JPS63307129A - Production of optical element - Google Patents

Production of optical element

Info

Publication number
JPS63307129A
JPS63307129A JP62143048A JP14304887A JPS63307129A JP S63307129 A JPS63307129 A JP S63307129A JP 62143048 A JP62143048 A JP 62143048A JP 14304887 A JP14304887 A JP 14304887A JP S63307129 A JPS63307129 A JP S63307129A
Authority
JP
Japan
Prior art keywords
optical element
molding
molded product
temperature
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62143048A
Other languages
Japanese (ja)
Other versions
JPH0776095B2 (en
Inventor
Isamu Shigyo
勇 執行
Tamakazu Yogo
瑞和 余語
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62143048A priority Critical patent/JPH0776095B2/en
Publication of JPS63307129A publication Critical patent/JPS63307129A/en
Publication of JPH0776095B2 publication Critical patent/JPH0776095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/125Cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To prevent surface defects such as burning or attachment of foreign matter in production process, by carrying out surface treatment in cooling process of molten glass material after press molding in a given temperature range <= the lower limit point of strain removal. CONSTITUTION:A molten glass material is molded by using a mold device for molding. Then the molded article after molding is slowly cooled. In the cooling process, the molded article is subjected to surface treatment in a state wherein the temperature of the molded article is in the lower limit point of strain removal - 200 deg.C to form a thin film. Consequently, an optical element which has optically functional face with excellent durability free from surface defects is obtained in high yield.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はレンズ、プリズム、ミラー及びフィルタ等の光
学素子を製造する方法に関し、特に研削及び研摩等の工
程を経ることなしに溶融ガラス材料からのプレス成形を
用いて表面精度及び耐久性の良好な光学的機能面を有す
る光学素子を低コストにて効率良く製造する方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing optical elements such as lenses, prisms, mirrors, and filters, and in particular to a method for manufacturing optical elements such as lenses, prisms, mirrors, and filters, and in particular, a method for manufacturing optical elements such as lenses, prisms, mirrors, and filters from molten glass material without undergoing processes such as grinding and polishing. The present invention relates to a method for efficiently manufacturing, at low cost, an optical element having an optically functional surface with good surface precision and durability using press molding.

[従来の技術] 一般に、レンズ、プリズム、ミラー及びフィルタ等の光
学素子は、ガラス素材を研削して外形を所望の形状とし
た後に、機能面即ち光が透過及び/または反射する面を
研摩して光学面とすることにより製造されている。
[Prior Art] Generally, optical elements such as lenses, prisms, mirrors, and filters are manufactured by grinding a glass material to give a desired external shape, and then polishing the functional surface, that is, the surface that transmits and/or reflects light. It is manufactured by forming an optical surface using

しかして、以上の様な光学素子の製造においては、研削
及び研摩により所望の表面精度(即ち表面形状及び表面
粗さ等の精度)を得るためには、熟練した作業者が相当
の時間加工を行なうことが必要であった。また、機能面
が非球面である光学素子を製造する場合には、一層高度
な研削及び研摩の技術が要求され且つ加工時間も長くな
らざるを得なかった。
However, in the production of optical elements such as those described above, in order to obtain the desired surface accuracy (i.e., accuracy of surface shape and surface roughness) through grinding and polishing, skilled workers spend a considerable amount of processing time. It was necessary to do it. Furthermore, when manufacturing an optical element whose functional surface is an aspherical surface, more advanced grinding and polishing techniques are required, and the processing time is inevitably increased.

そこで、最近では、」−記の様な伝統的な光学素子製造
方法に代って、所定の表面精度を有する成形用金型装置
内に光学素子材料を収容して加熱及び加圧することによ
りプレス成形にて直ちに機能面を含む全体的形状を形成
することが行なわれる様になってきている。これによれ
ば、機能面が非球面である場合でさえも比較的簡単且つ
短時間で光学素子を製造することができる。
Therefore, recently, instead of the traditional optical element manufacturing method as described above, optical element materials are housed in a molding mold device with a predetermined surface accuracy and pressed by heating and pressurizing. Increasingly, the overall shape including the functional aspects is immediately formed by molding. According to this, an optical element can be manufactured relatively easily and in a short time even when the functional surface is an aspherical surface.

プレス成形により光学的機能面を形成して光学素子を製
造する方法には、一旦光学ガラス素材を目的形状の近似
形状として予備成形品(プレフォーム)を得た」−で該
プレフォームを成形用型装置内に収容してプレスにより
最終的1」画形状とする方式と、溶融光学ガラスを直ち
に成形用型装置内に収容してプレスし成形を行なう方式
とがある。
In the method of manufacturing an optical element by forming an optically functional surface by press molding, a preform is obtained by making an optical glass material into a shape approximating the desired shape. There is a method in which the molten optical glass is placed in a mold device and pressed into a final 1'' shape, and a method in which the molten optical glass is immediately placed in a mold device and pressed and molded.

プレフォームを用いる方式では、特公昭61−3226
3号公報に記載されている様に、適宜の方法たとえば研
削及び研摩によりプレフォームを得、該プレフォーム及
び最終成形用型装置の型部材を別々にあるいは該プレフ
ォームを型装置内に収容した状態で所定の温度まで加熱
し、かくして軟化したプレフォームを型装置により適宜
の圧力でプレスし、そして冷却させることが必要である
In the method using preform, the Japanese Patent Publication No. 61-3226
As described in Publication No. 3, a preform is obtained by an appropriate method such as grinding and polishing, and the preform and the mold member of a mold device for final molding are placed separately or the preform is housed in the mold device. It is necessary to heat the preform to a predetermined temperature in the state, press the thus softened preform with an appropriate pressure in a mold device, and allow it to cool.

しかし、この方法ではプレフォームを得る際に従来の伝
統的方法と同様な工程を必要とするので、製造コストの
面では未だ十分に満足できるとはいえない。
However, since this method requires the same steps as the conventional traditional method to obtain the preform, it is still not fully satisfactory in terms of manufacturing cost.

これに対し、溶融ガラスを直接型装置内に収容してプレ
ス成形する方式は、工程所要時間が短縮yれ、特に連続
的成形に好適である。
On the other hand, a method in which molten glass is directly housed in a molding device and press-molded reduces the time required for the process and is particularly suitable for continuous molding.

ところで、以上の様にしてプレス成形された光学素子に
は、一般に、光学的機能面の機能性の向」=や耐久性向
上等の目的で該機能面に対し真空蒸着法等により反射防
止膜や反射増加膜をコートする表面処理を行なう場合が
多い。
By the way, in optical elements press-molded as described above, an anti-reflection film is generally applied to the functional surface by vacuum evaporation method etc. for the purpose of improving the functionality of the optical function or improving durability. In many cases, a surface treatment is performed to coat the surface with a reflective film or a reflection-enhancing film.

従来は、この様な薄膜形成表面処理は、上記プレス成形
により得られた成形品を一旦室温近くまで冷却した後に
、該成形品を表面処理装置内へと搬入して、適宜の温度
まで加熱した上で行なわれている。
Conventionally, such thin film forming surface treatment was carried out by once cooling the molded product obtained by the above-mentioned press molding to near room temperature, and then transporting the molded product into a surface treatment equipment and heating it to an appropriate temperature. It's being done above.

しかして、以」二の様な従来のコート処理済光学素子の
製造方法では、成形済光学素子を型装置から取出してか
ら実際に蒸着が行なわれるまでにかなり長い時間を要し
、このため空気中の炭酸ガスや水分が成形面に作用して
ヤケを発生させることがあり、更に成形済光学素子の成
形面にゴミ等の異物が付着することが多いので蒸着工程
の前に洗浄工程が行なわれているが該洗浄工程でも洗浄
液にさらされるのでヤケ発生の頻度が高くなる。
However, in the conventional method for manufacturing coated optical elements as described below, it takes a considerable amount of time from the time the molded optical element is taken out of the molding device until the actual vapor deposition. The carbon dioxide gas and moisture inside may act on the molding surface and cause discoloration, and foreign matter such as dust often adheres to the molding surface of the molded optical element, so a cleaning process is performed before the vapor deposition process. However, since the cleaning process also exposes the product to the cleaning liquid, the frequency of occurrence of burns increases.

この様に、従来の方V:では蒸着以前の工程中で光学的
機能面にヤケが発生しやすいので、ガラス材料の種類に
よっては不良品発生率が高くなるという難点がある。更
には、特徴的な光学的特性を有するにもかかわらず、上
記ヤケ発生が著るしいために実質」1使用できないガラ
ス種もある。
As described above, in the conventional method V:, the optical functional surface tends to be discolored during the process before vapor deposition, so there is a problem that the incidence of defective products increases depending on the type of glass material. Furthermore, there are some types of glass that, despite having characteristic optical properties, are practically unusable due to the above-mentioned tendency to cause significant fading.

また、上記従来法ではプレス成形品を−・旦室温近くま
で冷却した後に再加熱して表面処理を亘なうので、熱エ
ネルギーのロスが大きいという問題点もある。
Furthermore, in the conventional method described above, the press-formed product is first cooled to near room temperature and then reheated for surface treatment, resulting in a large loss of thermal energy.

本発明は上記の実情に鑑みてなされたものであり、表面
処理された高精度の光学素子を良好な効率及び低消費エ
ネルギーにて安定して製造することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to stably manufacture a surface-treated high-precision optical element with good efficiency and low energy consumption.

[問題点を解決するための手段] 本発明によれば、以上の如き目的は、 溶融ガラス材料を成形用型装置を用いてプレス成形し、
かくして得られた成形品を冷却するに際し該成形品の温
度が除歪下限点と200°Cとの間の温度である時に該
成形品に対し表面処理を行なうことを特徴とする、光学
素子の製造方法、により達成される。
[Means for Solving the Problems] According to the present invention, the above objects are as follows: Press-molding a molten glass material using a molding device,
An optical element characterized in that when the molded product thus obtained is cooled, a surface treatment is performed on the molded product when the temperature of the molded product is between the lower limit of strain removal and 200°C. This is achieved by a manufacturing method.

[実施例] 以下、図面を参照しながら本発明の具体的実施例を説明
する。
[Example] Hereinafter, specific examples of the present invention will be described with reference to the drawings.

第1図は本発明による光学素子製造方法の第1の実施例
を説明するためのガラス温度の時間変化を示すグラフで
ある。尚、第1図には従来方法の場合も比較のために示
されている。
FIG. 1 is a graph showing changes in glass temperature over time to explain a first embodiment of the optical element manufacturing method according to the present invention. Incidentally, FIG. 1 also shows the case of the conventional method for comparison.

第2図は本実施例において製造される光学素子2を示す
図であり、該光学素子は第1面が曲率半径52mmで第
2面が曲率半径40 m mの両凸レンズである。
FIG. 2 is a diagram showing the optical element 2 manufactured in this example, and the optical element is a biconvex lens with a first surface having a radius of curvature of 52 mm and a second surface having a radius of curvature of 40 mm.

尚、本実施例は低融点ガラスとして知られるP bo−
B203 = Z noを主成分とするガラスを用いた
場合に関するものである。
Note that this example uses P bo- which is known as a low melting point glass.
B203=Z This relates to the case where a glass containing no as a main component is used.

第3図及び第4図は本実施例における成形用型装置によ
るプレス成形の説明図である。
FIGS. 3 and 4 are explanatory diagrams of press molding by the molding device in this embodiment.

これらの図において、成形用型装置は、上型部材12及
び下型部材14を有しており、該上型部材の下面には上
記光学素子2の第1面に対応した形状の成形作用面12
aが形成されており、上記下型部材14の上面には上記
光学素子2の第2面に対応した形状の成形作用面14a
が形成されている。これら成形作用面12a、14aの
表面粗さは目的とする光学素子の光学的機能面の表面粗
さと同程度またはそれ以下とされ(鏡面仕上げ)、たと
えばRmaxO,01用m以下とされている。
In these figures, the molding device has an upper mold member 12 and a lower mold member 14, and the lower surface of the upper mold member has a molding surface having a shape corresponding to the first surface of the optical element 2. 12
A is formed on the upper surface of the lower mold member 14, and a molding action surface 14a having a shape corresponding to the second surface of the optical element 2 is formed.
is formed. The surface roughness of these forming working surfaces 12a, 14a is made to be equal to or less than the surface roughness of the optically functional surface of the target optical element (mirror finish), for example, RmaxO,01 m or less.

上記上型部材12及び下型部材14はそれぞれれ不図示
の駆動源により上下方向に移動せしめられ、これにより
型の開閉が行なわれる。
The upper mold member 12 and the lower mold member 14 are each moved in the vertical direction by a drive source (not shown), thereby opening and closing the mold.

尚、図示はしないが、型装置には適宜の加熱手段が付設
されており、該加熱手段により型部材及びガラス材料を
所望の温度にコントロールすることができる。
Although not shown, the mold device is equipped with an appropriate heating means, and the heating means can control the temperature of the mold member and the glass material to a desired temperature.

以上の型装置においては、上型部材12と下型部材14
とを閉じた時に、両型部材の成形作用面12a、14a
間に形成されるキャビティの形状が第2図で示される最
終的レンズ形状となる様な形状とされている。
In the above mold device, the upper mold member 12 and the lower mold member 14
When the mold members are closed, the molding working surfaces 12a, 14a of both mold members
The shape of the cavity formed in between is such that it becomes the final lens shape shown in FIG.

上記第3図は溶融ガラスを型装置へ供給する工程を示す
ものである。
FIG. 3 above shows the process of supplying molten glass to a mold device.

第3図において、33はガラス溶融槽(ルツボ)であり
、該ツルボの周囲にはヒータ34が付設されている。ル
ツボ32の下部には流出部36が接続されており、該流
出部の周囲にはヒータ38が付設されている。そして、
上記流出部36の下方には連続的に流出する溶融ガラス
を適宜の長さに切断するためのカッター40が配置され
ている。
In FIG. 3, 33 is a glass melting tank (crucible), and a heater 34 is attached around the crucible. An outflow section 36 is connected to the lower part of the crucible 32, and a heater 38 is attached around the outflow section. and,
A cutter 40 is arranged below the outflow portion 36 to cut the continuously flowing molten glass into appropriate lengths.

ルツボ33内に所望の光学ガラスの原料を入れ、ヒータ
34を作用させて適宜の温度に加熱する。これにより、
ルツボ33内に溶融光学ガラスGが形成される。尚、こ
の際に必要に応じて適宜攪拌し且つ脱泡処理を行なうこ
とにより、より均質性の高い光学ガラスが得られる。
A raw material for a desired optical glass is placed in the crucible 33, and heated to an appropriate temperature by operating the heater 34. This results in
Molten optical glass G is formed in the crucible 33. Incidentally, at this time, by appropriately stirring and performing defoaming treatment as necessary, an optical glass with higher homogeneity can be obtained.

溶融ガラスは重力の作用により流出部36内を次第に流
下し、該流出部下端の流出口から押し出される。この際
に、該流出口の下方に上記型装置の下型部材14を配置
しておく。
The molten glass gradually flows down within the outflow section 36 under the action of gravity and is pushed out from the outflow port at the lower end of the outflow section. At this time, the lower mold member 14 of the mold device is placed below the outlet.

上記溶融軟化したガラスが流出部36の流出口から押し
出され、その先端部が上記カッター40よりも下方の適
宜の高さに到達した時点で、該カッターを作用させ溶融
ガラスの切断を行なう。
The molten and softened glass is pushed out from the outlet of the outflow section 36, and when its tip reaches an appropriate height below the cutter 40, the cutter is activated to cut the molten glass.

かくして切断されたガラスブロック4は時刻t1におい
て上記下型部材14の成形作用面14a上に落下する。
The thus cut glass block 4 falls onto the molding surface 14a of the lower mold member 14 at time t1.

上記第4図はプレス時の状態を示す図である。The above-mentioned FIG. 4 is a diagram showing the state at the time of pressing.

第4図に示される様に、上記ガラスブロック4を載せた
下型部材14は上型部材14に対応する位置へと運ばれ
、時刻t2からt3まで温度370℃で下型部材14に
対し上型部材12を押圧して型を閉じて成形を行ない、
所望の最終形状を有する成形品6を得る。− 以上の様な成形の後に、冷却を行なう。該冷却 。
As shown in FIG. 4, the lower mold member 14 on which the glass block 4 is mounted is carried to a position corresponding to the upper mold member 14, and is placed at a temperature of 370° C. from time t2 to t3. Press the mold member 12 to close the mold and perform molding,
A molded article 6 having the desired final shape is obtained. - After the above-described molding, cooling is performed. The cooling.

は型装置の加熱手段による熱量コントロールにより達成
される。
This is achieved by controlling the amount of heat by the heating means of the mold device.

冷却は成形品6が除歪下限点温度(ガラスが粘度101
45ポアズを示す温度)300℃となるまで該成形品を
型装置内に収容した状態で時刻t3からt4まで比較的
ゆっくりと行ない、該温度より下の温度となった後に時
刻t4からt5まで比較的高い速度で冷却する。なぜな
ら、除歪下限点温度以上であまり急激に冷却を行なうと
内部歪が発生し、該歪が除歪下限点温度以下では有効に
除去されないからである。除歪下限点温度以下では内部
歪が発生することは実質上ないので急激に冷却しても何
等問題はない。
Cooling is performed until the molded product 6 reaches the lower limit temperature for removing strain (glass has a viscosity of 101
The molded product is housed in the mold device until the temperature reaches 300°C (temperature showing 45 poise) and is carried out relatively slowly from time t3 to t4, and after the temperature reaches below this temperature, comparison is made from time t4 to t5. Cool at the highest rate possible. This is because if cooling is performed too rapidly above the strain removal lower limit temperature, internal strain will occur, and this strain will not be effectively removed below the strain removal lower limit temperature. Since internal strain does not substantially occur below the strain removal lower limit temperature, there is no problem even if the material is rapidly cooled.

温度が200℃になる前に、上記型装置を開いて成形品
6を取出し、真空蒸着装置内へと搬入し、真空蒸着を開
始する。たとえば、第1図に示される様に、時刻t4か
ら温度250°Cとなるt5までの間に成形品を型装置
から真空蒸着装置内へと搬入し、時刻t5から七〇まで
の間に双方の光学的機能面にMgF2を真空蒸着する。
Before the temperature reaches 200° C., the mold device is opened, the molded product 6 is taken out, and the molded product 6 is carried into the vacuum evaporation device to start vacuum evaporation. For example, as shown in FIG. 1, the molded product is transferred from the mold device to the vacuum deposition device between time t4 and t5, when the temperature reaches 250°C, and between time t5 and 70, the molded product is transported into the vacuum deposition device. MgF2 is vacuum-deposited on the optically functional surface.

しかる後に、上記真空蒸着装置からコート済光学素子を
取出し、室温まで冷却する。
Thereafter, the coated optical element is removed from the vacuum deposition apparatus and cooled to room temperature.

この様な−・連のプレス成形、冷却及び真空蒸着の工程
を連続的に効率良く行なうために−1−記プレス成形及
び冷却を真空中で行ない、同一の真空系中に真空蒸着装
置を配置するのが好ましい。但し、これら装置間にはゲ
ートパルプを設けておき、光学素子搬送時にのみ該バル
ブを開く様にするのが好ましい。
In order to carry out the series of press forming, cooling and vacuum deposition processes continuously and efficiently, the press forming and cooling described in 1-1 are carried out in a vacuum, and the vacuum vapor deposition equipment is placed in the same vacuum system. It is preferable to do so. However, it is preferable to provide a gate pulp between these devices so that the valve is opened only when an optical element is transported.

一方、第1図において、点線はプレフォームを用いてプ
レス成形を行なう従来法によりプレス成形、室温までの
冷却、洗浄、真空蒸着装置内への搬入、加熱、真空蒸着
及び冷却の工程を行なって上記本発明実施例と同様の光
学素子を製造した例を示す。
On the other hand, in Figure 1, the dotted line indicates the process of press forming, cooling to room temperature, cleaning, carrying into a vacuum deposition equipment, heating, vacuum deposition, and cooling using the conventional method of press forming using a preform. An example in which an optical element similar to the above embodiment of the present invention was manufactured will be shown.

第1図から分る様に、従来例では時刻t5からの冷却工
程、洗浄工程及び蒸着前の再加熱工程の分(即ちPlか
らP2までの分)だけ本発明実施例よりも余分に時間が
かかっており、またこの時間の消費熱エネルギー分だけ
本発明実施例の場合よりエネルギーロスが多い。従って
、上記本発明実施例によればかなりのコストダウンが可
能である。
As can be seen from FIG. 1, in the conventional example, the time required for the cooling process from time t5, the cleaning process, and the reheating process before vapor deposition (i.e., from P1 to P2) is longer than in the embodiment of the present invention. Moreover, the energy loss is greater than in the embodiment of the present invention by the amount of heat energy consumed during this time. Therefore, according to the embodiment of the present invention described above, considerable cost reduction is possible.

更に、本発明実施例によれば、成形後の冷却に引続きそ
れ程の時間をおかずに直ちに真空蒸着を行なうので、真
空蒸着の前に光学的機能面にゴミ等の異物が付着する様
なことが極めて少なく、従って本発明実施例では従来例
の様に洗浄工程を必要とせず、またこのため及び真空蒸
着までの時間が短かいことにより、洗浄液及び空気等に
接触してヤケが発生したりする様なことがない。
Furthermore, according to the embodiment of the present invention, vacuum evaporation is performed immediately after cooling after molding, without a long delay, so that there is no possibility that foreign matter such as dust may adhere to the optical functional surface before vacuum evaporation. Therefore, unlike the conventional example, the present invention does not require a cleaning process, and due to this and the short time until vacuum deposition, it may come into contact with the cleaning liquid, air, etc. and cause burns. There's nothing like it.

」−配本発明実施例で得られた光学素子を気温30°C
1湿度100%の雰囲気中に1月間保存しておいたとこ
ろ、光学的機能面にはクモリ等の光学的欠陥の発生は認
められなかった。
” - The optical element obtained in the example of the present invention was heated at a temperature of 30°C.
When the sample was stored in an atmosphere with 100% humidity for one month, no optical defects such as clouding were observed on the optical functional surface.

これに対し、上記従来例の場合は洗浄工程後にヤケ発生
が認められ、真空蒸着後の光学的機能面には部分的欠陥
が認められた。
On the other hand, in the case of the conventional example described above, discoloration was observed after the cleaning process, and partial defects were observed on the optical functional surface after vacuum deposition.

この様に、本発明実施例によれば、化学的耐久° 性が
十分でないために従来法では良好な光学素子を得ること
のできなかったガラスを用いて良好な光学素子を得るこ
とができる。
As described above, according to the embodiments of the present invention, it is possible to obtain a good optical element using glass, which was not able to be obtained by the conventional method due to insufficient chemical durability.

第5図は本発明による光学素子製造方法の第2の実施例
を説明するためのガラス温度の時間変化を示すグラフで
ある。尚、第5図には従来方法の場合も比較のために示
されている。
FIG. 5 is a graph showing changes in glass temperature over time to explain the second embodiment of the optical element manufacturing method according to the present invention. Incidentally, FIG. 5 also shows the case of the conventional method for comparison.

本実施例は、真空蒸着の後にhN−折率微調整のための
ファインアニールな行なう点のみが上記第1実施例と異
なる。
This embodiment differs from the first embodiment only in that fine annealing for fine adjustment of the hN refractive index is performed after vacuum deposition.

本実施例では蒸着1程の後に、直ちにファインアニール
な行なう。該アニールは蒸着温度よりも高い温度で所望
の時間性なわれる(最高温度320℃)。
In this embodiment, fine annealing is performed immediately after the first vapor deposition. The annealing is performed at a temperature higher than the deposition temperature for a desired period of time (maximum temperature 320° C.).

一方、第5図において、点線は上記第1図の従来例に続
いて更に洗浄、加熱及びファインアニールの工程を行な
って上記本発明実施例と同様の光学素子を製造した例を
示す。
On the other hand, in FIG. 5, the dotted line indicates an example in which an optical element similar to the embodiment of the present invention was manufactured by further performing cleaning, heating, and fine annealing steps following the conventional example shown in FIG.

第5図から分る様に、従来例では時刻t5からの冷却工
程、洗浄工程及び蒸着前の再加熱工程の分(即ちPlか
らP2までの分)及び蒸着後の冷却工程、洗浄工程及び
再加熱工程の分(即ちP3からP4までの分)だけ本発
明実施例よりも余分に時間がかかっており、またこの時
間の消費熱エネルギー分だけ本発明実施例の場合よりエ
ネルギーロスが多い。従って、上記本発明実施例によれ
ばかなりのコストダウンが可能である。
As can be seen from FIG. 5, in the conventional example, the cooling process from time t5, the cleaning process, and the reheating process before vapor deposition (that is, from P1 to P2), the cooling process after vapor deposition, the cleaning process, and the reheating process after vapor deposition. The heating process (that is, from P3 to P4) takes more time than in the embodiment of the present invention, and the energy loss is greater than in the embodiment of the present invention by the amount of heat energy consumed during this time. Therefore, according to the embodiment of the present invention described above, considerable cost reduction is possible.

尚、第5図の本発明実施例ではファインアニールの前に
真空蒸着を行なったが、冷却過程で先ずファインアニー
ルを行ない次いで真空蒸着を行なうこともできる。これ
によれば、更に熱エネルギーロスが少なく一層のコスト
ダウンが可能である。
In the embodiment of the present invention shown in FIG. 5, vacuum evaporation was performed before fine annealing, but it is also possible to first perform fine annealing and then perform vacuum evaporation during the cooling process. According to this, thermal energy loss is further reduced and costs can be further reduced.

[発明の効果] 以上の様な本発明によれば、プレス成形後の冷却過程で
成形品の温度が除歪下限点と200°Cとの間の温度で
ある時に直ちに該成形品に対し表面処理を行なうので、
製造工程中でのヤケ発生や異物付着等の表面欠陥発生を
十分に防止することができ、これにより低化学的耐久性
の故に従来光学素子製造に適しなかったガラスを用いて
も光学素子を製造することが可能であるとともに、良好
な効率及び低消費エネルギーにて安定して表面処理光学
素子を製造することができる。
[Effects of the Invention] According to the present invention as described above, when the temperature of the molded product is between the lower limit of strain relief and 200°C in the cooling process after press forming, the surface of the molded product is immediately applied. Since we will process
It is possible to sufficiently prevent surface defects such as fading and foreign matter adhesion during the manufacturing process, making it possible to manufacture optical elements using glass, which was previously unsuitable for manufacturing optical elements due to its low chemical durability. In addition, surface-treated optical elements can be stably manufactured with good efficiency and low energy consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第5図は本発明による光学素子製造方法を説
明するためのガラス温度の時間変化を示すグラフである
。 第2図は光学素子を示す図である。 第3図及び第4図は本発明における成形用型装置による
プレス成形の説明図である。 4ニガラスブロツク、   6:成形品、12二上型部
材、   14:下型部材、33ニルツボ、   36
:流出部。 代理人  弁理士  山 下 積 平 咋・−七 第3図 第4図
FIGS. 1 and 5 are graphs showing changes in glass temperature over time to explain the method for manufacturing an optical element according to the present invention. FIG. 2 is a diagram showing the optical element. FIGS. 3 and 4 are explanatory views of press molding using the molding device of the present invention. 4 Ni glass block, 6: Molded product, 12 2 Upper mold member, 14: Lower mold member, 33 Niru crucible, 36
:Outflow part. Agent: Patent Attorney Seki Yamashita, Figure 7, Figure 3, Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)溶融ガラス材料を成形用型装置を用いてプレス成
形し、かくして得られた成形品を冷却するに際し該成形
品の温度が除歪下限点と200℃との間の温度である時
に該成形品に対し表面処理を行なうことを特徴とする、
光学素子の製造方法。
(1) When the molten glass material is press-molded using a molding die device and the molded product thus obtained is cooled, the temperature of the molded product is between the lower limit of strain relief and 200°C. Characterized by performing surface treatment on molded products,
A method for manufacturing an optical element.
(2)表面処理が光学的機能面における薄膜形成処理で
ある、特許請求の範囲第1項の光学素子の製造方法。
(2) The method for manufacturing an optical element according to claim 1, wherein the surface treatment is a thin film forming treatment in terms of optical function.
(3)薄膜形成がCVDもしくは真空蒸着やスパッタ等
のPVDにより行なわれる、特許請求の範囲第2項の光
学素子の製造方法。
(3) The method for manufacturing an optical element according to claim 2, wherein the thin film is formed by CVD or PVD such as vacuum evaporation or sputtering.
(4)成形品を冷却するに際し該成形品の温度がガラス
転移点と除歪下限点との間の温度である時に該成形品を
ファインアニール処理する、特許請求の範囲第1項の光
学素子の製造方法。
(4) The optical element according to claim 1, wherein the molded product is subjected to fine annealing when the temperature of the molded product is between the glass transition point and the lower limit point of strain removal when the molded product is cooled. manufacturing method.
JP62143048A 1987-06-10 1987-06-10 Optical element manufacturing method Expired - Fee Related JPH0776095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62143048A JPH0776095B2 (en) 1987-06-10 1987-06-10 Optical element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62143048A JPH0776095B2 (en) 1987-06-10 1987-06-10 Optical element manufacturing method

Publications (2)

Publication Number Publication Date
JPS63307129A true JPS63307129A (en) 1988-12-14
JPH0776095B2 JPH0776095B2 (en) 1995-08-16

Family

ID=15329695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62143048A Expired - Fee Related JPH0776095B2 (en) 1987-06-10 1987-06-10 Optical element manufacturing method

Country Status (1)

Country Link
JP (1) JPH0776095B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035702A (en) * 1989-06-01 1991-01-11 Canon Inc Cemented lens or the like and its manufacture
JP2006013522A (en) * 2004-06-28 2006-01-12 Samsung Electronics Co Ltd Image sensor and method of manufacturing it
US8384133B2 (en) 2004-06-28 2013-02-26 Samsung Electronics Co., Ltd. Image sensor comprising anti-reflection layer having high refractive index

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035702A (en) * 1989-06-01 1991-01-11 Canon Inc Cemented lens or the like and its manufacture
JP2006013522A (en) * 2004-06-28 2006-01-12 Samsung Electronics Co Ltd Image sensor and method of manufacturing it
US8384133B2 (en) 2004-06-28 2013-02-26 Samsung Electronics Co., Ltd. Image sensor comprising anti-reflection layer having high refractive index

Also Published As

Publication number Publication date
JPH0776095B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
EP0078658B1 (en) A process for moulding glass shapes
JP2620875B2 (en) Manufacturing method of glass molded products for precision optics
US4734118A (en) Process to mold precision glass articles
US5346523A (en) Method of molding chalcogenide glass lenses
JP2006504609A5 (en)
JP2015206880A (en) Optical element, and manufacturing method of optical element
JPS6067118A (en) Manufacture of optical element
JPS60210534A (en) Method for forming optical element
US5843200A (en) Product and process for molding glass lenses
JPS63307129A (en) Production of optical element
JP4951166B2 (en) Lens blank and lens manufacturing method
US5762676A (en) Product for molding glass lenses having difficult shapes
JPS61291427A (en) Molded lens and production thererof
JP2621956B2 (en) Optical element molding method
JPH0420854B2 (en)
JPH05330832A (en) Method for molding calchogenide glass lens
JP2016124767A (en) Method for manufacturing optical element
JPS63310735A (en) Method for forming optical element
JPS63297232A (en) Molding mold for glass product
JPS6250413B2 (en)
JPH08277125A (en) Formation of glass lens
JPH1160251A (en) Formation of optical element
JP4256190B2 (en) Manufacturing method of glass optical element
JPH08169721A (en) Glass blank for forming optical element
JPH09227136A (en) Molding of optical element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees