度が108.5〜1011ポアズ
を示す温度となり且つ該上型部材13と下型部材15とが20
℃以内の温度差に収束する様に、上記ヒータ21,23の発
熱量を適宜調節しながら、適度の圧力で適宜の時間行な
うのが好ましい。これにより、第2次成形終了時点で成
形品8内の温度差を上記型部材の温度差範囲内に維持し
て第2次成形品8が得られる。尚、面精度を向上させる
ためには、この成形の際に、型部材の温度を徐々に上昇
させ且つガラス温度を徐々に低下させ、更にプレス圧力
を徐々に上昇させるのが好ましい。
Next, as shown in FIG. 6, the upper mold member 13 is pressed against the lower mold member 15 to close the mold and perform the second molding. At the end of this secondary molding, the upper mold member 13 and the lower mold member 15 reach a temperature at which the viscosity of the secondary molded product 8 shows 10 8.5 to 10 11 poise, and the upper mold member 13 and the lower mold member 15 and 20
It is preferable that the heating amount of the heaters 21 and 23 is appropriately adjusted so that the temperature difference converges to within a temperature of 0 ° C., and the heating is performed at an appropriate pressure for an appropriate time. As a result, the secondary molded product 8 is obtained by maintaining the temperature difference in the molded product 8 within the temperature difference range of the mold member at the time of completion of the secondary molding. In order to improve the surface accuracy, it is preferable to gradually increase the temperature of the mold member, gradually decrease the glass temperature, and further gradually increase the press pressure during this molding.

以上の様な第2次成形において、成形終了時点の成形品
8の粘度が108.5ポアズ未満であると冷却時におけるヒ
ケ発生が顕著となりがちであり、また成形終了時点の成
形品8の粘度が1011ポアズを越えると成形時間が長くな
り且つ成形後に成形品8に部分的な弾性回復が発生しが
ちであり良好な面精度が得られなくなることがある。こ
の様な不利は上記108.5〜1011ポアズの範囲とすること
により解消される。
In the secondary molding as described above, when the viscosity of the molded product 8 at the time of completion of molding is less than 10 8.5 poise, sink marks tend to be remarkable during cooling, and the viscosity of the molded product 8 at the time of completion of molding is When it exceeds 10 11 poise, the molding time becomes long, and the molded product 8 tends to partially recover elastic properties after molding, so that good surface accuracy may not be obtained. Such a disadvantage can be eliminated by setting the range of 10 8.5 to 10 11 poise.

また、成形終了時点の上型部材13と下型部材15との温度
差が20℃を越えると、成形品8の両面の温度差が大きく
なり冷却時に成形品8に発生するソリ応力が大きくなり
すぎ良好な面精度が得られなくなることがある。この様
な不利は温度差を20℃以下とすることにより解消され
る。
Further, when the temperature difference between the upper mold member 13 and the lower mold member 15 at the end of molding exceeds 20 ° C., the temperature difference between both surfaces of the molded product 8 becomes large, and the warp stress generated in the molded product 8 at the time of cooling becomes large. Too good surface accuracy may not be obtained. Such disadvantages are eliminated by keeping the temperature difference below 20 ° C.

更に、第2次成形の開始時における上型部材及び下型部
材の温度がガラス転移点温度を越える温度であると、上
記第1次成形で生じたヒケが十分には解消されず良好な
面精度を得にくいという不利がある。一方、上記第2次
成形開始時の型温度がガラス転移点温度より50℃低い温
度未満であると、第2次成形品にワレやピリを生じやす
くなり、さらに成形に要する時間も長くなるという不利
がある。この様な不利は上記温度範囲とすることにより
解消される。
Further, when the temperature of the upper mold member and the lower mold member at the start of the secondary molding exceeds the glass transition temperature, the sink marks generated in the primary molding cannot be sufficiently eliminated and a good surface is obtained. There is a disadvantage that it is difficult to obtain accuracy. On the other hand, if the mold temperature at the start of the secondary molding is less than 50 ° C. lower than the glass transition temperature, the secondary molded product is likely to be cracked or splintered, and the time required for molding becomes longer. There is a disadvantage. Such a disadvantage can be eliminated by setting the temperature within the above range.

更に、後述する冷却工程終了後に成形品が第2の型装置
から取出される際の該型装置の型部材温度は成形品の粘
度が1014.5ポアズを示す温度であることから、この型装
置に引き続き次サイクルの第1次成形品を収容する際に
該型部材を大きく加熱する必要がない。
Furthermore, since the mold member temperature of the mold device when the molded product is taken out from the second mold device after the cooling step described below is the temperature at which the viscosity of the molded product shows 10 14.5 poise, Subsequently, it is not necessary to heat the mold member largely when accommodating the primary molded product of the next cycle.

更に、第2次成形開始時点において型部材よりも第1次
成形品の温度が高いので、型部材が成形品から加熱を受
け、従ってヒータによる型部材加熱をそれ程強くしなく
てもよく、型温度の制御が容易で熱サイクル的に無理が
生ずることがなく、サイクルタイムを一層短縮すること
が可能である。
Further, since the temperature of the primary molded product is higher than that of the mold member at the time of starting the secondary molding, the mold member is heated by the molded product, and therefore, the heating of the mold member by the heater need not be so strong. It is possible to further reduce the cycle time because the temperature can be easily controlled and the heat cycle does not become unreasonable.

更に、第2次成形において型部材温度が最も高くなるの
は成形終了時であり、この時点では型部材はガラス成形
品により十分に覆われているため酸化の程度も少なく、
型部材の耐久性の向上が可能となる。
Further, the temperature of the mold member becomes the highest in the secondary molding at the end of molding, and at this time, the mold member is sufficiently covered with the glass molded product, so that the degree of oxidation is small.
It is possible to improve the durability of the mold member.

該第2次成形の後に、型装置内に第2次成形品8を位置
させたままで冷却を行なう。冷却は以下の様な2段階で
行なうのが好ましい。
After the secondary molding, cooling is performed while the secondary molded product 8 is kept in the mold device. Cooling is preferably performed in the following two stages.

第1次冷却はガラス転移点温度までの段階であり、第2
次冷却は第2次成形品8が粘度1014.5ポアズを示す温度
(以下、「除歪下限点温度」という)までの段階であ
る。
The first cooling is a stage up to the glass transition temperature, and the second
The secondary cooling is a stage up to the temperature at which the secondary molded product 8 exhibits a viscosity of 10 14.5 poise (hereinafter, referred to as “de straining lower limit temperature”).

第1次冷却はその終了時点において上型部材13の温度と
下型部材15の温度との差が5℃以内好ましくは2℃以内
となる様に冷却速度を適宜調節しながら行なわれる。そ
して、これにより成形品の温度も上記温度範囲内となる
様にする。冷却速度の調節は第1次成形に用いるコント
ローラ24,26と同様の不図示のコントローラによりそれ
ぞれヒータ21,23の発熱量をコントロールすることによ
りなされる。
The primary cooling is performed while appropriately adjusting the cooling rate so that the difference between the temperature of the upper mold member 13 and the temperature of the lower mold member 15 is within 5 ° C., preferably within 2 ° C. at the end of the primary cooling. As a result, the temperature of the molded product is also kept within the above temperature range. The cooling rate is adjusted by controlling the amount of heat generated by the heaters 21 and 23 by a controller (not shown) similar to the controllers 24 and 26 used for the primary molding.

第2次冷却はその工程中において上型部材13の温度と下
型部材15の温度との差が上記第1次冷却工程終了時点よ
りも大きくならずに次第に小さくなる様にコントローラ
によりそれぞれヒータ21,23の発熱量をコントロールし
ながら行なわれる。この際には、成形品の温度も型部材
温度と同等に維持する。
During the secondary cooling, the heaters 21 are respectively controlled by the controller so that the difference between the temperature of the upper mold member 13 and the temperature of the lower mold member 15 during the process does not become larger than that at the end of the primary cooling process but becomes gradually smaller. , 23 while controlling the calorific value. At this time, the temperature of the molded product is maintained at the same temperature as the mold member temperature.

以上の様な冷却を行なって得られた最終成形品には残留
歪が殆どなく、上記第2次成形の型部材成形作用面の面
精度に極めて忠実な(たとえばニュートンリング2本以
内の)光学的機能面を有し、続いて屈折率調整のための
ファインアニールを行なっても面精度が大きく低下する
ことがない。
The final molded product obtained by cooling as described above has almost no residual strain, and is extremely faithful to the surface accuracy of the molding member molding working surface of the secondary molding (for example, within 2 Newton rings). Even if fine annealing for adjusting the refractive index is performed subsequently, the surface accuracy does not significantly decrease.

以上の様にして実際に本発明による光学素子成形方法を
実施したいくつかの例を以下に示す。
Some examples in which the optical element molding method according to the present invention is actually carried out as described above are shown below.

例1: 第2図に示される様な形状を有するカメラ用のガラスレ
ンズをプレス成形により製造した。
Example 1: A glass lens for a camera having a shape as shown in FIG. 2 was manufactured by press molding.

ガラス材料としては、屈折率n(d)が1.59551でアッ
ベ数υ(d)が39.2のフリント系光学ガラスF8を用い
た。
As the glass material, a flint type optical glass F8 having a refractive index n (d) of 1.59551 and an Abbe number υ (d) of 39.2 was used.

先ず、該ガラス材料の原料を第3図に示されるルツボ33
内に収容し1400℃に加熱溶融してガラス化させ、その後
1350℃まで急冷し更に1335℃まで7.5℃/hの速度で徐冷
し脱泡処理を行なった。この脱泡処理の前及び後で攪拌
操作による均質化処理を行なった。
First, the raw material of the glass material is the crucible 33 shown in FIG.
It is housed inside, heated and melted at 1400 ℃ to vitrify, and then
It was rapidly cooled to 1350 ° C, and further slowly cooled to 1335 ° C at a rate of 7.5 ° C / h to perform defoaming treatment. Before and after this defoaming treatment, homogenization treatment was performed by a stirring operation.

次に、該溶融ガラスを第1図に示される様な第1次成形
用型装置を用いて第1次成形した。該成形用型装置の型
部材12,14はSUS310Sからなり、それらの成形作用面12a,
14aの表面粗さはRmax6.3μmであり、更に該型部材12,1
4を閉じた時に形成されるキャビティは上下方向の中心
厚さが第2図に示される目的レンズ形状の対応中心厚2.
9mmよりも約5%厚い3.05mmとされていた。尚、第2次
成形用型装置の型部材13,15の材料は超硬合金であっ
た。
Next, the molten glass was subjected to primary molding using a primary molding die device as shown in FIG. The mold members 12 and 14 of the molding mold device are made of SUS310S, and their molding working surfaces 12a,
The surface roughness of 14a is Rmax 6.3 μm.
The cavity formed when 4 is closed has a vertical center thickness corresponding to the target lens shape shown in Fig. 2.
It was 3.05mm, which is about 5% thicker than 9mm. The material of the mold members 13 and 15 of the secondary molding mold device was cemented carbide.

第7図は本例における第1次成形用型装置の下型部材1
4、第2次成形用型装置の上型部材13及び下型部材15、
及び被成形材料であるガラスの温度の時間的変化を示す
グラフである。
FIG. 7 shows the lower mold member 1 of the primary molding mold device in this example.
4, upper mold member 13 and lower mold member 15 of the secondary molding mold device,
3 is a graph showing a temporal change in temperature of glass as a material to be molded.

第1次成形では、当初(時刻0)、第1次成形用型装置
の上型部材12及び下型部材14はガラス材料のガラス転移
点温度Tg(445℃)より15℃低い430℃に調整された。
In the first molding, at the beginning (time 0), the upper mold member 12 and the lower mold member 14 of the first molding mold device are adjusted to 430 ° C., which is 15 ° C. lower than the glass transition temperature Tg (445 ° C.) of the glass material. Was done.

第3図に示されるガラス流出部36から流下するガラスの
温度は920℃とされた。この温度で該ガラスの粘度は約1
03.8ポアズである。ガラスはカッター40の切断動作によ
り所定の重量のガラスブロック4として下型部材14上に
供給した。
The temperature of the glass flowing down from the glass outflow portion 36 shown in FIG. 3 was set to 920 ° C. At this temperature the viscosity of the glass is about 1
0 3.8 Poise. The glass was supplied onto the lower mold member 14 as the glass block 4 having a predetermined weight by the cutting operation of the cutter 40.

第1次成形で型装置に供給されるガラスの粘度には好ま
しい範囲がある。即ち、ガラス粘度が小さすぎると流動
性が過剰となり適正なブロックを得にくくなり、他方ガ
ラス粘度が大きすぎると型装置に供給される際にガラス
ブロック中に泡を巻き込んだり該ブロック中に脈理を発
生させたりしがちである。たとえば、フリント系ガラス
及びクラウン系ガラスでは好ましい範囲としては103.0
〜105.0程度が例示でき、ランタン系ガラスでは好まし
い範囲として100.5〜103.5程度が例示できる。
There is a preferable range for the viscosity of the glass supplied to the mold device in the primary molding. That is, if the glass viscosity is too small, it becomes difficult to obtain a proper block because of excessive fluidity, while if the glass viscosity is too large, bubbles are caught in the glass block or striae in the block when it is supplied to the mold device. Tend to occur. For example, for flint type glass and crown type glass, the preferable range is 10 3.0.
10 5.0 about. Examples, 10 0.5-10 about 3.5 preferred range is lanthanum-based glass can be exemplified.

上記下型部材14に対するガラスの供給は時刻t1において
なされ、該下型部材を上型部材12に対応する位置へと移
動させ、その後直ちに該下型部材に対し上型部材を合せ
て、時刻t2まで第1次成形を行なった。この過程で、ガ
ラス内部は粘度が約103.8ポアズから約106〜107ポアズ
となり温度が急激に低下する。同時に、型部材14の温度
は430℃から急激に上昇する。第1次成形は約5秒間か
けて行なわれ、この間プレス圧力は最大25Kg/cm2まで徐
々に高められた。
The glass is supplied to the lower mold member 14 at time t 1 , the lower mold member is moved to a position corresponding to the upper mold member 12, and immediately thereafter, the upper mold member is aligned with the lower mold member, Primary molding was performed until t 2 . During this process, the viscosity inside the glass changes from about 10 3.8 poise to about 10 6 to 10 7 poise, and the temperature drops sharply. At the same time, the temperature of the mold member 14 rises sharply from 430 ° C. The primary molding was carried out for about 5 seconds, during which the pressing pressure was gradually increased up to 25 Kg / cm 2 .

一方、第2次成形用型装置の上型部材13及び下型部材15
は、時刻t3までにガラス材料のガラス転移点温度より5
℃低い440℃に調整された。
On the other hand, the upper mold member 13 and the lower mold member 15 of the secondary molding mold device.
Is 5 from the glass transition temperature of the glass material by time t 3.
The temperature was adjusted to 440 ° C, which is lower by ℃.

上記時刻t2において第1次成形用型装置から第1次成形
品6を取出し、該第1次成形品を時刻t3において第2次
成形用型装置の下型部材15上に供給する。時刻t2におい
て成形品6の粘度は内部で約106.6ポアズで表面部で約1
09ポアズであり、時刻t3において該成形品の粘度は内部
で約107ポアズで表面部で約1010ポアズであった。
Taken out primary molded article 6 from the primary mold apparatus in the time t 2, the supply on the lower mold member 15 of the at time t 3 said first molded product secondary mold apparatus. At time t 2 , the viscosity of the molded product 6 is about 10 6.6 poise inside and about 1 on the surface.
0 9 poise, the viscosity of the molded article at the time t 3 is about 10 10 poise at the surface portion at about 107 poise internally.

時刻t4において、第2次成形用型装置の下型部材15に対
し上型部材13を合せて、時刻t5まで第2次成形を行なっ
た。この過程で、上型部材13、下型部材15及び成形品の
温度はそれぞれ図示される様に515℃(ガラス粘度約10
9.4ポアズに相当する温度)に向かって収束せしめら
れ、第2次成形終了の時刻t5においてばらつきが20℃以
内となる様にコントロールされた。
At time t 4 , the upper mold member 13 was aligned with the lower mold member 15 of the secondary molding die device, and the secondary molding was performed until time t 5 . During this process, the temperatures of the upper mold member 13, the lower mold member 15, and the molded product are 515 ° C. (glass viscosity of about 10 ° C.
9.4 Poise), and the variation was controlled to be within 20 ° C. at time t 5 at the end of the secondary molding.

第2次成形は約15秒間をかけて行なわれ、この間プレス
圧力は最大80Kg/cm2まで徐々に高められた。この第2次
成形により厚さ方向の5%の押し代のプレスがなされ、
表面粗さが減少せしめられ且つヒケが解消され、第2図
に示される様な形状の第2次成形品8が得られた。
The secondary molding was carried out for about 15 seconds, during which the pressing pressure was gradually increased up to 80 kg / cm 2 . By this secondary molding, a pressing margin of 5% in the thickness direction is made,
The surface roughness was reduced and sink marks were eliminated, and a secondary molded product 8 having a shape as shown in FIG. 2 was obtained.

次に、該第2次成形品を第2次成形用型装置内に収容し
たままで、時刻t5からt6まで第1次冷却を行なった。こ
の冷却は時刻t6において上型部材13、下型部材15及び第
2次成形品8の温度差が5℃以内となる様に10℃/minの
速度でガラス転移点温度まで行なわれた。
Next, the primary cooling was performed from time t 5 to t 6 while the secondary molded product was kept in the secondary molding die device. This cooling was performed at a rate of 10 ° C./min up to the glass transition temperature so that the temperature difference among the upper mold member 13, the lower mold member 15, and the secondary molded product 8 was within 5 ° C. at time t 6 .

次に、同様に第2次成形品8を第2次成形用型装置内に
収容したままで、時刻t6からt7まで第2次冷却を行なっ
た。この冷却は上型部材13、下型部材15及び第2次成形
品8の温度差が次第に小さくなる様に5℃/minの速度で
除歪下限点温度まで行なわれた。
Next, in the same manner, the secondary cooling was carried out from time t 6 to time t 7 while the secondary molded product 8 was still housed in the secondary molding die device. This cooling was carried out at a rate of 5 ° C./min up to the lower temperature limit of strain removal so that the temperature difference among the upper mold member 13, the lower mold member 15 and the secondary molded product 8 became gradually smaller.

第2次冷却が終了した後、第2次成形用型装置から成形
品を取出し室温まで自然放冷した。
After the completion of the secondary cooling, the molded product was taken out from the secondary molding die device and naturally cooled to room temperature.

かくして得られたレンズの外形寸法精度を測定したとこ
ろ第2図に示す公差内であり、更に該レンズの光学的機
能面の表面粗さはRmax0.02μm以下であり、該面のアス
及びクセはいずれもニュートンリング0.5本以内であっ
た。
The outer dimension accuracy of the lens thus obtained was measured and found to be within the tolerance shown in FIG. 2. Further, the surface roughness of the optically functional surface of the lens was Rmax 0.02 μm or less, and the astigmatism and habit of the surface were All were within 0.5 Newton rings.

更に、このレンズを所望の屈折率n(d)=1.59551と
するためのファインアニールを行なった後に、同様に光
学的機能面の表面精度測定を行なったところ、表面粗
さ、アス及びクセは上記と変化なく、更に曲率のズレは
ニュートンリングで2本以内であった。更に、成形及び
冷却の工程中で生じた成形品の表面変化層の厚さは400
Åであり、そのままでカメラ用レンズとして十分良好に
使用できるものであった。
Furthermore, after performing fine annealing to obtain a desired refractive index n (d) = 1.59551, this lens was similarly subjected to surface accuracy measurement of the optically functional surface. There was no change, and the deviation in curvature was within 2 Newton rings. Furthermore, the thickness of the surface change layer of the molded product generated during the molding and cooling process is 400
It was Å and could be used satisfactorily as a camera lens as it was.

尚、第7図に示される様に、第2成形用型装置の型部材
を時刻t8からt9までヒータにより440℃まで加熱し、該
時刻t9から直ちに次サイクルのプレス成形を開始するこ
とができる。
As shown in FIG. 7, the mold member of the second molding mold device is heated to 440 ° C. by the heater from time t 8 to t 9 and press molding of the next cycle is started immediately from time t 9 be able to.

例2: 上記例1と同様のガラス材料(F8)及び同様の装置を用
いて、外径が25mm、中心厚が11mm±0.05mm、光学的機能
面の曲率半径が第1面20mm、第2面40mmの両凸レンズの
プレス成形を行なった。
Example 2: Using the same glass material (F8) and the same device as in Example 1 above, the outer diameter was 25 mm, the center thickness was 11 mm ± 0.05 mm, the radius of curvature of the optically functional surface was the first surface 20 mm, the second surface A biconvex lens having a surface of 40 mm was press-molded.

尚、第1次成形用型装置の型部材の光学的機能面成形作
用面の表面粗さはRmax10μmとされ、第2次成形用型装
置の型部材の光学的機能面成形作用面の表面粗さはRmax
0.01μmとされた。
The surface roughness of the optically functional surface molding working surface of the mold member of the primary molding machine is Rmax 10 μm, and the surface roughness of the optical function surface molding working surface of the mold member of the secondary molding machine is Sa is Rmax
It was set to 0.01 μm.

先ず、上記例1と同様にしてルツボ内でガラス化処理、
脱泡処理及び均質化処理を行なった。
First, in the same manner as in Example 1 above, vitrification treatment was performed in the crucible,
Defoaming treatment and homogenization treatment were performed.

第1次成形では、中心厚が目的形状よりも約2%大きい
11.22mmとされた。
In the primary molding, the center thickness is about 2% larger than the target shape.
It was set to 11.22 mm.

第1次成形では、当初(時刻0)、第1次成形用型装置
の上型部材12及び下型部材14はガラス材料のガラス転移
点温度(445℃)より95℃低い350℃に調整された。
In the first molding, at the beginning (time 0), the upper mold member 12 and the lower mold member 14 of the first molding die device were adjusted to 350 ° C, which is 95 ° C lower than the glass transition temperature (445 ° C) of the glass material. It was

第1次成形の際に型装置に供給されるガラスの温度は88
0℃とされた。この温度で該ガラスの粘度は約104.1ポア
ズである。
The temperature of the glass supplied to the mold device during the first molding is 88.
It was set to 0 ° C. At this temperature the viscosity of the glass is about 10 4.1 poise.

第1次成形は約5秒間かけて行なわれ、この間プレス圧
力は最大20Kg/cm2まで徐々に高められた。
The primary molding was carried out for about 5 seconds, during which the pressing pressure was gradually increased to a maximum of 20 kg / cm 2 .

かくして得られた第1次成形品の表面粗さはRmax5μm
程度であったが、該表面の凹部及び凸部のピークは第1
次成形用型装置の型部材の表面に比べて丸みをもってお
り、またヒケによる表面のうねりはごくわずかであっ
た。
The surface roughness of the primary molded product thus obtained is Rmax 5 μm
The peak of the concave and convex portions on the surface was the first
Compared with the surface of the mold member of the next molding mold device, the mold member had a roundness, and surface waviness due to sink marks was very slight.

一方、第2次成形用型装置の上型部材13及び下型部材15
は、第2次成形開始時刻までにガラス材料のガラス転移
点温度より45℃低い390℃に調整された。
On the other hand, the upper mold member 13 and the lower mold member 15 of the secondary molding mold device.
Was adjusted to 390 ° C., which was 45 ° C. lower than the glass transition temperature of the glass material, by the time when the second molding was started.

上記第1次成形用型装置から第1次成形品を取出し、温
度が低下しない様に保温しながら窒素雰囲気中に移行さ
せた。そして、以後の工程は全て窒素雰囲気下で行なわ
れた。
The primary molded product was taken out of the primary molding die device and transferred into a nitrogen atmosphere while maintaining the temperature so as not to lower the temperature. Then, the subsequent steps were all performed under a nitrogen atmosphere.

上記第2次成形用型装置に第1次成形品を収容する際の
該第1次成形品の粘度は内部で約108ポアズでありで表
面部で約1010ポアズであった。
The viscosity of said primary molded article at the time of accommodating the primary molded article in the secondary mold apparatus was about 1010 poise at the surface portion is from about 10 8 poises internally.

第2次成形においては、上型部材13、下型部材15及び成
形品8の温度はそれぞれ510℃(ガラス粘度約109.5ポア
ズに相当する温度)に向かって収束せしめられ、第2次
成形終了の時刻においてばらつきが20℃以内となる様に
コントロールされた。
In the secondary molding, the temperatures of the upper mold member 13, the lower mold member 15 and the molded product 8 are made to converge toward 510 ° C. (the temperature corresponding to a glass viscosity of about 10 9.5 poise), and the secondary molding is completed. The variation was controlled to be within 20 ° C at the time of.

第2次成形は約18秒間かけて行なわれ、この間プレス圧
力は最大80Kg/cm2まで徐々に高められた。この第2次成
形により厚さ方向の2%の押し代のプレスがなされ、目
的形状の第2次成形品が得られた。
The secondary molding was carried out for about 18 seconds, during which the pressing pressure was gradually increased up to 80 kg / cm 2 . By this secondary molding, pressing with a pressing margin of 2% in the thickness direction was performed, and a secondary molded product having the target shape was obtained.

第1次冷却は、その終了時点で型部材及び成形品の温度
差が2℃以内に収束する様に10℃/minの速度で行なわれ
た。
The primary cooling was performed at a rate of 10 ° C./min so that the temperature difference between the mold member and the molded product converged within 2 ° C. at the end of the primary cooling.

第2次冷却は、更に型部材及び成形品の温度差が小さく
なる様に5℃/minの速度で行なわれた。
The secondary cooling was performed at a rate of 5 ° C./min so that the temperature difference between the mold member and the molded product was further reduced.

第2次冷却が終了した後、第2次成形用型装置から成形
品を取出し室温まで自然放冷し、更にこのレンズを所望
の屈折率とするためのファインアニールを行なった。
After the completion of the secondary cooling, the molded product was taken out from the secondary molding die device, naturally cooled to room temperature, and further subjected to fine annealing for making the lens have a desired refractive index.

かくして得られたレンズの光学的機能面の表面粗さはRm
ax0.02μm以下であり、曲率のズレはニュートンリング
2本以内であり、該面のアス及びクセはいずれもニュー
トンリング0.5本以内であった。
The surface roughness of the optically functional surface of the lens thus obtained is Rm.
The ax was 0.02 μm or less, the deviation of curvature was within 2 Newton rings, and the astigmatism and habit of the surface were within 0.5 Newton rings.

例3: 上記例1と同一の形状のレンズを、屈折率n(d)が1.
77250でアッベ数υ(d)が49.6のランタン系光学ガラ
スLaSF016を用いてプレス成形した。
Example 3: A lens having the same shape as in Example 1 above, with a refractive index n (d) of 1.
A 77250 press-molded lanthanum optical glass LaSF016 having an Abbe number υ (d) of 49.6 was used.

尚、第1次成形用型装置及び第2次成形用型装置として
は上記例1と同様のものを用いた。更に、第1次成形は
窒素雰囲気中で行ない且つ第2次成形は真空中で行なっ
た。
As the primary molding die device and the secondary molding die device, the same devices as in Example 1 were used. Further, the primary molding was carried out in a nitrogen atmosphere and the secondary molding was carried out in vacuum.

先ず、上記例1と同様にしてルツボ内でガラス化処理、
脱泡処理及び均質化処理を行なった。
First, in the same manner as in Example 1 above, vitrification treatment was performed in the crucible,
Defoaming treatment and homogenization treatment were performed.

第1次成形では、当初(時刻0)、第1次成形用型装置
の上型部材12及び下型部材14はガラス材料のガラス転移
点温度(700℃)より100℃低い600℃に調整された。
In the first molding, at the beginning (time 0), the upper mold member 12 and the lower mold member 14 of the first molding die device are adjusted to 600 ° C., which is 100 ° C. lower than the glass transition temperature (700 ° C.) of the glass material. It was

第1次成形の際に型装置に供給されるガラスの温度は90
0℃とされた。この温度で該ガラスの粘度は約102.9ポア
ズである。尚、ガラス流出部から第1次成形用型装置へ
のガラスブロックの供給は大気と窒素雰囲気とを遮断す
るためのフレームカーテンを介して行なわれた。
The temperature of the glass supplied to the mold during the primary molding is 90
It was set to 0 ° C. At this temperature the viscosity of the glass is about 10 2.9 poise. The glass block was supplied from the glass outflow part to the primary molding die device through a frame curtain for blocking the atmosphere and the nitrogen atmosphere.

第1次成形は約5秒間かけて行なわれ、この間プレス圧
力は最大20Kg/cm2まで徐々に高められた。
The primary molding was carried out for about 5 seconds, during which the pressing pressure was gradually increased to a maximum of 20 kg / cm 2 .

一方、第2次成形用型装置の上型部材13及び下型部材15
は、第2次成形開始時刻までにガラス材料のガラス転移
点温度より25℃低い675℃に調整された。
On the other hand, the upper mold member 13 and the lower mold member 15 of the secondary molding mold device.
Was adjusted to 675 ° C., which is 25 ° C. lower than the glass transition temperature of the glass material, by the time of the second molding.

上記第1次成形用型装置から第1次成形品を取出し、温
度が低下しない様に保温しながら第2次成形用型装置へ
供給した。
The primary molded product was taken out from the above-mentioned primary molding die device and supplied to the secondary molding die device while maintaining the temperature so that the temperature would not decrease.

上記第2次成形用型装置に第1次成形品を収容する際の
該第1次成形品の粘度は内部で約109ポアズでありで表
面部で約1011ポアズであった。
The viscosity of the primary molded product when the primary molded product was housed in the secondary molding die device was about 10 9 poise inside and about 10 11 poise at the surface portion.

第2次成形においては、上型部材13、下型部材15及び成
形品の温度はそれぞれ720℃(ガラス粘度約1010.0ポア
ズに相当する温度)に向かって収束せしめられ、第2次
成形終了の時刻においてばらつきが10℃以内となる様に
コントロールされた。
In the secondary molding, the temperatures of the upper mold member 13, the lower mold member 15 and the molded product are converged toward 720 ° C. (the temperature corresponding to a glass viscosity of about 10 10.0 poise), respectively, and the secondary molding is completed. The time was controlled so that the variation was within 10 ° C.

第2次成形は約15秒間かけて行なわれ、この間プレス圧
力は最大120Kg/cm2まで徐々に高められた。この第2次
成形により厚さ方向の5%の押し代のプレスがなされ、
目的形状の第2次成形品が得られた。
The secondary molding was performed for about 15 seconds, during which the pressing pressure was gradually increased up to 120 Kg / cm 2 . By this secondary molding, a pressing margin of 5% in the thickness direction is made,
A secondary molded product having the target shape was obtained.

第1次冷却は、その終了時点で型部材及び成形品の温度
差が2℃以内に収束する様にガラス転移点温度まで5℃
/minの速度で行なわれた。
At the end of the first cooling, the glass transition temperature is 5 ° C. so that the temperature difference between the mold member and the molded product converges within 2 ° C.
It was performed at a speed of / min.

第2次冷却は、更に型部材及び成形品の温度差が小さく
なる様に除歪下限点温度(685℃)まで3℃/minの速度
で行なわれた。
The secondary cooling was performed at a rate of 3 ° C./min up to the lower limit temperature of the strain removal point (685 ° C.) so that the temperature difference between the mold member and the molded product was further reduced.

第2次冷却が終了した後、第2次成形用型装置から成形
品を取出し室温まで自然放冷し、更にこのレンズを所望
の屈折率とするためのファインアニールを行なった。
After the completion of the secondary cooling, the molded product was taken out from the secondary molding die device, naturally cooled to room temperature, and further subjected to fine annealing for making the lens have a desired refractive index.

かくして得られたレンズの光学的機能面の表面粗さはRm
ax0.02μm以下であり、曲率のズレはニュートンリング
2本以内であり、該面のアス及びクセはいずれもニュー
トンリング0.5本以内であった。
The surface roughness of the optically functional surface of the lens thus obtained is Rm.
The ax was 0.02 μm or less, the deviation of curvature was within 2 Newton rings, and the astigmatism and habit of the surface were within 0.5 Newton rings.

[発明の効果] 以上の様な本発明によれば、カメラ用レンズに代表され
る高精度の光学素子を溶融ガラス材料から直接プレス成
形により良好な効率にて得ることができ、かくして得ら
れた光学素子はファインアニールや真空蒸着等の処理に
際しても精度低下がない。
EFFECTS OF THE INVENTION According to the present invention as described above, a high-precision optical element represented by a camera lens can be obtained with good efficiency by direct press molding from a molten glass material, and thus obtained. The precision of the optical element does not deteriorate even during processing such as fine annealing and vacuum deposition.

また、本発明は、使用するガラスの種類に制約されるこ
となしに、成形温度の高いガラスであっても十分に適用
できる。
Further, the present invention can be sufficiently applied even to glass having a high molding temperature without being restricted by the type of glass used.

また、成形時の型部材温度が比較的低いので、ガラスと
型部材との融着の発生がなく、該型部材の寿命を長くす
ることができるとともに、成形品における表面変化層の
厚さを十分に薄いものとすることができ、更に型の温度
サイクルに無駄なく低消費エネルギー量にて連続成形が
可能である。
Further, since the temperature of the mold member at the time of molding is relatively low, fusion of the glass and the mold member does not occur, the life of the mold member can be extended, and the thickness of the surface change layer in the molded product can be reduced. It can be made sufficiently thin, and continuous molding can be performed with low energy consumption without waste in the temperature cycle of the mold.

更に、本発明においては、第1次成形用型部材として安
価なものを使用でき、更に比較的高価な第2次成形用型
部材も高温となる時間は極めて短かいので十分な耐久性
があり、かくして装置コストを大幅に低減することがで
きる。
Furthermore, in the present invention, an inexpensive primary molding die member can be used, and the relatively expensive secondary molding die member also has sufficient durability because the temperature of high temperature is extremely short. Thus, the device cost can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は成形用型装置の要部構成図である。 第2図は光学素子の形状を示す図である。 第3図〜第6図は成形工程の説明図である。 第7図は成形における型部材及びガラスの温度の時間的
変化を示すグラフである。 4:ガラスブロック、6:第1次成形品、8:第2次成形品、
12,13:上型部材、14,15:下型部材、16,18:熱電対、20,2
1,22,23,34,38:ヒータ、24,26:コントローラ、33:ルツ
ボ、36:流出部。
FIG. 1 is a configuration diagram of a main part of a molding die device. FIG. 2 is a diagram showing the shape of the optical element. 3 to 6 are explanatory views of the molding process. FIG. 7 is a graph showing changes over time in the temperatures of the mold member and the glass during molding. 4: Glass block, 6: Primary molded product, 8: Secondary molded product,
12,13: Upper mold member, 14,15: Lower mold member, 16,18: Thermocouple, 20,2
1,22,23,34,38: Heater, 24,26: Controller, 33: Crucible, 36: Outflow part.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガラス材料を第1次成形用型装置を用いて
第1次成形して第1次成形品を得、更に該第1次成形品
を第2次成形用型装置を用いて第2次成形して第2次成
形品を得る光学素子の成形方法であって、 第1次成形において第1次成形用型装置の型部材の温度
をガラス材料のガラス転移点温度と該温度より110℃低
い温度との間の温度に維持した状態の該型装置内に溶融
ガラス材料を収容して成形し第1次成形品を得、 第2次成形において第2次成形用型装置の型部材の温度
を上記ガラス転移点温度と該温度より50℃低い温度との
間の温度に維持した状態の該型装置内に上記第1次成形
品を収容して成形し第2次成形品を得る、 ことを特徴とする、光学素子の成形方法。
1. A glass material is subjected to a primary molding using a primary molding die device to obtain a primary molded product, and the primary molded product is further subjected to a secondary molding die device. A method of molding an optical element, which comprises a secondary molding to obtain a secondary molded product, wherein the temperature of a mold member of a primary molding mold device in the primary molding is set to a glass transition temperature of a glass material and the temperature. The molten glass material is housed and molded in the mold device maintained at a temperature lower than 110 ° C. to obtain a primary molded product, and a secondary molding mold device is used in the secondary molding. Secondary molded product obtained by accommodating and molding the above-mentioned primary molded product in the mold device in a state where the temperature of the mold member is maintained between the glass transition temperature and a temperature lower than the glass transition temperature by 50 ° C. A method of molding an optical element, comprising:
【請求項2】第1次成形品の表面近傍の粘度が108〜10
14.5ポアズの時に該第1次成形品を第2次成形用型装置
内に収容する、特許請求の範囲第1項の光学素子の成形
方法。
2. The viscosity of the primary molded product near the surface is 10 8 to 10
The method for molding an optical element according to claim 1, wherein the primary molded product is housed in a secondary molding die device at the time of 14.5 poise.
JP14304787A 1987-06-10 1987-06-10 Optical element molding method Expired - Fee Related JPH0729782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14304787A JPH0729782B2 (en) 1987-06-10 1987-06-10 Optical element molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14304787A JPH0729782B2 (en) 1987-06-10 1987-06-10 Optical element molding method

Publications (2)

Publication Number Publication Date
JPS63307130A JPS63307130A (en) 1988-12-14
JPH0729782B2 true JPH0729782B2 (en) 1995-04-05

Family

ID=15329670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14304787A Expired - Fee Related JPH0729782B2 (en) 1987-06-10 1987-06-10 Optical element molding method

Country Status (1)

Country Link
JP (1) JPH0729782B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5033768B2 (en) * 2008-10-31 2012-09-26 株式会社オハラ Method for manufacturing thin glass sheet and disk-shaped magnetic recording medium

Also Published As

Publication number Publication date
JPS63307130A (en) 1988-12-14

Similar Documents

Publication Publication Date Title
US7491667B2 (en) Optical glass, precision press-molding preform, process for producing the preform, optical element and process for producing the optical element
JP6739131B2 (en) Mold for molding optical component made of glass and method for manufacturing optical component made of glass using the mold
JP2006256938A (en) Method of manufacturing glass formed body, method of manufacturing glass base material for press-forming, and method of manufacturing optical device
JPH01133948A (en) Manufacture of optical element
JP2501585B2 (en) Optical element molding method
JPH0729782B2 (en) Optical element molding method
JPH0513096B2 (en)
JP4289716B2 (en) Glass element molding method
JPH0419172B2 (en)
JP2008074636A (en) Method and device for producing optical element
JPH11171555A (en) Production of blank for forming optical element
JPH0372016B2 (en)
JP4992035B2 (en) Optical element manufacturing method
JPS6296328A (en) Method of molding optical glass element
JP3673554B2 (en) Glass gob molding method and molding apparatus
JP2805715B2 (en) Optical element molding method and glass lens obtained by the method
JPWO2015137457A1 (en) Optical element manufacturing method
JPH0640730A (en) Method and device for production of glass material
JP4426740B2 (en) Glass molded product manufacturing method, optical component manufacturing method, press molding apparatus
JPH01153539A (en) Molding device for optical element
JPS63162540A (en) Process for forming optical glass element
JPS6360114A (en) Method for molding optical element
JPH07165431A (en) Forming of gob and forming apparatus therefor
JP3164923B2 (en) Glass material for molding optical element and method for producing the same
JPH11322349A (en) Molding of glass product

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees