JPS63310735A - Method for forming optical element - Google Patents

Method for forming optical element

Info

Publication number
JPS63310735A
JPS63310735A JP14402487A JP14402487A JPS63310735A JP S63310735 A JPS63310735 A JP S63310735A JP 14402487 A JP14402487 A JP 14402487A JP 14402487 A JP14402487 A JP 14402487A JP S63310735 A JPS63310735 A JP S63310735A
Authority
JP
Japan
Prior art keywords
molding
glass
temperature
mold member
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14402487A
Other languages
Japanese (ja)
Other versions
JP2501585B2 (en
Inventor
Isamu Shigyo
勇 執行
Tamakazu Yogo
瑞和 余語
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14402487A priority Critical patent/JP2501585B2/en
Publication of JPS63310735A publication Critical patent/JPS63310735A/en
Application granted granted Critical
Publication of JP2501585B2 publication Critical patent/JP2501585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould

Abstract

PURPOSE:To stably obtain a formed optical element article having excellent surface precision and appropriate for a camera lens, etc., with high efficiency by forming molten optical glass adjusted at a specified temp., primarily cooling the glass at a controlled rate, and then secondarily cooling the glass. CONSTITUTION:The molten optical glass G which has been heated and melted in a crucible 33 through a heater 34, having <=10<4> p viscosity, and kept at a specified temp. is defoamed, as required, and then extruded through an outflow part 36. A specified amt. of the glass blocks 4 cut by a cutter 40 is dropped onto a lower die member 14 previously adjusted by a heater 22 to the temp. between the temp. at which the glass G exhibits 10<3> p viscosity and the temp. 110 deg.C lower than the former temp. An upper die member 12 adjusted at the same temp. as the lower die member 14 is pressed on the member 14 to quench and solidify only the surface part, and then primary forming is carried out to obtain a primary formed article while controlling the temp. difference between the die members 14 and 12 to <=20 deg.C. The formed article is primarily cooled to the glass transition point so that the temp. of die member and that of the formed article are gradually converged, and then secondarily cooled in the same way to the stress relieving lower-limit temp. of the glass material. The formed article is then taken out.

Description

【発明の詳細な説明】 [産業上の利用分野] 本3?[はレンズ、プリズム、ミラー及びフィルタ等の
光学素子を成形する方法に関し、特にプレスにより表面
精度の良好な光学a能面を有する光学素子を成形する方
法に関する。
[Detailed description of the invention] [Industrial application field] Book 3? [This article relates to a method of molding optical elements such as lenses, prisms, mirrors, and filters, and particularly relates to a method of molding optical elements having optical surfaces with good surface precision by pressing.

[従来の技術] 一般に、レンズ、プリズム、ミラー及びフィルタ等の光
学素子は、ガラス素材を研削して外形を所望の形状とし
た後に、機鋤面即ち光が透過及び/または反射する面を
研摩して光学面とすることにより製造されている。
[Prior Art] Generally, optical elements such as lenses, prisms, mirrors, and filters are manufactured by grinding a glass material to give a desired external shape, and then polishing the machined surface, that is, the surface through which light is transmitted and/or reflected. It is manufactured by forming an optical surface.

一方、近年においては、光学的性催の向ヒが要求されて
おり、このため機fE面が非球面である光学素子の需要
が高まっている。
On the other hand, in recent years, there has been a demand for improvements in optical performance, and for this reason, there has been an increasing demand for optical elements having an aspherical surface.

この様な非球面光学素子の製造においては、研削及び研
摩により所望の表面精度(即ち表面形状及び表面粗さ等
の精度)を得ようとすれば、高度に熟練した作業者が長
時間加工を行なうことが必要である。
In the manufacture of such aspherical optical elements, highly skilled workers must spend long hours processing to obtain the desired surface precision (i.e. precision of surface shape and surface roughness) through grinding and polishing. It is necessary to do so.

そこで、最近では、上記の様な伝統的な光学素子製造方
法に代って、所定の表面精度を有する成形用金型装置内
に光学素子材料を収容して加熱及び加圧することにより
プレス成形にて直ちに機能面を含む全体的形状を形成す
ることが行なわれる様になってきている。これによれば
1機fffi面が非球面である場合でさえも比較的簡単
■つ短時間で光学素子を製造することができる。
Therefore, recently, instead of the traditional optical element manufacturing method as described above, press molding is performed by housing the optical element material in a mold device with a predetermined surface accuracy and heating and pressurizing it. Increasingly, the overall shape including the functional aspects is immediately formed. According to this method, an optical element can be manufactured relatively easily and in a short time even when the fffi surface is an aspherical surface.

プにス成形により光学機能面を形成して光学素子を製造
する方法には、一旦光学ガラス素材を[1的形状の近似
形状として予@成形品(プレフォーム)を得た上で該プ
レフォームを成形用型装置内に収容してプレスにより最
終的目的形状とする方式と、溶融光学ガラスを直ちに成
形用型装置内に収容してプレスし成形を行なう方式とが
ある。
In the method of manufacturing an optical element by forming an optically functional surface by glass molding, an optical glass material is first obtained as a pre-molded product (preform) in an approximate shape of a single shape, and then the preform is There are two methods: one is to place the molten optical glass in a mold device and press it into the final desired shape, and the other is to immediately put the molten optical glass in the mold device and press it to form the glass.

プレフォームを用いる方式では、特公昭61−3226
3号公報に記載されている様に、適宜の方法たとえば研
削及び研摩によりプレフォームを得、該プレフォーム及
び最終成形用型装置の型部材を別々にあるいは該プレフ
ォームを型装置内に収容した状態で所定の温度まで加熱
し、かくして軟化したプレフォームを型装置により適宜
の圧力でプレスし、そして冷却させる。
In the method using preform, the Japanese Patent Publication No. 61-3226
As described in Publication No. 3, a preform is obtained by an appropriate method such as grinding and polishing, and the preform and the mold member of a mold device for final molding are placed separately or the preform is housed in the mold device. The preform is then heated to a predetermined temperature and the thus softened preform is pressed with a suitable pressure using a molding device and allowed to cool.

ところで、プレス成形により高精度の光学a清面を形成
するためには、型部材の表面精度を高めることに加えて
、プレス時の型部材及びガラス材料の温度管理を厳密に
行なうことが必要である。
By the way, in order to form a highly accurate optically clear surface by press molding, in addition to improving the surface precision of the mold member, it is necessary to strictly control the temperature of the mold member and the glass material during pressing. be.

特に、上記溶融ガラスを直接型内に収容してプレス成形
する方式では温度の変化が大きいので十分な温度管理が
必要である。
In particular, in the method in which the molten glass is placed directly in a mold and press-formed, sufficient temperature control is required because temperature changes are large.

この様な温度管理を容易にするために、プレス成形を2
以上の工程に分けて連続的に行なうことが提案されてい
る。たとえば、特開昭60−118639号公報には、
大略の外形を得る第1次の成形(ガラス粘度10〜10
3ポアズ、プレス圧2〜10Kg/cm2)を行ない、
該第1次成形で得られた成形品の粘度が108.5〜I
QLIポアズである間にガラス転移点温度以北の温度の
型部材を用いて第2次の成形を行ない、かくして目的と
する形状及び精度の光学素子を得る方法が開示されてい
る。
In order to facilitate this kind of temperature control, press forming is carried out in two ways.
It has been proposed to perform the above steps sequentially. For example, in Japanese Patent Application Laid-open No. 60-118639,
First molding to obtain the approximate external shape (glass viscosity 10-10
3 poise, press pressure 2-10 Kg/cm2),
The viscosity of the molded product obtained in the primary molding is 108.5 to I
A method is disclosed in which a second molding is performed using a mold member at a temperature north of the glass transition point temperature during QLI poise, thereby obtaining an optical element having the desired shape and precision.

しかしながら、この様な従来のプレス成形方法では、外
径寸法公差が0.05mm以内、光学面の表面粗さがR
maxo 、02gm以下、光学面の面精度がニュート
ンリング2木以内、該光学面の非対称性(アス)及び部
分的面変化(クセ)がいずれもニュートンリング0.5
本以内の、写真レンズの様な高精度な光学素子を安定し
て得ることは困難である。
However, in this conventional press forming method, the outer diameter tolerance is within 0.05 mm and the surface roughness of the optical surface is R.
maxo, 02 gm or less, the surface accuracy of the optical surface is within 2 Newton rings, and the asymmetry (as) and partial surface change (habit) of the optical surface are both Newton ring 0.5.
It is difficult to stably obtain highly accurate optical elements such as photographic lenses.

本発明者は、成形品の光学的機能面の面精度は特にプレ
ス後の冷却のプロセスにより大きく左右されることを見
出し、本発明に到達した。
The present inventors have discovered that the surface precision of the optically functional surface of a molded article is largely influenced by the cooling process after pressing, and has arrived at the present invention.

更に、プレス成形により高精度の光学素子を良好に得る
ためには以下の諸点が満足されるのが好ましい。
Furthermore, in order to successfully obtain a highly accurate optical element by press molding, it is preferable that the following points be satisfied.

即ち、高温にさらされる型の寿命を延ばし、型のコスト
をできるだけ低減すること、成形された光学素子にヒケ
による変形やパリ、ワレ等が生じないこと、成形光学素
子の表面汚染を生じさせないために離型剤等を使用しな
いで型部材との融着を防止すること、ガラス材料成分の
揮発等による表面変化層の厚さが光学的用途に支障を来
さない程度であること、成形光学素子を型から取出した
後も表面精度が低下せず更に屈折率調整のためのファイ
ンアニールを行なっても面精度を維持できること、ガラ
ス材料の種類によらず十分な精度で成形が行なわれるこ
と、温度サイクルに無駄が少なく低消費エネルギー量に
て連続成形が回走であること、が好ましい。
That is, to extend the life of the mold that is exposed to high temperatures, to reduce the cost of the mold as much as possible, to prevent deformation due to sink marks, cracks, cracks, etc. in the molded optical element, and to prevent surface contamination of the molded optical element. The thickness of the surface-changed layer due to volatilization of glass material components must be at a level that does not interfere with optical applications. The surface precision does not deteriorate even after the element is removed from the mold, and the surface precision can be maintained even when fine annealing is performed to adjust the refractive index, and molding can be performed with sufficient precision regardless of the type of glass material. It is preferable that the continuous molding be done in circular motion with little waste in temperature cycles and low energy consumption.

本発明は上記の実情に鑑みてなされたものであり、プレ
ス成形により良好な効率にて安定して高精度の光学素子
を得ることを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to stably obtain a high-precision optical element with good efficiency by press molding.

[問題点を解決するための手段] 本発明によれば、以上の如き目的は、 ガラス材料を成形用型装置を用いて成形して成形品を得
、該成形の終了時点で型装置の型部材と成形品との温度
差を20℃以内に維持しておき°、該成形品を上記型装
置内に収容したまま上記ガラス材料のガラス転移点温度
まで各型部材温度と成形品温度とが徐々に収束する様に
第1の冷却速度で第1次冷却を行ない、次いで成形品を
型装置内に収容したまま一ヒ記ガラス材料の除去歪下限
点温度までト記各型部材温度と成形品温度とが徐々に収
束する様に上記第1の冷却速度よりdい第2の冷却速度
で第2次冷却を行ない、しかる後に型装置から成形品を
取出すことを特徴とする、光7:素子の成形方法、 により達成される。
[Means for Solving the Problems] According to the present invention, the above object is to obtain a molded product by molding a glass material using a molding device, and at the end of the molding, the mold of the molding device is The temperature difference between the member and the molded product is maintained within 20°C, and the temperature of each mold member and the molded product are adjusted to the glass transition temperature of the glass material while the molded product is housed in the mold device. The first cooling is performed at the first cooling rate so as to gradually converge, and then, while the molded product is housed in the mold device, the temperatures of each mold member and molding are increased to the lower limit temperature of removal strain of the glass material. Light 7: Performing secondary cooling at a second cooling rate d higher than the first cooling rate so that the product temperature gradually converges, and then removing the molded product from the mold device. This is achieved by a method of molding the element.

〔実施例] 以下、図面を参照しながら本発明の具体的実施例を説明
する。
[Example] Hereinafter, specific examples of the present invention will be described with reference to the drawings.

第1図は本発明による光学素子成形方法を実施するため
の成形用架装この一実施例の要部の構成図である。尚、
本実施例は成形を第1次成形及び第2次成形の2段階で
行なう場合について示す。
FIG. 1 is a structural diagram of the main parts of this embodiment of a molding body for carrying out the optical element molding method according to the present invention. still,
This example shows a case in which molding is performed in two stages: primary molding and secondary molding.

第1図の装置は第2図に示される様な光学素子(第1面
の曲率半径52mm、第2面の曲率半径40mmの両凸
レンズ)2の第1次成形のために用いられるものである
The apparatus shown in Fig. 1 is used for the primary molding of an optical element 2 (biconvex lens with a radius of curvature of the first surface of 52 mm and a radius of curvature of the second surface of 40 mm) as shown in Fig. 2. .

第1図において、12は上型部材であり、その下面には
上記光学素子2の第1面に対応した形状の成形作用面1
2aが形成されている。14は下型部材であり、その上
面には上記光学素子2の第2面に対応した形状の成形作
用面14aが形成されている。これら型部材はたとえば
5US31O8等からなる。上記上下の型部材中にはそ
れぞれそれらの型部材の温度を測定するための熱電対1
6.18の測定点が埋め込まれており、また各型部材の
周囲にはそれぞれ該型部材の加熱のためのヒータ20,
22が付設されている。該ヒータ20はコントローラ2
4により発熱量を制御され、またヒータ22はコントロ
ーラ26により発熱量を制御される。上記コントローラ
24には上記熱電対16から検出温度信号が入力され、
同様に上記コントローラ26には上記熱電対18から検
出温度信号が入力される。また、28はL記各型部材加
熱のためのヒータ20,22に対し、上記コントローラ
24.26を介して電力を供給するための電源である。
In FIG. 1, reference numeral 12 denotes an upper mold member, and its lower surface has a molding action surface 1 having a shape corresponding to the first surface of the optical element 2.
2a is formed. Reference numeral 14 denotes a lower mold member, on the upper surface of which a molding surface 14a having a shape corresponding to the second surface of the optical element 2 is formed. These mold members are made of, for example, 5US31O8. There is a thermocouple 1 in each of the upper and lower mold members to measure the temperature of those mold members.
6.18 measurement points are embedded, and around each mold member there are heaters 20, 20 for heating the mold member, respectively.
22 is attached. The heater 20 is connected to the controller 2
The amount of heat generated by the heater 22 is controlled by a controller 26. A detected temperature signal is inputted from the thermocouple 16 to the controller 24,
Similarly, a detected temperature signal is inputted to the controller 26 from the thermocouple 18 . Further, 28 is a power source for supplying electric power to the heaters 20 and 22 for heating each mold member listed in L through the controllers 24 and 26.

上記上型部材12は支持部材30により支持されており
、該支持部材に接続されている不図示の駆動源により」
二下方向に移動せしめられる。同様に、上記下型部材1
4は支持部材32により支持されており、該支持部材に
接続されている不図示の駆動源により上下刃向に移動せ
しめられる0以上の様なと型部材12及び/または下型
部材14の上下方向移動により型の開閉が行なわれる。
The upper mold member 12 is supported by a support member 30, and is driven by a drive source (not shown) connected to the support member.
It is forced to move in two downward directions. Similarly, the lower mold member 1
4 is supported by a support member 32, and is moved in the vertical direction by a driving source (not shown) connected to the support member to move the upper and lower parts of the mold member 12 and/or the lower mold member 14 such as 0 or more. The directional movement causes the mold to open and close.

以上の型装置においては、上型部材12と下型部材14
とを閉じた時に、両型部材の成形作用面12a、14a
間に形成されるキャビティの形状が第2図で示される最
終的レンズ形状の中心厚2.9mmに対し約5%厚い3
.05mmの中心厚となる様な形状とされている。
In the above mold device, the upper mold member 12 and the lower mold member 14
When the mold members are closed, the molding working surfaces 12a, 14a of both mold members
The shape of the cavity formed between them is about 5% thicker than the center thickness of 2.9 mm of the final lens shape shown in FIG.
.. The shape is such that the center thickness is 0.05 mm.

型部材12.14の成形作用面12a、14aの表面粗
さはRmaxlOμm以下たとえば6゜3gmとされて
いる。この様な型部材は通常の機械加工で容易に製作す
ることができる。
The surface roughness of the molding working surfaces 12a, 14a of the mold member 12.14 is set to RmaxlOμm or less, for example, 6°3 gm. Such a mold member can be easily manufactured by ordinary machining.

:53図及び第4図は上記第1図の成形用型装置を用い
て行なわれる第1次成形までの工程を説1多1するため
の図である。
53 and 4 are diagrams for explaining the steps up to the primary molding performed using the molding device shown in FIG. 1 above.

第3図において、33はガラス溶融槽(ルツボ)であり
、該ツルボの周囲にはヒータ34が付設されている。ル
ツボ32の下部には流出部36が接続されており、該流
出部の周囲にはヒータ38が付設されている。そして、
上記流出部36の下方には連続的に流出するが融ガラス
を適宜の長さにす1面するためのカッター40が配置さ
れている。
In FIG. 3, 33 is a glass melting tank (crucible), and a heater 34 is attached around the crucible. An outflow section 36 is connected to the lower part of the crucible 32, and a heater 38 is attached around the outflow section. and,
A cutter 40 is disposed below the outflow portion 36 to cut the molten glass into an appropriate length while continuously flowing out.

ルツボ33内に所望の光学ガラスの原料を入れ、ヒータ
34を作用させて適宜の温度に加熱する。これにより、
ルツボ33内に溶融光学ガラスGが形成される。該ガラ
スGの粘度はたとえば104ポアズ以下とされる。尚、
この際に必要に応して適宜攪拌し且つ脱泡処理を行なう
ことにより、より均質性の高い光学ガラスが得られる。
A raw material for a desired optical glass is placed in the crucible 33, and heated to an appropriate temperature by operating the heater 34. This results in
Molten optical glass G is formed in the crucible 33. The viscosity of the glass G is, for example, 104 poise or less. still,
At this time, by stirring and defoaming as necessary, optical glass with higher homogeneity can be obtained.

溶融ガラスは東方の作用により流出部36内を次第に流
下し、該流出部下端の流出口から押し出される。この際
に、該流出口の下方に上記第1図の装置の下型部材14
を配置しておく。
The molten glass gradually flows down in the outflow section 36 due to the eastward action and is pushed out from the outlet at the lower end of the outflow section. At this time, the lower mold member 14 of the apparatus shown in FIG.
Place it.

該下型部材14は予めヒータ22により上記光学ガラス
が粘度1013ポアズを示す温度(ガラス転移点温度)
と該温度より110″C低い温度との間の温度に調整し
ておく。
The lower mold member 14 is heated in advance by a heater 22 to a temperature at which the optical glass exhibits a viscosity of 1013 poise (glass transition point temperature).
and a temperature 110″C lower than the above temperature.

」二記溶融軟化したガラスが流出部36の流出口から押
し出され、その先端部が上記カッター40よりも下方の
適宜の高さに到達した時点で、該カッターを作用させ溶
融ガラスの切断を行なう。
2. The molten and softened glass is pushed out from the outlet of the outlet section 36, and when its tip reaches an appropriate height below the cutter 40, the cutter is activated to cut the molten glass. .

かくして切断されたガラスブロック4は上記下ffi部
材14の成形作用面14a上に落下する。
The thus cut glass block 4 falls onto the molding surface 14a of the lower ffi member 14.

次に、第4図に示される様に、下型部材14に対し上記
上型部材12を抑圧して型を閉じ第1次成形を行ない、
第1次成形品6を得る。尚、この成形に先立ち予め上型
部材12も下型部材14と同様に予めヒータ20により
丘記光学ガラスのガラス転移点温度と該温度より110
℃低い温度との間の温度に調整しておくのが好ましい。
Next, as shown in FIG. 4, the upper mold member 12 is pressed against the lower mold member 14 to close the mold and perform primary molding.
A primary molded product 6 is obtained. Incidentally, prior to this molding, the upper mold member 12 as well as the lower mold member 14 is heated in advance to the glass transition point temperature of the optical glass by the heater 20 at 110°C.
It is preferable to adjust the temperature to a temperature between 0.5°C and a lower temperature.

以」二の様な第1次成形では、型部材12.14がガラ
ス転移点温度と該温度より110℃低い温度との間の温
度に調整されているので、該型部材間に供給される高温
の溶融ガラスブロック4は表面部分のみ温度が急激に低
下し固化する。このため、該型部材の成形作用面12a
、14aの表面粗さは第1次成形品6に忠実に転写され
ることはなく該成形品の表面粗さは比較的小さくなり、
更に型合せ部におけるパリ発生もなくなる。そして、型
部材の成形作用面12a、14aの表面粗さをRmax
lOpm以下としておくことにより第2次成形で十分に
良好な表面粗さの第2次成形品を得ることができる。従
って、上記第1次成形用型装置の型部材の成形作用面を
鏡面仕上げする必要がなく、該型部材製作のコストダウ
ンが可能である。
In the primary forming described below, since the mold members 12 and 14 are adjusted to a temperature between the glass transition point temperature and a temperature 110° C. lower than the glass transition temperature, the mold members 12 and 14 are supplied between the mold members. The temperature of only the surface portion of the high-temperature molten glass block 4 rapidly decreases and solidifies. For this reason, the molding surface 12a of the mold member
, 14a is not faithfully transferred to the primary molded product 6, and the surface roughness of the molded product becomes relatively small.
Furthermore, occurrence of flash at the mold matching portion is also eliminated. Then, the surface roughness of the molding working surfaces 12a and 14a of the mold member is set to Rmax
By setting it to 1Opm or less, it is possible to obtain a secondary molded product with sufficiently good surface roughness in the secondary molding. Therefore, there is no need to mirror-finish the molding surface of the mold member of the primary molding mold device, and the cost of manufacturing the mold member can be reduced.

また、上記第1次成形ではガラス材料は表面部分のみ温
度が急激に低下し固化するので、ガラス表面からのガラ
ス成分の揮発等により第1次成形品6の表面に形成され
る表面変質層の厚さを、通常の用途には全く問題ない程
度に十分に薄く、することが可能である。
In addition, in the above-mentioned primary forming, only the surface portion of the glass material rapidly decreases in temperature and solidifies. The thickness can be made thin enough to be completely acceptable for normal applications.

更に、上記第1次成形ではガラス材料は表面部分のみ温
度が急激に低下し固化するが内部はそれ程温度低下がな
いため大きな変形が可能である。
Furthermore, in the above-mentioned primary forming, the temperature of the glass material sharply decreases only at the surface portion and solidifies, but the inside temperature does not decrease so much, so that large deformations are possible.

そして、上記第1次成形では型部材とガラスブロック4
との間にある程度の温度差があるので第1次成形品の表
面には部分的にヒケが発生するが、上記の様な第1次成
形条件を用いることにより、ヒケは第2次成形において
2%以上の上下方向押し代にて十分に解消することがで
きる。
In the above primary molding, the mold member and the glass block 4 are
Because there is a certain temperature difference between the This problem can be sufficiently resolved with a vertical push distance of 2% or more.

尚、上記第1次成形の開始時点の型部材温度をガラス転
移点温度を越える温度とすると、北記ヒケが少なくなる
という利点が生ずるけれども、型部材とガラスとの融着
が生じやす−くなり、また第1次成形品の型部材合せ部
におけるパリ発生が顕著となる。更に、型部材成形作用
面の転写の忠実度が高まるので、該成形作用面の表面粗
さを十分に高く(たとえば鏡面仕上げ)する必要が生ず
る。
If the temperature of the mold member at the start of the above-mentioned primary molding is set to a temperature exceeding the glass transition point temperature, the above-mentioned sink marks will be reduced, but this will tend to cause fusion between the mold member and the glass. Moreover, the occurrence of flashing at the mold member mating portion of the primary molded product becomes noticeable. Furthermore, since the fidelity of transfer of the molding working surface of the mold member is increased, it becomes necessary to make the surface roughness of the molding working surface sufficiently high (for example, mirror finished).

一力、上記第1次成形開始時の型温度をガラス転移点温
度より110℃低い温度未満とすると。
For example, if the mold temperature at the start of the primary molding is set to less than 110° C. below the glass transition point temperature.

第1次成形品にワレやピリを生じやすくなり、さらにヒ
ケも第2次成形で解消できない程度に増大するおそれが
ある。
The primary molded product is likely to develop cracks and tingles, and furthermore, there is a risk that sink marks will increase to the extent that they cannot be eliminated by the secondary molding.

第5図及び第6図は第1次成形後第2次成形までの工程
を説明するための図である。第2次成形は上記第1図に
示されると同様の型装置を用いて行なわれる。但し、上
型部材13及び下型部材15としてJ−上第1図の装置
の型部材12.14とまた、上型部材13と下型部材1
5とを閉じた時に、両型部材の成形作用面13a、15
a間に形成されるキャどティの形状が:52図で示され
る最終的レンズ形状となる様な形状とされている。
FIGS. 5 and 6 are diagrams for explaining the steps from primary molding to secondary molding. The secondary molding is performed using a mold apparatus similar to that shown in FIG. 1 above. However, as the upper mold member 13 and the lower mold member 15, the mold members 12 and 14 of the apparatus shown in FIG.
When the mold members 5 and 5 are closed, the molding working surfaces 13a and 15 of both mold members
The shape of the cavity formed between a is such that it becomes the final lens shape shown in Figure 52.

型部材13.15の成形作用面の表面粗さは目的とする
光学素子の光学的機悌面の表面粗さと同程度またはそれ
以下とされ(鏡面仕上げ)、たとえばRmaxo、01
uLm以下とされている。
The surface roughness of the molding surface of the mold member 13.15 is equal to or lower than the surface roughness of the optically flexible surface of the target optical element (mirror finish), for example, Rmaxo, 01.
It is considered to be less than uLm.

上記第1次成形で得られた第1次成形品6は、その表面
近傍の粘度が108〜1Q14.5ポアズとなった時点
で、第5図に示される様に、第2次成形用型装置の下型
部材15の成形作用面15a上に所定の姿勢で・1痩置
されるのが好ましい、尚、この時点で第1次成形品6の
中心部分の粘度は105〜1Q12ポアズであるのが好
ましい。
When the primary molded product 6 obtained in the above primary molding has a viscosity of 108 to 1Q14.5 poise near its surface, it is transferred to the secondary molding mold as shown in FIG. It is preferable that the primary molded product 6 is placed in a predetermined position on the molding surface 15a of the lower mold member 15 of the device.At this point, the viscosity of the center portion of the primary molded product 6 is 105 to 1Q12 poise. is preferable.

この型装置からの取出し時の第1次成形品6の表面近傍
の粘度が108ポアズ未満であると、型からの取出し時
及び第2次成形用型装置への搬入時に生ずる変形が大き
くなりがちであり、第2次成形において良好な成形を行
なえなくなる場合がある。また、型装置からの増出し時
の第1次成形品6の表面近傍の粘度が1014・5ポア
ズを越えると、型からの取出し時及び第2次成形時にワ
レを生じやすくなり、更に第2次成形に要する時間も長
くなりがちである。この様な不利は上記条件にて型装置
からの取出しを行なうことにより解消される。
If the viscosity near the surface of the primary molded product 6 when taken out from the mold device is less than 108 poise, deformation that occurs when taken out from the mold and when carried into the mold device for secondary molding tends to be large. Therefore, good molding may not be possible in the secondary molding. Furthermore, if the viscosity near the surface of the primary molded product 6 when ejected from the mold device exceeds 1014·5 poise, cracks are likely to occur during ejection from the mold and during secondary molding, and The time required for subsequent molding also tends to be long. Such disadvantages can be eliminated by removing the mold from the molding device under the above conditions.

第2次成形に先立ち、第2次成形用型装置の上型部材1
3及び下型部材15はそれぞれ予めヒータ21,23に
より上記ガラス転移点温度と該温度より50℃低い温度
との間の温度に調整しておくのが好ましい。
Prior to the second molding, the upper mold member 1 of the mold device for the second molding
3 and the lower mold member 15 are preferably adjusted in advance to a temperature between the above-mentioned glass transition point temperature and a temperature 50° C. lower than the above-mentioned glass transition temperature using heaters 21 and 23, respectively.

次に、第6図に示される様に、下型部材15に対し上記
上型部材13を押圧して型を閉じ第2次成形を行なう、
この:52次成形は、その終了時点において上型部材1
3及び下型部材15が第2次成形品8の粘度が108・
5〜IQIIポアズを示す温度となり且つ該1−型部材
13と下型部材15とが20℃以内の温度差に収束する
様に、」−記ヒータ21,23の発熱量を適宜調節しな
がら、適度の圧力で適宜の時間計なうのが好ましい、こ
れにより、第2次成形終了時点で成形品8内の温度差を
上記型部材の温度差範囲内に維持して第2次成形品8が
得られる。尚、面精度を向上させるためには、この成形
の際に、型部材の温度を徐々に上昇させ且つガラス温度
を徐々に低下させ、更にプレス圧力を徐々に上鍔させる
のが好ましい。
Next, as shown in FIG. 6, the upper mold member 13 is pressed against the lower mold member 15 to close the mold and perform secondary molding.
At the end of this :52 molding, the upper mold member 1
3 and the lower mold member 15 have a viscosity of 108.
While adjusting the heat generation amount of the heaters 21 and 23 as appropriate, so that the temperature becomes 5 to IQII poise and the temperature difference between the mold member 13 and the lower mold member 15 converges to within 20 ° C. It is preferable to apply an appropriate pressure and measure an appropriate amount of time.Thereby, at the end of the second molding, the temperature difference within the molded product 8 is maintained within the temperature difference range of the mold member, and the second molded product 8 is is obtained. In order to improve the surface accuracy, it is preferable to gradually increase the temperature of the mold member, gradually lower the glass temperature, and gradually increase the press pressure during this molding.

以上の様な第2次成形において、成形終了時点の成形品
8の粘度が108・5ポアズ未満であると冷却時におけ
るヒケ発生がw1著となりがちであり、また成形終了時
点の成形品8の粘度が1O11ポアズを越えると成形時
間が長くなり且つ成形後に成形品8に部分的な弾性回復
が発生しがちであり良好な面精度が得られなくなること
がある。この様な不利は上記l Q 8.5〜IQII
ポアズの範囲とすることにより解消される。
In the above-mentioned secondary molding, if the viscosity of the molded product 8 at the end of molding is less than 108.5 poise, the occurrence of sink marks during cooling tends to be significant. If the viscosity exceeds 1011 poise, the molding time becomes long and the molded product 8 tends to undergo partial elastic recovery after molding, making it impossible to obtain good surface accuracy. This kind of disadvantage is the above l Q 8.5 ~ IQII
This problem can be solved by setting it within the Poise range.

また、成形終了時点の上型部材13と下型部材15との
温度差が20℃を越えると、成形品8の両面の温度差が
大きくなり冷却時に成形品8に発生するソリ応力が大き
くなりすぎ良好な面精度が得られなくなることがある。
Furthermore, if the temperature difference between the upper mold member 13 and the lower mold member 15 at the end of molding exceeds 20°C, the temperature difference between both sides of the molded product 8 will increase, and the warping stress generated in the molded product 8 during cooling will increase. If it is too high, good surface accuracy may not be obtained.

この様な不利は温度差を20℃以下とすることにより解
消される。
Such disadvantages can be eliminated by setting the temperature difference to 20° C. or less.

更に、第2次成形の開始時にお−ける上型部材及び下型
部材の温度がガラス転移点温度を越える温度であると、
上記第1次成形で生じたヒケが十分には解消されず良好
な面精度を得にくいという不利がある。一方、上記第2
次成形開始時の)!i湿温度ガラス転移点温度より50
℃低い温度未満であると、第2次成形品にワレやピリを
生じやすくなり、さらに成形に要する時間も長くなると
いう不利がある。この様な不利は上記温度範囲とするこ
とにより解消される。
Furthermore, when the temperature of the upper mold member and the lower mold member at the start of the secondary molding is a temperature exceeding the glass transition point temperature,
There is a disadvantage that the sink marks caused in the above-mentioned primary forming are not sufficiently eliminated and it is difficult to obtain good surface accuracy. On the other hand, the second
) at the start of the next molding! i humidity temperature 50 from glass transition point temperature
If the temperature is lower than 0.degree. C., there are disadvantages in that cracks and tingles are likely to occur in the secondary molded product, and the time required for molding is also increased. Such disadvantages can be eliminated by keeping the temperature within the above range.

更に、後述する冷却工程終了後に成形品が第2の型装置
から取出される際の該型装置の型部材温度は成形品の粘
度が1014・5ポアズを示す温度であることから、こ
の型装置に引き続き次サイクルの第1次成形品を収容す
る際に該型部材を大きく加熱する必要がない。
Furthermore, since the temperature of the mold member of the second mold device when the molded product is taken out from the second mold device after the cooling process described later is a temperature at which the viscosity of the molded product is 1014·5 poise, this mold device There is no need to heat the mold member significantly when storing the primary molded product for the next cycle.

更に、第2次成形開始時点において型部材よりも第1次
成形品の温度が高いので、型部材が成形品から加熱を受
け、従ってヒータによる型部材加熱をそれ程強くしなく
てもよく、型温度の制御が容易で熱サイクル的に無理が
生ずることがなく、サイクルタイムを一層短縮すること
が可f駈である。
Furthermore, since the temperature of the primary molded product is higher than that of the mold member at the start of the second molding, the mold member receives heat from the molded product, so there is no need to heat the mold member so strongly by the heater, and the temperature of the mold member is higher than that of the mold member. It is possible to easily control the temperature without causing any strain on the thermal cycle, and to further shorten the cycle time.

更に、第2次成形において型部材温度が最も高くなるの
は成形終了時であり、この時点では型部材はガラス成形
品により十分に覆われているため酸化の程度も少なく、
型部材の耐久性の向上が可壱となる。
Furthermore, in the secondary molding, the temperature of the mold member reaches its highest at the end of molding, and at this point the mold member is sufficiently covered with the glass molded product, so the degree of oxidation is low.
It is possible to improve the durability of mold members.

該第2次成形の後に、型装置内に第2次成形品8を位置
させたままで冷却を行なう、冷却は以下の様な2段階で
行なう。
After the secondary molding, cooling is performed while the secondary molded product 8 remains in the mold device. Cooling is performed in two stages as described below.

第1次冷却はガラス転移点温度までの段階であり、第2
次冷却は第2次成形品8が粘度IQ14・5ポアズを示
す温度(以下、「除歪下限点温度」という)までの段階
である。
The first cooling is the stage to the glass transition temperature, and the second
The next cooling is a stage to a temperature at which the second molded product 8 exhibits a viscosity IQ of 14.5 poise (hereinafter referred to as "strain removal lower limit temperature").

第1次冷却はその終了時点において上型部材13の温度
と下型部材15の温度との差が5℃以内好ましくは2℃
以内となる様に冷却速度を適宜調節しながら行なわれる
。そして、これにより成形品の温度も上記温度範囲内と
なる様にする。冷却速度の調節は第1次成形に用いるコ
ントローラ24.26と同様の不図示のコントローラに
よりそれぞれヒータ21,23の発熱量をコントロール
することによりなされる。
At the end of the first cooling, the difference between the temperature of the upper mold member 13 and the temperature of the lower mold member 15 is within 5°C, preferably 2°C.
The cooling rate is adjusted as appropriate so that the cooling rate is within the following range. In this way, the temperature of the molded product is also kept within the above temperature range. The cooling rate is adjusted by controlling the amount of heat generated by the heaters 21 and 23 using controllers (not shown) similar to the controllers 24 and 26 used for primary molding.

第2次冷却はその工程中において上型部材13の温度と
下型部材15の温度との差が上記第1次冷却工程終了時
点よりも大きくならずに次第に小さくなる様にコントロ
ーラによりそれぞれヒータ21、.23の発熱量をコン
トロールしながら行なわれる。この際には、成形品の温
度も型部材温度と同等に維持する。
During the second cooling process, the heater 21 is controlled by the controller so that the difference between the temperature of the upper mold member 13 and the temperature of the lower mold member 15 does not become larger than that at the end of the first cooling process and gradually decreases. ,.. This is done while controlling the amount of heat generated. At this time, the temperature of the molded product is also maintained at the same level as the temperature of the mold member.

以上の様な冷却を行なって得られた最終成形品には残留
歪が殆どなく、−上記第2次成形の型部材成形作用面の
面精度に極めて忠実な(たとえばニュートンリング2木
以内の)光学的機能面を有し、続いて屈折率調整のため
のファインアニールを行なっても面精度が大きく低ドす
ることがない。
The final molded product obtained by cooling as described above has almost no residual strain, and is extremely faithful to the surface accuracy of the mold member forming working surface of the above-mentioned secondary forming (for example, within 2 Newton rings). It has an optically functional surface, and even if fine annealing is subsequently performed to adjust the refractive index, the surface precision will not deteriorate significantly.

以上の様にして実際に本発明による光学素子成形方法を
実施したいくつかの例を以下に示す。
Some examples of actually implementing the optical element molding method according to the present invention as described above will be shown below.

例  1 : 第2図に示される様な形状を有するカメラ用のガラスレ
ンズを溶融ガラスから2段階プレス成形により製造した
Example 1: A glass lens for a camera having the shape shown in FIG. 2 was manufactured from molten glass by two-step press molding.

ガラス材料としては、屈折率n (d)が1.5955
1でアツベ数υ(d)が39.2のフリント系光学ガラ
スF8を用いた。
The glass material has a refractive index n (d) of 1.5955.
Flint type optical glass F8 with an Atsbe number υ(d) of 39.2 was used.

先ず、該ガラス材料の原料を第3図に示されるルツボ3
3内に収容し1400℃に加熱溶融してガラス化させ、
そのV!1350℃まで急冷し更に1335℃まで7.
5℃/hの速度で徐冷し脱泡処理を行なった。この脱泡
処理の前及び後で攪拌操作による均質化処理を行なった
First, the raw material of the glass material is placed in a crucible 3 shown in FIG.
3, heated and melted at 1400°C to vitrify it,
That V! 7. Rapidly cool to 1350°C and further to 1335°C.
Degassing treatment was carried out by slow cooling at a rate of 5° C./h. Before and after this defoaming treatment, homogenization treatment by stirring operation was performed.

次に、該溶融ガラスを第1図に示される様な第1次成形
用型装置を用いて第1次成形した。該成形用型装置の型
部材12.14は5US310Sからなり、それらの成
形作用面12a、14aの表面粗さはRmax6.3μ
mであり、更に該型部材12.14を閉じた時に形成さ
れるキャビティは一ヒ下方向の中心厚さが第2因に示さ
れる目的レンズ形状の対応中心厚2.9mmよりも約5
%厚い3.05mmとされていた。尚、第1次成形用型
装置の型部材13.15の材料は超硬合金であった・ 第7図は本例における第1次成形用型装置の下型部材1
4、第2次成形用型装置の上型部材13及び下型部材1
5、及び被成形材料であるガラスの温度の時間的変化を
示すグラフである。
Next, the molten glass was first formed using a first forming mold apparatus as shown in FIG. The mold members 12 and 14 of the mold device are made of 5US310S, and the surface roughness of their molding surfaces 12a and 14a is Rmax6.3μ.
m, and the cavity formed when the mold member 12.14 is closed has a center thickness in the downward direction of about 5 mm, which is smaller than the corresponding center thickness of the objective lens shape shown in the second factor, 2.9 mm.
% thicker at 3.05mm. The material of the mold members 13 and 15 of the primary mold device was cemented carbide. Figure 7 shows the lower mold member 1 of the primary mold device in this example.
4. Upper mold member 13 and lower mold member 1 of the mold device for secondary molding
5 and is a graph showing temporal changes in the temperature of glass, which is a material to be molded.

第1次成形では、当初(時刻0)、第1次成形用型装置
の上型部材12及び下型部材14はガラス材料のガラス
転移点温度Tg(445℃)より15℃低い430℃に
調整された。
In the primary molding, initially (time 0), the upper mold member 12 and lower mold member 14 of the primary molding mold device are adjusted to 430°C, which is 15°C lower than the glass transition point temperature Tg (445°C) of the glass material. It was done.

第3図に示されるガラス流出部36から流下するガラス
の温度は920℃とされた。この温度で該ガラスの粘度
は約I Q 3,8ポアズである。ガラスはカッター4
0の切断動作により所定の重量のガラスブロック4とし
て下型部材14上に供給した。
The temperature of the glass flowing down from the glass outlet 36 shown in FIG. 3 was 920°C. At this temperature the viscosity of the glass is approximately IQ 3.8 poise. Cutter 4 for glass
The glass block 4 having a predetermined weight was supplied onto the lower mold member 14 by a cutting operation of 0.

第1次成形で型装置に供給されるガラスの粘度には好ま
しい範囲がある。即ち、ガラス粘度が小さすざると流動
性が過剰となり適止なブロックを41)にくくなり、他
方ガラス粘度が大きすぎると型装置に供給される際にガ
ラスブロック中に泡を巻き込んだり該ブロック中に脈理
を発生させたりしがちである。たとえば、フリント系ガ
ラス及びクラウン系ガラスでは好ましい範囲としては1
03.0−105・Q程度が例示でき、ランタン系ガラ
スでは好ましい範囲として100・5〜I Q 3.5
程度が例示できる。
There is a preferable range for the viscosity of the glass supplied to the mold device in the primary molding. In other words, if the glass viscosity is too low, the fluidity will be excessive and it will be difficult to form a suitable block41), while if the glass viscosity is too high, bubbles will be drawn into the glass block when it is fed to the molding device, or the block will be damaged. It tends to cause striae. For example, for flint glass and crown glass, the preferred range is 1
An example is about 03.0-105·Q, and a preferable range for lanthanum glass is 100·5 to IQ 3.5.
The degree can be exemplified.

上記下型部材14に対するガラスの供給は時刻11にお
いてなされ、該下型部材を上型部材12に対応する位置
へと移動させ、その後直ちに該ド型部材に対し上型部材
を合せて、時刻t2まで第1次成形を行なった。この過
程で、ガラス内部は粘度が約103.8ポアズから約1
0G−107゛ポアズとなり温度が急激に低下する。同
時に、型部材14の温度は430℃から急激に上昇する
。第1次成形は約5秒間かけて行なわれ、この間プレス
圧力は最大25Kg/cm2まで徐々に高められた。
The glass is supplied to the lower mold member 14 at time 11, and the lower mold member is moved to a position corresponding to the upper mold member 12, and then the upper mold member is immediately aligned with the upper mold member, and at time t2. Primary molding was performed up to this point. During this process, the viscosity inside the glass changes from about 103.8 poise to about 1
The temperature suddenly drops to 0G-107゛poise. At the same time, the temperature of the mold member 14 rises rapidly from 430°C. The primary forming was carried out for about 5 seconds, during which time the press pressure was gradually increased to a maximum of 25 kg/cm2.

一方、第2次成形用型装置の上型部材13及び下型部材
15は、時刻t3までにガラス材料のガラス転移点温度
より5℃低い4.40℃に調整された。
On the other hand, the upper mold member 13 and lower mold member 15 of the secondary mold device were adjusted to a temperature of 4.40° C., which is 5° C. lower than the glass transition point temperature of the glass material, by time t3.

上記時刻t2において第1次成形用型装置から第1次成
形品6を取出し、該第1次成形品を時刻t3において第
2次成形用型装置の下型部材15上に供給する0時刻t
2において成形品6の粘度は内部で約I Q 6.6ポ
アズで表面部で約109ポアズであり、時刻t3におい
て該成形品の粘度は内部で約107ポアズで表面部で約
lQ10ポアズであった。
At time t2, the primary molded product 6 is taken out from the primary molding device, and at time t3, the primary molded product is supplied onto the lower mold member 15 of the secondary molding device, at time t.
At time t3, the viscosity of the molded article 6 was about IQ 6.6 poise inside and about 109 poise at the surface, and at time t3 the viscosity of the molded article was about 107 poise inside and about 1Q10 poise at the surface. Ta.

時刻t4において、第2次成形用型装置の下型部材15
に対し上型部材13を合せて、時刻t5まで第2次成形
を行なった。この過程で、上型部材13、下型部材15
及び成形品の温度はそれぞれ図示される様に515℃(
ガラス粘度的109・4ポアズに相当する温度)に向か
って収束せしめられ、第2次成形終了の時刻t5におい
てばらつきが20℃以内となる様にコントロールされた
At time t4, the lower mold member 15 of the secondary molding mold device
Then, the upper mold member 13 was added and secondary molding was performed until time t5. In this process, the upper mold member 13, the lower mold member 15
and the temperature of the molded product is 515°C (as shown in the figure).
The temperature was converged toward a temperature corresponding to 109.4 poise in terms of glass viscosity), and the variation was controlled to be within 20° C. at time t5 at the end of the second molding.

第2次成形は約15秒間かけて行なわれ、この間プレス
圧力は最大80Kg/cm2まで徐々に高められた。こ
の第2次成形により厚さ方向の596の押し代のプレス
がなされ、表面粗さが減少せしめられ且つヒケが解消さ
れ、第2図に示される様な形状の第2次成形品8が得ら
れた。
The secondary forming was carried out for about 15 seconds, during which time the press pressure was gradually increased to a maximum of 80 kg/cm2. Through this secondary forming, a pressing distance of 596 in the thickness direction is performed, the surface roughness is reduced and sink marks are eliminated, and a secondary molded product 8 having a shape as shown in FIG. 2 is obtained. It was done.

次に、該第2次成形品を第2次成形用型装置内に収容し
たままで、時刻t5からt6まで第1次冷却を行なった
。この冷却は時刻t6において上型部材13、下型部材
15及び第2次成形品8の温度差が5℃以内となる様に
10’07m1nの速度でガラス転移点温度まで行なわ
れた。
Next, primary cooling was performed from time t5 to t6 while the secondary molded product remained housed in the mold device for secondary molding. This cooling was carried out at a speed of 10'07 m1n to the glass transition temperature so that the temperature difference between the upper mold member 13, the lower mold member 15, and the secondary molded product 8 was within 5° C. at time t6.

次に、同様に第2次成形品8を第2次成形用型装置内に
収容したままで、時刻t6からt7まで第2次冷却を行
なった。この冷却は上型部材13、下型部材15及び第
2次成形品8の温度差が次第に小さくなる様に5℃/ 
m i nの速度で除歪下限点温度まで行なわれた。
Next, secondary cooling was performed from time t6 to t7 while the secondary molded product 8 was similarly housed in the secondary molding mold device. This cooling is performed at a rate of 5°C/5°C so that the temperature difference between the upper mold member 13, the lower mold member 15, and the secondary molded product 8 gradually decreases.
The strain removal was carried out at a speed of min up to the lower limit temperature.

第2次冷却が終了した後、第2次成形用型装置から成形
品を取出し室温まで自然放冷した。
After the secondary cooling was completed, the molded product was taken out from the secondary molding mold device and allowed to cool naturally to room temperature.

かくして得られたレンズの外形寸法精度を測定したとこ
ろ第2図に示す公差内であり、更に該レンズの光学的a
部面の表面粗さはRmaxo、024m以下であり、鏡
面のアス及びクセはいずれもニュートンリング0.5本
以内であった。
When the external dimensional accuracy of the thus obtained lens was measured, it was within the tolerance shown in FIG.
The surface roughness of the part was Rmaxo, 024 m or less, and the asperities and irregularities of the mirror surface were all within 0.5 Newton's ring.

更に、このレンズを所望の屈折率n (d) =1.5
9551とするためのファインアニールを行なった後に
、同様に光学的機能面の表面精度測定を行なったところ
、表面粗さ、アス及びクセは」皿上と変化なく、更に曲
率のズレはニュートンリングで2本以内であった。更に
、成形及び冷却の工程中で生じた成形品の表面変化層の
厚さは400八であり、そのままでカメラ用レンズとし
て十分良好に使用できるものであった。
Furthermore, this lens has a desired refractive index n (d) = 1.5
After performing fine annealing to obtain 9551, we similarly measured the surface accuracy of the optical functional surface, and found that the surface roughness, asperity, and texture were the same as on the plate, and that the deviation in curvature was similar to that of Newton's ring. It was less than two. Furthermore, the thickness of the surface change layer of the molded product produced during the molding and cooling process was 400 mm, and it could be used satisfactorily as a camera lens as it is.

尚、第7図に示される様に、第2成形用型装置の型部材
を時刻t8からt9までヒータにより440℃まで加熱
し、該時刻t9から直ちに次サイクルのプレス成形を開
始することができる。
As shown in FIG. 7, the mold member of the second molding mold device is heated to 440° C. from time t8 to t9, and the next cycle of press molding can be started immediately from time t9. .

例  2 : 」皿上例1と同様のガラス材料(F8)及び同様の装置
を用いて、外径が25mm、中心厚が11mm±0.0
5mm、光学的機部面の曲率半径が第1面20mm、第
2面40 m mの両凸レンズのプレス成形を行なった
Example 2: Using the same glass material (F8) and the same equipment as in Example 1, a plate with an outer diameter of 25 mm and a center thickness of 11 mm ± 0.0
A biconvex lens having a radius of curvature of 20 mm on the first surface and 40 mm on the second surface was press-molded.

尚、第2成形用型装置の型部材の光学的機能面成形作用
面の表面粗さはRmaxlOgmとされ、第2次成形用
型装置の型部材の光学的機能面成形作用面の表面粗さは
Rmaxo 、01 gmとされた。
In addition, the surface roughness of the optically functional surface of the mold member of the second mold device is RmaxlOgm, and the surface roughness of the optically functional surface of the mold member of the second mold device is RmaxlOgm. was taken as Rmaxo, 01 gm.

先ず、上記例1と同様にしてルツボ内でガラス化処理、
脱泡処理及び均質化処理を行なった。
First, vitrification treatment was performed in the crucible in the same manner as in Example 1 above,
Defoaming treatment and homogenization treatment were performed.

第1次成形では、中心厚が目的形状よりも約2%大きい
11.22mmとされた。
In the first molding, the center thickness was set to 11.22 mm, which is about 2% larger than the target shape.

第1次成形では、出初(時刻O)、第1次成形用型装置
のL型部材12及び下型部材14はガラス材料のガラス
転移点温度(445℃)より95℃低い350℃に調整
された。
In the primary molding, at the beginning (time O), the L-shaped member 12 and the lower mold member 14 of the primary molding mold device are adjusted to 350°C, which is 95°C lower than the glass transition point temperature (445°C) of the glass material. Ta.

第1次成形の際に型装置に供給されるガラスの温度は8
80℃とされた。この温度で該ガラスの粘度は約I Q
 4.1ポアズである。
The temperature of the glass supplied to the molding device during primary molding is 8.
The temperature was set at 80°C. At this temperature the viscosity of the glass is approximately IQ
It is 4.1 poise.

第1次成形は約5秒間かけて行なわれ、この間プレス圧
力は最大20Kg/cm2まで徐々に高められた。
The primary forming was carried out for about 5 seconds, during which time the press pressure was gradually increased to a maximum of 20 kg/cm2.

かくして得られた第1次成形品の表面粗さはRmax5
uLm程度であったが、該表面の凹部及び凸部のピーク
は:jTJ1次成形用型装この型袋材の表面に比べて丸
みをもっており、またヒケによる表面のうねりはごくわ
ずかであった。
The surface roughness of the primary molded product thus obtained was Rmax5.
The peaks of the concave and convex portions on the surface were rounder than the surface of the mold bag material for the TJ primary molding, and there was very little waviness on the surface due to sink marks.

一方、第2次成形用型装置の上型部材13及び下型部材
15は、第2次成形開始時刻までにガラス材料のガラス
転移点温度より45℃低い390℃に調整された。
On the other hand, the upper mold member 13 and lower mold member 15 of the secondary molding mold device were adjusted to a temperature of 390° C., which is 45° C. lower than the glass transition point temperature of the glass material, by the time of starting the secondary molding.

上記第1次成形用型装置から第1次成形品を取出し、温
度が低下しない様に保温しながら窒素雰囲気中に移行さ
せた。そして、以後の工程は全て京素雰囲気下で行なわ
れた。
The primary molded product was taken out of the primary molding device and transferred to a nitrogen atmosphere while being kept warm so as not to drop in temperature. All subsequent steps were performed in a kyosine atmosphere.

上記第2次成形用型装置に第1次成形品を収容する際の
該第1次成形品の粘度は内部で約108ポアズでありで
表面部で約108ポアズであった。
The viscosity of the primary molded product when it was placed in the secondary mold device was about 108 poise inside and about 108 poise at the surface.

第2次成形においては、上型部材13、f型部材15及
び成形品8の温度はそれぞれ510℃(ガラス粘度的1
09・5ポアズに相当する温度)に向かって収束せしめ
られ、第2次成形終了の時刻においてばらつきが20℃
以内となる様にコントロールされた。
In the second molding, the temperature of the upper mold member 13, the f-type member 15, and the molded product 8 is 510°C (100°C in terms of glass viscosity).
09.5 poise), with a variation of 20°C at the end of the second molding.
It was controlled to be within the range.

第2次成形は約18秒間かけて行なわれ、この間プレス
圧力は最大80Kg/cm2まで徐々に高められた。こ
の第2次成形により厚さ方向の2%の押し代のプレスが
なされ、目的形状の第2次成形品が得られた。
The secondary molding was carried out for about 18 seconds, during which time the press pressure was gradually increased to a maximum of 80 kg/cm2. Through this secondary molding, pressing was performed with a pressing amount of 2% in the thickness direction, and a secondary molded product having the desired shape was obtained.

第1次冷却は、その終了時点で型部材及び成形品の温度
差が2℃以内に収束する様に10℃/minの速度で行
なわれた。
The first cooling was carried out at a rate of 10° C./min so that the temperature difference between the mold member and the molded product converged to within 2° C. at the end of the first cooling.

第2次冷却は、更に型部材及び成形品の温度差が小さく
なる様に5℃/ m i nの速度で行なわれた。
The secondary cooling was performed at a rate of 5° C./min so as to further reduce the temperature difference between the mold member and the molded product.

第2次冷却が終了した後、第2次成形用型装置から成形
品を取出し室温まで自然放冷し、更にこのレンズを所望
の屈折率とするためのファインアニールを行なった。
After the secondary cooling was completed, the molded product was removed from the secondary molding mold device and allowed to cool naturally to room temperature, and further fine annealing was performed to give the lens a desired refractive index.

かくして得られたレンズの光学的機能面の表面粗さはR
maxo、02gm以下であり、曲率のズレはニュート
ンリング2本以内であり、鏡面のアス及びクセはいずれ
もニュートンリング0.5本以内であった。
The surface roughness of the optically functional surface of the lens thus obtained is R
maxo was 02 gm or less, the deviation in curvature was within 2 Newton rings, and the asperity and curl of the mirror surface were both within 0.5 Newton rings.

例  3 : 上記例1と同一の形状のレンズを、屈折率n(d)が1
.77250でアラへ数υ(d)が49.6のランタン
系光学ガラスLa5F016を用いてプレス成形した。
Example 3: A lens with the same shape as in Example 1 above has a refractive index n(d) of 1.
.. Press molding was carried out using lanthanum-based optical glass La5F016, which had a 77,250 mm diameter and a roughness number υ(d) of 49.6.

尚、第1次成形用型装置及び第2次成形用型装置4とし
ては上記例1と同様のものを用いた。更に、第1次成形
は窒素雰囲気中で行ないLつ第2次成形は真空中で行な
った。
Incidentally, as the primary molding mold device and the secondary molding mold device 4, the same ones as in Example 1 were used. Further, the first molding was performed in a nitrogen atmosphere, and the second molding was performed in a vacuum.

先ず、上記例1と同様にしてルツボ内でガラス化処理、
脱泡処理及び均質化処理を行なった。
First, vitrification treatment was performed in the crucible in the same manner as in Example 1 above,
Defoaming treatment and homogenization treatment were performed.

第1次成形では、当初(時刻O)、第1次成形用型装置
の上型部材12及び下型部材14はガラス材料のガラス
転移点温度(700’C)より100°C低い600”
Ciに調整された。
In the primary molding, initially (time O), the upper mold member 12 and lower mold member 14 of the primary molding mold device are heated to 600° C., which is 100°C lower than the glass transition point temperature (700'C) of the glass material.
It was adjusted to Ci.

第1次成形の際に型装置に供給されるガラスの温度は9
00℃とされた。この温度で該ガラスの粘度は約102
・9ポアズである。尚、ガラス流出部から第1次成形用
型装置へのガラスブロックの供給は大気と窒素雰囲気と
を遮断するためのフレームカーテンを介して行なわれた
The temperature of the glass supplied to the molding device during primary molding is 9
It was assumed to be 00℃. At this temperature the viscosity of the glass is about 102
・It is 9 poise. The glass blocks were supplied from the glass outlet to the primary molding device through a frame curtain to block the atmosphere and nitrogen atmosphere.

第1次成形は約5秒間かけて行なわれ、この間プレス圧
力は最大20Kg/cm2まで徐々に高められた。
The primary forming was carried out for about 5 seconds, during which time the press pressure was gradually increased to a maximum of 20 kg/cm2.

一方、第2次成形用型装置のL5部材13及び下型部材
15は、第2次成形開始時刻までにガラス材料のガラス
転移点温度より25℃低い675℃に調整された。
On the other hand, the L5 member 13 and the lower mold member 15 of the second mold device were adjusted to 675° C., which is 25° C. lower than the glass transition point temperature of the glass material, by the time the second molding started.

一上上第1次成形用型装置から第1次成形品を取出し、
温度が低下しない様に保温しながら第2次成形用型装置
へ供給した。
Take out the primary molded product from the upper primary molding mold device,
The mixture was supplied to a mold device for secondary molding while being kept warm so as not to drop in temperature.

上記第2次成形用型装置に第1次成形品を収容する際の
該第1次成形品の粘度は内部で約109ポアズでありで
表面部で約1011ポアズであった。
The viscosity of the primary molded product when it was placed in the secondary mold device was about 109 poise inside and about 1011 poise at the surface.

第2次成形においては、上型部材13、下型部材15及
び成形品の温度はそれぞれ720℃(ガラス粘度的IQ
IO・Oポアズに相当する温度)に向かって収束せしめ
られ、第2次成形終了の時刻においてばらつきが10℃
以内となる様にコントロールされた。
In the second molding, the temperature of the upper mold member 13, lower mold member 15, and molded product is 720°C (glass viscosity IQ
temperature corresponding to IO・O poise), with a variation of 10°C at the end of the second molding.
It was controlled to be within the range.

第2次成形は約15秒間かけて行なわれ、この間プレス
圧力は最大120Kg/cm2まで徐々に高められた。
The secondary molding was carried out for about 15 seconds, during which time the press pressure was gradually increased to a maximum of 120 kg/cm2.

この第2次成形により厚さ方向の5%の押し代のプレス
がなされ、目的形状の第2次成形品が得られた。
Through this secondary molding, pressing was performed with a pressing amount of 5% in the thickness direction, and a secondary molded product having the desired shape was obtained.

第1次冷却は、その終了時点で型部材及び成形品の温度
差が2℃以内に収束する様にガラス転移点温度まで5℃
/ m i nの速度で行なわれた。
The first cooling is carried out by 5℃ to the glass transition point temperature so that the temperature difference between the mold member and the molded product converges within 2℃ at the end of the first cooling.
/ min.

第2次冷却は、更に型部材及び成形品の温度差が小さく
なる様に除歪下限点温度(685℃)まで3℃/ m 
i nの速度で行なわれた。
The secondary cooling is carried out at 3℃/m until the strain relief lower limit temperature (685℃) so that the temperature difference between the mold member and the molded product is further reduced.
It was done at a speed of i n.

第2次冷却が終Yした後、第2次成形用型装置から成形
品を取出し室温まで自然放冷し、更にこのレンズを所望
の屈折率とするためのファインアニールを行なった。
After the secondary cooling was completed, the molded product was removed from the secondary molding mold device and allowed to cool naturally to room temperature, and further fine annealing was performed to give the lens a desired refractive index.

かくして得られたレンズの光学的機It面の表面粗さは
Rmaxo、02μm以下であり、曲率のズレはニュー
トンリング2本以内であり、鏡面のアス及びクセはいず
れもニュートンリング0.5木以内であった。
The surface roughness of the optical mechanical surface of the thus obtained lens is Rmaxo, 02 μm or less, the deviation in curvature is within 2 Newton rings, and the asperities and irregularities of the mirror surface are both within 0.5 Newton rings. Met.

例  4 : 第8図に示される様な形状を有する光学素子(第1面の
曲率半径78mm、第2面の曲率半径60mmの両凸レ
ンズ)3をプレフォームを用いたプレス成形により製造
した。
Example 4: An optical element 3 having a shape as shown in FIG. 8 (biconvex lens with a first surface having a radius of curvature of 78 mm and a second surface having a radius of curvature of 60 mm) was manufactured by press molding using a preform.

成形用車装ごとしては第9図に示されるものを用いた。The vehicle equipment for molding shown in FIG. 9 was used.

第9図において、43は上型部材であり、その下面には
」二足光学素子3の第1面に対応した形状の成形作用面
43aが形成されている。
In FIG. 9, reference numeral 43 denotes an upper mold member, and a molding surface 43a having a shape corresponding to the first surface of the bipedal optical element 3 is formed on its lower surface.

45は下型部材であり、その上面には上記光学素子3の
第2面に対応した形状の成形作用面45aが形成されて
いる。これら型部材は超硬合金からなり、成形作用面4
3a、45aの表面粗さはRmaxo 、01 pm以
下である。尚、47は上記下型部材45と一体的に固定
されたぁ型部材であり、16.18は一上記第1図にお
けると同様の熱電対である。上記型部材43.45はそ
れぞれ不図示の駆動手段によりt下方向に移動せしめら
れる。
Reference numeral 45 denotes a lower mold member, on the upper surface of which a molding surface 45a having a shape corresponding to the second surface of the optical element 3 is formed. These mold members are made of cemented carbide, and the molding surface 4
The surface roughness of 3a and 45a is Rmaxo, 01 pm or less. Note that 47 is an A-shaped member integrally fixed with the lower mold member 45, and 16 and 18 are thermocouples similar to those in FIG. 1 above. The mold members 43 and 45 are each moved downward by driving means (not shown).

ガラス材料としては、屈折率n (d)が1.7725
0でアラへ数υ(d)が49.6のランタン系光学ガラ
スLa5FO16を用いた。
As a glass material, the refractive index n (d) is 1.7725.
A lanthanum-based optical glass La5FO16 having an average number υ(d) of 49.6 was used.

先ず、外径24 m m弱の丸棒状ガラス材料を切断し
、両方の切断面を研削及び研摩して、約4mm厚のプレ
フォームを得た。
First, a round rod-shaped glass material with an outer diameter of just under 24 mm was cut, and both cut surfaces were ground and polished to obtain a preform with a thickness of about 4 mm.

該プレフォームを上記型装置内に収容し、真空加熱炉に
入れ、上記型装置全体をプレフォームを含めて室温から
718℃(ガラス粘度1010,2ポアズに対応する温
度〕まで20分かけて加熱した。この時点で、上型部材
43及び下型部材45の温度は718℃±3℃の範囲に
維持された。
The preform was placed in the mold device, placed in a vacuum heating furnace, and the entire mold device, including the preform, was heated from room temperature to 718° C. (temperature corresponding to a glass viscosity of 1010, 2 poise) over 20 minutes. At this point, the temperatures of the upper mold member 43 and the lower mold member 45 were maintained within the range of 718°C±3°C.

次に、この温度で上型部材43と下型部材45との間に
100Kg/cm2の圧力をかけて3分間プレスし、成
形品を得た。
Next, at this temperature, a pressure of 100 kg/cm2 was applied between the upper mold member 43 and the lower mold member 45 for 3 minutes to obtain a molded product.

次に、プレス圧力を解除し、成形品を型装置内に収容し
たままで第1次冷却及び第2次冷却を連続して行なった
Next, the press pressure was released, and primary cooling and secondary cooling were performed continuously while the molded product was kept in the mold device.

第1次冷却は、その終了時点で型部材及び成形品の温度
差が2℃以内に収束する様にガラス転移点温度(700
℃)まで5℃/ m i nの速度で行なわれた。
The first cooling is carried out at a glass transition point temperature (700℃) so that the temperature difference between the mold member and the molded product converges within 2℃ at the end of the
°C) at a rate of 5 °C/min.

第2次冷却は、更に型部材及び成形品の温度差が小さく
なる様に除歪下限点温度(685℃)まで3℃/ m 
i nの速度で行なわれた。
The secondary cooling is carried out at 3℃/m until the strain removal lower limit temperature (685℃) so that the temperature difference between the mold member and the molded product is further reduced.
It was done at a speed of i n.

続いて、30〜b で急冷し、型装置から成形品を取出し、更にこのレンズ
を所望の屈折率とするためのファインアニールを行なっ
た。
Subsequently, the lens was rapidly cooled at 30°C to 30°C, the molded product was removed from the molding device, and further fine annealing was performed to give the lens a desired refractive index.

かくして得られたレンズの光学的機能面の表面粗さはR
maxo 、02uLm以下であり、曲率のズレはニュ
ートンリング2木以内であり、鏡面のアス及びクセはい
ずれもニュートンリング0.5本以内であった。
The surface roughness of the optically functional surface of the lens thus obtained is R
maxo was 02 uLm or less, the deviation in curvature was within 2 Newton rings, and the asperities and curls of the mirror surface were both within 0.5 Newton rings.

他方、比較のために、本例における上記第1次冷却及び
第2次冷却を行なわずに直ちに718℃から室温まで急
冷して得たレンズ(比較例1)と、本例における上記第
2次冷却を行なわずに700℃から室温まで急冷して得
たレンズ(比較例2)とについて、同様に測定したとこ
ろ、比較例1のものはファインアニール前に既にアス、
クセともにニュートンリング2本以上であり、比較例2
のものはファインアニール前はアス、クセともにニュー
トンリング0.5木以内であったがファインアニール後
にアス、クセともにニュートンリンク2本以上となり、
いづれも写真用レンズとして不十分な精度であった。
On the other hand, for comparison, a lens (Comparative Example 1) obtained by immediately rapidly cooling from 718° C. to room temperature without performing the above-mentioned primary cooling and secondary cooling in this example, and A similar measurement was made for a lens obtained by rapidly cooling from 700°C to room temperature without cooling (Comparative Example 2), and it was found that the lens of Comparative Example 1 had already developed asymmetry and aspendium before fine annealing.
Both habits have two or more Newton rings, and Comparative Example 2
Before fine annealing, both asperities and quirks were within 0.5 Newton rings, but after fine annealing, both asperities and quirks became 2 or more Newton links.
All of them had insufficient precision as photographic lenses.

[発明の効果] 以上の様な本発明によれば、カメラ用レンズに代表され
る高精度の光学素子をプレス成形により良好な効率にて
得ることができ、かくして得られた光学素子はファイン
アニールや真空蒸着等の処理に際しても精瓜低下がない
[Effects of the Invention] According to the present invention as described above, a high-precision optical element such as a camera lens can be obtained with good efficiency by press molding, and the optical element thus obtained can be fine-annealed. There is no deterioration in the quality of the melon even during treatments such as vacuum deposition and vacuum deposition.

また、本発明は、使用するガラスの種類に制約されるこ
となしに、成形温度の高いガラスであっても十分に適用
できる。
Further, the present invention is not limited to the type of glass used, and can be sufficiently applied to glass having a high molding temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第9図は成形用型装置の要部構成図である。 第2図及び第8図は光学素子の形状を示す図である。 第3図〜第6図は成形工程の説明図である。 第7図は成形における型部材及びガラスの温度の時間的
変化を示すグラフである。 4ニガラスブロツク、 6:第1次成形品。 、8:第2次成形品、 12.13,43:上型部材、 14.15,45:下型部材、 16.18:熱電対、 20.21,22,23,34,38:ヒータ、 24.26:コントローラ、 33ニルツボ、   36;流出部。 代理人  弁理士  山 下 穣 平 つ つ 〕 第5図 第6図
FIG. 1 and FIG. 9 are main part configuration diagrams of a molding device. FIG. 2 and FIG. 8 are diagrams showing the shape of the optical element. FIGS. 3 to 6 are explanatory diagrams of the molding process. FIG. 7 is a graph showing temporal changes in temperature of the mold member and glass during molding. 4 Nigarasu block, 6: Primary molded product. , 8: Secondary molded product, 12.13, 43: Upper mold member, 14.15, 45: Lower mold member, 16.18: Thermocouple, 20. 21, 22, 23, 34, 38: Heater, 24.26: Controller, 33 nil acupuncture point, 36; Outflow part. Agent: Patent Attorney Minoru Yamashita, Figure 5, Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)ガラス材料を成形用型装置を用いて成形して成形
品を得、該成形の終了時点で型装置の型部材と成形品と
の温度差を20℃以内に維持しておき、該成形品を上記
型装置内に収容したまま上記ガラス材料のガラス転移点
温度まで各型部材温度と成形品温度とが徐々に収束する
様に第1の冷却速度で第1次冷却を行ない、次いで成形
品を型装置内に収容したまま上記ガラス材料の除去歪下
限点温度まで上記各型部材温度と成形品温度とが徐々に
収束する様に上記第1の冷却速度より遅い第2の冷却速
度で第2次冷却を行ない、しかる後に型装置から成形品
を取出すことを特徴とする、光学素子の成形方法。
(1) A molded product is obtained by molding a glass material using a molding device, and at the end of the molding, the temperature difference between the mold member of the molding device and the molded product is maintained within 20°C. While the molded product is housed in the mold device, primary cooling is performed at a first cooling rate so that the temperature of each mold member and the temperature of the molded product gradually converge to the glass transition point temperature of the glass material, and then a second cooling rate that is slower than the first cooling rate so that the temperature of each mold member and the temperature of the molded product gradually converge to the lower limit removal strain temperature of the glass material while the molded product is housed in the mold device; 1. A method for molding an optical element, which comprises performing secondary cooling in a step and then removing the molded product from a mold device.
(2)溶融ガラス材料から、第1次成形用型部材を用い
て第1次成形を行ない、これに続き第2次成形用型部材
を用いて第2次成形を行なうことにより成形品を得る、
特許請求の範囲第1項の光学素子の成形方法。
(2) A molded product is obtained from the molten glass material by performing primary molding using a mold member for primary molding, and then performing secondary molding using a mold member for secondary molding. ,
A method for molding an optical element according to claim 1.
(3)予備成形品を用いて成形を行なうことにより成形
品を得る、特許請求の範囲第1項の光学素子の成形方法
(3) The method for molding an optical element according to claim 1, wherein a molded product is obtained by performing molding using a preformed product.
JP14402487A 1987-06-11 1987-06-11 Optical element molding method Expired - Fee Related JP2501585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14402487A JP2501585B2 (en) 1987-06-11 1987-06-11 Optical element molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14402487A JP2501585B2 (en) 1987-06-11 1987-06-11 Optical element molding method

Publications (2)

Publication Number Publication Date
JPS63310735A true JPS63310735A (en) 1988-12-19
JP2501585B2 JP2501585B2 (en) 1996-05-29

Family

ID=15352553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14402487A Expired - Fee Related JP2501585B2 (en) 1987-06-11 1987-06-11 Optical element molding method

Country Status (1)

Country Link
JP (1) JP2501585B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187530A (en) * 1990-11-20 1992-07-06 Canon Inc Production of optical part
US6823694B2 (en) * 2000-09-01 2004-11-30 Hoya Corporation Method of manufacturing glass optical elements
US20100107695A1 (en) * 2008-10-31 2010-05-06 Moriji Nozaki Process for producing a thin-plate form glass molded body, and process for producing a disc form magnetic recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187530A (en) * 1990-11-20 1992-07-06 Canon Inc Production of optical part
US6823694B2 (en) * 2000-09-01 2004-11-30 Hoya Corporation Method of manufacturing glass optical elements
US20100107695A1 (en) * 2008-10-31 2010-05-06 Moriji Nozaki Process for producing a thin-plate form glass molded body, and process for producing a disc form magnetic recording medium
US8181484B2 (en) * 2008-10-31 2012-05-22 Ohara Inc. Process for producing a thin-plate form glass molded body

Also Published As

Publication number Publication date
JP2501585B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
JPH01133948A (en) Manufacture of optical element
JP4951166B2 (en) Lens blank and lens manufacturing method
JPS63310735A (en) Method for forming optical element
JP4223967B2 (en) Manufacturing method of glass optical element
JPH0513096B2 (en)
JPH01164738A (en) Device for forming optical element
JP2000001321A (en) Method for forming glass gob as glass optical element or blank for producing the same
JP2002128535A (en) Forming method of glass gob for optical element
JPS63307130A (en) Production of optical element
JPH0372016B2 (en)
JPS6296328A (en) Method of molding optical glass element
JP2000233934A (en) Method for press-forming glass product and device therefor
JP2000302461A (en) Molding for glass element
JPH01145337A (en) Production of optical element
JP4426740B2 (en) Glass molded product manufacturing method, optical component manufacturing method, press molding apparatus
JPH1160251A (en) Formation of optical element
JPH10158019A (en) Formation of optical element, optical element, production of optical element forming material, formation of precision element and precision element
JPH0672725A (en) Method for molding optical glass
JPH01153539A (en) Molding device for optical element
JPH10152331A (en) Molding of optical element
JPS6148432A (en) Molding method of high-precision press lens
JPH0757697B2 (en) Glass lens molding method
JPS6360114A (en) Method for molding optical element
JPH0445459B2 (en)
JPH0741327A (en) Optical element forming method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees