JPH0776095B2 - Optical element manufacturing method - Google Patents

Optical element manufacturing method

Info

Publication number
JPH0776095B2
JPH0776095B2 JP62143048A JP14304887A JPH0776095B2 JP H0776095 B2 JPH0776095 B2 JP H0776095B2 JP 62143048 A JP62143048 A JP 62143048A JP 14304887 A JP14304887 A JP 14304887A JP H0776095 B2 JPH0776095 B2 JP H0776095B2
Authority
JP
Japan
Prior art keywords
optical element
temperature
molding
optical
functional surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62143048A
Other languages
Japanese (ja)
Other versions
JPS63307129A (en
Inventor
勇 執行
瑞和 余語
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62143048A priority Critical patent/JPH0776095B2/en
Publication of JPS63307129A publication Critical patent/JPS63307129A/en
Publication of JPH0776095B2 publication Critical patent/JPH0776095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/125Cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Surface Treatment Of Glass (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はレンズ、プリズム、ミラー及びフィルタ等の光
学素子を製造する方法に関し、特に研削及び研摩等の工
程を経ることなしに溶融ガラス材料からのプレス成形を
用いて表面精度及び耐久性の良好な光学的機能面を有す
る光学素子を低コストにて効率良く製造する方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing optical elements such as lenses, prisms, mirrors and filters, and in particular from a molten glass material without undergoing steps such as grinding and polishing. The present invention relates to a method for efficiently producing an optical element having an optical functional surface with good surface accuracy and durability at low cost using press molding.

[従来の技術] 一般に、レンズ、プリズム、ミラー及びフィルタ等の光
学素子は、ガラス素材を研削して外形を所望の形状とし
た後に、機能面即ち光が透過及び/または反射する面を
研摩して光学面とすることにより製造されている。
[Prior Art] Generally, in optical elements such as lenses, prisms, mirrors, and filters, after a glass material is ground to have a desired external shape, a functional surface, that is, a surface through which light is transmitted and / or reflected is polished. It is manufactured by making it an optical surface.

しかして、以上の様な光学素子の製造においては研削及
び研摩により所望の表面精度(即ち表面形状及び表面粗
さ等の精度)を得るためには、熟練した作業者が相当の
時間加工を行なうことが必要であった。また、機能面が
非球面である光学素子を製造する場合には、一層高度な
研削及び研摩の技術が要求され且つ加工時間も長くなら
ざるを得なかった。
In order to obtain desired surface accuracy (that is, accuracy of surface shape, surface roughness, etc.) by grinding and polishing in the production of the optical element as described above, a skilled worker performs processing for a considerable time. Was necessary. Further, in the case of manufacturing an optical element having an aspherical functional surface, more sophisticated grinding and polishing techniques are required and the processing time must be extended.

そこで、最近では、上記の様な伝統的な光学素子製造方
法に代って、所定の表面精度を有する成形用金属装置内
に光学素子材料を収容して加熱及び加圧することにより
プレス成形にて直ちに機能面を含む全体的形状を形成す
ることが行なわれる様になってきている。これによれ
ば、機能面が非球面である場合でさえも比較的簡単且つ
短時間で光学素子を製造することができる。
Therefore, recently, in place of the traditional optical element manufacturing method as described above, the optical element material is housed in a molding metal device having a predetermined surface accuracy and heated and pressed to perform press molding. Immediately, it is becoming common to form the overall shape including the functional surface. According to this, an optical element can be manufactured relatively easily and in a short time even when the functional surface is an aspherical surface.

プレス成形により光学的機能面を形成して光学素子を製
造する方法には、一旦光学ガラス素材を目的形状の近似
形状として予備成形品(プレフォーム)を得た上で該プ
レフォームを成形用型装置内に収容してプレスにより最
終的目的形状とする方式と、溶融光学ガラスを直ちに成
形用型装置内に収容してプレスし成形を行なう方式とが
ある。
In the method of manufacturing an optical element by forming an optically functional surface by press molding, an optical glass material is once made into an approximate shape of a target shape to obtain a preform (preform), and then the preform is molded into a molding die. There are a method in which the molten optical glass is housed in the apparatus and formed into a final target shape by pressing, and a method in which the molten optical glass is immediately housed in the molding die apparatus and pressed to perform molding.

プレフォームを用いる方式では、特公昭61−32263号公
報に記載されている様に、適宜の方法たとえば研削及び
研摩によりプレフォームを得、該プレフォーム及び最終
成形用型装置の型部材を別々にあるいは該プレフォーム
を型装置内に収容した状態で所定の温度まで加熱し、か
くして軟化したプレフォームを型装置により適宜の圧力
でプレスし、そして冷却させることが必要である。
In the method using a preform, as described in JP-B-61-32263, a preform is obtained by an appropriate method such as grinding and polishing, and the preform and the mold member of the final molding die device are separately provided. Alternatively, it is necessary to heat the preform in a mold apparatus to a predetermined temperature, press the softened preform with a mold apparatus at an appropriate pressure, and then cool the preform.

しかし、この方法ではプレフォームを得る際に従来の伝
統的方法と同様な工程を必要とするので、製造コストの
面では未だ十分に満足できるとはいえない。
However, this method requires the same steps as those in the conventional method when obtaining the preform, and therefore, it cannot be said that the manufacturing cost is still sufficiently satisfactory.

これに対し、溶融ガラスを直接型装置内に収容してプレ
ス成形する方式は、工程所要時間が短縮され、特に連続
的成形に好適である。
On the other hand, the method in which the molten glass is directly housed in the mold apparatus and press-molded reduces the time required for the process and is particularly suitable for continuous molding.

ところで、以上の様にしてプレス成形された光学素子に
は、一般に、光学的機能面の機能性の向上や耐久性向上
等の目的で該機能面に対し真空蒸着法等により反射防止
膜や反射増加膜をコートする表面処理を行なう場合が多
い。
By the way, in the optical element press-molded as described above, generally, for the purpose of improving the functionality or durability of the optical functional surface, an antireflection film or a reflective film is formed on the functional surface by a vacuum deposition method or the like. Often a surface treatment is applied to coat the incremental film.

従来は、この様な薄膜形成表面処理は、上記プレス成形
により得られた成形品を一旦室温近くまで冷却した後
に、該成形品を表面処理装置内へと搬入して、適宜の温
度まで加熱した上で行なわれている。
Conventionally, such a thin film forming surface treatment is carried out by once cooling the molded product obtained by the press molding to near room temperature, then carrying the molded product into a surface treatment apparatus and heating it to an appropriate temperature. Is done above.

しかして、以上の様な従来のコート処理済光学素子の製
造方法では、成形済光学素子を型装置から取出してから
実際に蒸着が行なわれるまでにかなり長い時間を要し、
このため空気中の炭酸ガスや水分が成形面に作用してヤ
ケを発生させることがあり、更に成形済光学素子の成形
面にゴミ等の異物が付着することが多いので蒸着工程の
前に洗浄工程が行なわれているが該洗浄工程でも洗浄液
にさらされるのでヤケ発生の頻度が高くなる。
However, in the conventional method for manufacturing a coated optical element as described above, it takes a considerably long time from the time when the molded optical element is taken out from the mold device until the actual vapor deposition is performed,
For this reason, carbon dioxide gas or water in the air may act on the molding surface to cause burns, and foreign matter such as dust often adheres to the molding surface of the molded optical element. Although the process is performed, since the cleaning process is also exposed to the cleaning liquid, the frequency of occurrence of burns increases.

この様に、従来の方法では蒸着以前の工程中で光学的機
能面にヤケが発生しやすいので、ガラス材料の種類によ
っては不良品発生率が高くなるという難点がある。更に
は、特徴的な光学的特性を有するにもかかわらず、上記
ヤケ発生が著るしいために実質上使用できないガラス種
もある。
As described above, the conventional method is liable to cause burns on the optically functional surface in the process before vapor deposition, and thus has a drawback that the defective product generation rate increases depending on the type of glass material. Further, there are some glass species that cannot be practically used because they have a remarkable burning effect even though they have characteristic optical characteristics.

また、上記従来法ではプレス成形品を一旦室温近くまで
冷却した後に再加熱して表面処理を行なうので、熱エネ
ルギーのロスが大きいという問題点もある。
Further, in the above-mentioned conventional method, since the press-formed product is once cooled to near room temperature and then re-heated for surface treatment, there is a problem that a large amount of heat energy is lost.

本発明は上記の実情に鑑みてなされたものであり、表面
処理された高精度の光学素子を良好な効率及び低消費エ
ネルギーにて安定して製造することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to stably manufacture a surface-treated high-precision optical element with good efficiency and low energy consumption.

[問題点を解決するための手段] 本発明によれば、以上の如き目的を達成するものとし
て、 溶融ガラス材料を成形用型装置を用いてプレス成形する
ことにより光学機能面を有する成形品を得、該成形品の
光学機能面に対し加熱下で成膜処理を行うことにより、
表面に薄膜の形成された光学機能面を有する光学素子を
製造する方法において、 プレス成形後に除歪下限点より高い温度にある前記成形
品を前記成膜処理のための前記除歪下限点より低い加熱
成膜処理温度まで冷却した後、直ちに該加熱成膜処理温
度にて前記加熱成膜処理を行うことにより、前記表面に
薄膜の形成された光学機能面を有する光学素子を得るこ
とを特徴とする、光学素子の製造方法、が提供される。
[Means for Solving the Problems] According to the present invention, a molded article having an optical functional surface is formed by press molding a molten glass material using a molding die apparatus in order to achieve the above objects. Obtained, by performing a film forming process on the optical functional surface of the molded product under heating,
In a method for producing an optical element having an optical functional surface on which a thin film is formed on the surface, the molded product at a temperature higher than the lower limit of strain removal after press molding is lower than the lower limit of strain removal for the film forming process. An optical element having an optical functional surface having a thin film formed on the surface is obtained by immediately performing the heating film forming process at the heating film forming process temperature after cooling to the heating film forming process temperature. A method for manufacturing an optical element is provided.

本発明において用いられる加熱成膜処理としては、加熱
下でのCVDもしくは真空蒸着やスパッタ等のPVDが例示さ
れる。
Examples of the heating film forming process used in the present invention include CVD under heating or PVD such as vacuum deposition and sputtering.

[実施例] 以下、図面を参照しながら本発明の具体的実施例を説明
する。
[Examples] Specific examples of the present invention will be described below with reference to the drawings.

第1図は本発明による光学素子製造方法の第1の実施例
を説明するためのガラス温度の時間変化を示すグラフで
ある。尚、第1図には従来方法の場合も比較のために示
されている。
FIG. 1 is a graph showing the time change of the glass temperature for explaining the first embodiment of the optical element manufacturing method according to the present invention. Incidentally, FIG. 1 also shows the case of the conventional method for comparison.

第2図は本実施例において製造される光学素子2を示す
図であり、該光学素子は第1面が曲率半径52mmで第2面
が曲率半径40mmの両凸レンズである。
FIG. 2 is a diagram showing an optical element 2 manufactured in this example, which is a biconvex lens having a first surface with a radius of curvature of 52 mm and a second surface with a radius of curvature of 40 mm.

尚、本実施例は低融点ガラスとして知られるPbO−B2O3
−ZnOを主成分とするガラスを用いた場合に関するもの
である。
Note that the present embodiment is PbO-B 2 O 3 is known as a low-melting glass
-This relates to the case where glass containing ZnO as a main component is used.

第3図及び第4図は本実施例における成形用型装置によ
るプレス成形の説明図である。
FIG. 3 and FIG. 4 are explanatory views of press molding by the molding die device in this embodiment.

これらの図において、成形用型装置は、上型部材12及び
下型部材14を有しており、該上型部材の下面には上記光
学素子2の第1面に対応した形状の成形作用面12aが形
成されており、上記下型部材14の上面には上記光学素子
2の第2面に対応した形状の成形作用面14aが形成され
ている。これら成形作用面12a,14aの表面粗さは目的と
する光学素子の光学的機能面の表面粗さと同程度または
それ以下とされ(鏡面仕上げ)、たとえばRmax0.01μm
以下とされている。
In these drawings, the molding die apparatus has an upper die member 12 and a lower die member 14, and a lower surface of the upper die member has a molding action surface having a shape corresponding to the first surface of the optical element 2. 12a is formed, and a molding action surface 14a having a shape corresponding to the second surface of the optical element 2 is formed on the upper surface of the lower mold member 14. The surface roughness of these molding action surfaces 12a, 14a is set to be equal to or less than the surface roughness of the optically functional surface of the target optical element (mirror finish), for example, Rmax 0.01 μm.
It is said that

上記上型部材12及び下型部材14はそれぞれれ不図示の駆
動源により上下方向に移動せしめられ、これにより型の
開閉が行なわれる。
The upper mold member 12 and the lower mold member 14 are respectively moved in the vertical direction by a driving source (not shown), whereby the mold is opened and closed.

尚、図示はしないが、型装置には適宜の加熱手段が付設
されており、該加熱手段により型部材及びガラス材料を
所望の温度にコントロールすることができる。
Although not shown, the mold device is provided with an appropriate heating means, and the mold member and the glass material can be controlled to a desired temperature by the heating means.

以上の型装置においては、上型部材12と下型部材14とを
閉じた時に、両型部材の成形作用面12a,14a間に形成さ
れるキャビティの形状が第2図で示される最終的レンズ
形状となる様な形状とされている。
In the above mold apparatus, when the upper mold member 12 and the lower mold member 14 are closed, the shape of the cavity formed between the molding action surfaces 12a and 14a of both mold members is the final lens shown in FIG. It is shaped like a shape.

上記第3図は溶融ガラスを型装置へ供給する工程を示す
ものである。
FIG. 3 shows the step of supplying the molten glass to the mold device.

第3図において、33はガラス溶融槽(ルツボ)であり、
該ツルボの周囲にはヒータ34が付設されている。ルツボ
32の下部には流出部36が接続されており、該流出部の周
囲にはヒータ38が付設されている。そして、上記流出部
36の下方には連続的に流出する溶融ガラスを適宜の長さ
に切断するためのカッター40が配置されている。
In FIG. 3, 33 is a glass melting tank (crucible),
A heater 34 is attached around the crucible. Crucible
An outflow portion 36 is connected to the lower portion of 32, and a heater 38 is attached around the outflow portion. And the outflow part
Below the 36, a cutter 40 for cutting the continuously flowing molten glass into an appropriate length is arranged.

ルツボ33内に所望の光学ガラスの原料を入れ、ヒータ34
を作用させて適宜の温度に加熱する。これにより、ルツ
ボ33内に溶融光学ガラスGが形成される。尚、この際に
必要に応じて適宜撹拌し且つ脱泡処理を行なうことによ
り、より均質性の高い光学ガラスが得られる。
Put the raw material of the desired optical glass in the crucible 33 and
To heat to an appropriate temperature. As a result, the fused optical glass G is formed in the crucible 33. At this time, an optical glass with higher homogeneity can be obtained by appropriately stirring and performing defoaming treatment as needed.

溶融ガラスは重力の作用により流出部36内を次第に流下
し、該流出部下端の流出口から押し出される。この際
に、該流出口の下方に上記型装置の下型部材14を配置し
ておく。
The molten glass gradually flows down in the outflow portion 36 due to the action of gravity, and is extruded from the outflow port at the lower end of the outflow portion. At this time, the lower mold member 14 of the mold device is arranged below the outlet.

上記溶融軟化したガラスが流出部36の流出口から押し出
され、その先端部が上記カッター40よりも下方の適宜の
高さに到達した時点で、該カッターを作用させ溶融ガラ
スの切断を行なう。かくして切断されたガラスブロック
4は時刻t1において上記下型部材14の成形作用面14a上
に落下する。
The melted and softened glass is extruded from the outlet of the outflow section 36, and when the tip reaches an appropriate height below the cutter 40, the cutter is operated to cut the molten glass. The glass block 4 thus cut falls on the molding surface 14a of the lower mold member 14 at time t 1 .

上記第4図はプレス時の状態を示す図である。FIG. 4 is a diagram showing a state during pressing.

第4図に示される様に、上記ガラスブロック4を載せた
下型部材14は上型部材12に対応する位置へと運ばれ、時
刻t2からt3まで温度370℃で下型部材14に対し上型部材1
2を押圧して型を閉じて成形を行ない、所望の最終形状
を有する成形品6を得る。
As shown in FIG. 4, the lower mold member 14 on which the glass block 4 is placed is moved to a position corresponding to the upper mold member 12, and is moved to the lower mold member 14 at a temperature of 370 ° C. from time t 2 to t 3. On the other hand, upper die member 1
Molding is performed by pressing 2 to close the mold to obtain a molded product 6 having a desired final shape.

以上の様な成形の後に、冷却を行なう。該冷却は型装置
の加熱手段による熱量コントロールにより達成される。
After the above-mentioned molding, cooling is performed. The cooling is achieved by controlling the amount of heat by the heating means of the mold device.

冷却は成形品6が除歪下限点温度(ガラスが粘度1014.5
ポアズを示す温度)300℃となるまで該成形品を型装置
内に収容した状態で時刻t3からt4まで比較的ゆっくりと
行ない、該温度より下の温度となった後に時刻t4からt5
まで比較的高い速度で冷却する。なぜなら、除歪下限点
温度以上であまり急激な冷却を行なうと内部歪が発生
し、該歪が除歪下限点温度以下では有効に除去されない
からである。除歪下限点温度以下では内部歪が発生する
ことは実質上ないので急激に冷却しても何等問題はな
い。
For cooling, the molded product 6 has a lower temperature limit of strain removal (glass has a viscosity of 10 14.5
(Temperature indicating Poise) 300 ° C. The molded product is accommodated in the mold device relatively slowly from time t 3 to t 4 , and after reaching a temperature lower than the temperature t 4 to t Five
To cool at a relatively high rate. This is because if the cooling is performed too rapidly above the lower limit temperature of the strain elimination, internal strain occurs, and the strain is not effectively removed below the lower limit temperature of the strain elimination point. Since internal strain does not substantially occur below the temperature of the lower limit point of the strain removal, there is no problem even if cooling is performed rapidly.

温度が200℃になる前に、上記型装置を開いて成形品6
を取出し、真空蒸着装置内へと搬入し、真空蒸着を開始
する。たとえば、第1図に示される様に、時刻t4から温
度250℃となるt5までの間に成形品を型装置から真空蒸
着装置内へと搬入し、時刻t5からt6までの間に双方の光
学的機能面にMgF2を真空蒸着する。
Before the temperature reaches 200 ℃, open the above mold equipment and mold 6
The product is taken out, carried into the vacuum vapor deposition apparatus, and vacuum vapor deposition is started. For example, as shown in Fig. 1, during the period from time t 4 to t 5 when the temperature reaches 250 ° C, the molded product is carried into the vacuum deposition device from the mold device, and from time t 5 to t 6. Then, vacuum-deposit MgF 2 on both optically functional surfaces.

しかる後に、上記真空蒸着装置からコート済光学素子を
取出し、室温まで冷却する。
After that, the coated optical element is taken out from the vacuum vapor deposition apparatus and cooled to room temperature.

この様な一連のプレス成形、冷却及び真空蒸着の工程を
連続的に効率良く行なうために上記プレス成形及び冷却
を真空中で行ない、同一の真空系中に真空蒸着装置を配
置するのが好ましい。但し、これら装置間にはゲートバ
ルブを設けておき、光学素子搬送時にのみ該バルブを開
く様にするのが好ましい。
In order to continuously and efficiently perform such a series of press molding, cooling and vacuum vapor deposition steps, it is preferable to perform the press molding and cooling in a vacuum and arrange the vacuum vapor deposition apparatus in the same vacuum system. However, it is preferable to provide a gate valve between these devices so that the valve is opened only when the optical element is transported.

一方、第1図において、点線はプレフォームを用いてプ
レス成形を行なう従来法によりプレス成形、室温までの
冷却、洗浄、真空蒸着装置内への搬入、加熱、真空蒸着
及び冷却の工程を行なって上記本発明実施例と同様の光
学素子を製造した例を示す。
On the other hand, in FIG. 1, the dotted line indicates the steps of press molding, cooling to room temperature, cleaning, loading into a vacuum evaporation apparatus, heating, vacuum evaporation and cooling by the conventional method of press molding using a preform. An example in which an optical element similar to that of the above-mentioned embodiment of the present invention is manufactured will be shown.

第1図から分る様に、従来例では時刻t5からの冷却工
程、洗浄工程及び蒸着前の再加熱工程の分(即ちP1から
P2までの分)だけ本発明実施例よりも余分に時間がかか
っており、またこの時間の消費熱エネルギー分だけ本発
明実施例の場合よりエネルギーロスが多い。従って、上
記本発明実施例によればかなりのコストダウンが可能で
ある。
As can be seen from FIG. 1, in the conventional example, the cooling process from time t 5 , the cleaning process, and the reheating process before vapor deposition (that is, from P 1
It takes more time than the embodiment of the present invention by the amount up to P 2 ) and the energy loss is larger than that of the embodiment of the present invention by the consumed heat energy of this time. Therefore, according to the embodiment of the present invention, the cost can be considerably reduced.

更に、本発明実施例によれば、成形後の冷却に引続きそ
れ程の時間をおかずに直ちに真空蒸着を行なうので、真
空蒸着の前に光学的機能面にゴミ等の異物が付着する様
なことが極めて少なく、従って本発明実施例では従来例
の様に洗浄工程を必要とせず、またこのため及び真空蒸
着までの時間が短かいことにより、洗浄液及び空気等に
接触してヤケが発生したりする様なことがない。
Further, according to the embodiment of the present invention, since the vacuum deposition is immediately performed immediately after the cooling after the molding after the cooling, the foreign matter such as dust may be attached to the optically functional surface before the vacuum deposition. Since it is extremely small, the embodiment of the present invention does not require a cleaning step as in the conventional example, and because of this and because the time until vacuum deposition is short, burns may occur due to contact with the cleaning liquid and air. There is no such thing.

上記本発明実施例で得られた光学素子を気温30℃、湿度
100%の雰囲気中に1月間保存しておいたところ、光学
的機能面にはクモリ等の光学的欠陥の発生は認められな
かった。
The optical element obtained in the embodiment of the present invention, the temperature of 30 ℃, humidity
When stored for one month in a 100% atmosphere, no optical defects such as spiders were observed on the optically functional surface.

これに対し、上記従来例の場合は洗浄工程後にヤケ発生
が認められ、真空蒸着後の光学的機能面には部分的欠陥
が認められた。
On the other hand, in the case of the above-mentioned conventional example, the occurrence of burns was recognized after the cleaning step, and a partial defect was recognized on the optically functional surface after vacuum deposition.

この様に、本発明実施例によれば、光学的耐久性が十分
でないために従来法では良好な光学素子を得ることので
きなかったガラスを用いて良好な光学素子を得ることが
できる。
As described above, according to the examples of the present invention, it is possible to obtain a good optical element by using glass which cannot obtain a good optical element by the conventional method due to insufficient optical durability.

第5図は本発明による光学素子製造方法の第2の実施例
を説明するためのガラス温度の時間変化を示すグラフで
ある。尚、第5図には従来方法の場合も比較のために示
されている。
FIG. 5 is a graph showing the time change of the glass temperature for explaining the second embodiment of the optical element manufacturing method according to the present invention. Incidentally, FIG. 5 also shows the case of the conventional method for comparison.

本実施例は、真空蒸着の後に屈折率微調整のためのファ
インアニールを行なう点のみが上記第1実施例と異な
る。
This embodiment differs from the first embodiment only in that fine annealing for fine adjustment of the refractive index is performed after vacuum evaporation.

本実施例では蒸着工程の後に、直ちにファインアニール
を行なう。該アニールは蒸着温度よりも高い温度で所望
の時間行なわれる(最高温度320℃) 一方、第5図において、点線は上記第1図の従来例に続
いて更に洗浄、加熱及びファインアニールの工程を行な
って上記本発明実施例と同様の光学素子を製造した例を
示す。
In this embodiment, fine annealing is performed immediately after the vapor deposition process. The annealing is performed at a temperature higher than the vapor deposition temperature for a desired time (maximum temperature 320 ° C.), while the dotted line in FIG. 5 indicates the steps of further cleaning, heating and fine annealing following the conventional example of FIG. An example in which an optical element similar to that of the above-described embodiment of the present invention is manufactured is shown.

第5図から分る様に、従来例では時刻t5からの冷却工
程、洗浄工程及び蒸着前の再加熱工程の分(即ちP1から
P2までの分)及び蒸着後の冷却工程、洗浄工程及び再加
熱工程の分(即ちP3からP4までの分)だけ本発明実施例
よりも余分に時間がかかっており、またこの時間の消費
熱エネルギー分だけ本発明実施例の場合よりエネルギー
ロスが多い。従って、上記本発明実施例によればかなり
のコストダウンが可能である。
As can be seen from FIG. 5, in the conventional example, the cooling process from time t 5 , the cleaning process, and the reheating process before vapor deposition (that is, from P 1
Cooling step after minute) and deposition of up to P 2, and takes extra time than minutes) by the present invention the embodiments of the minute (i.e. P 3 washing steps and re-heating step to P 4, and this time The energy loss is larger than that in the embodiment of the present invention by the consumed heat energy. Therefore, according to the embodiment of the present invention, the cost can be considerably reduced.

尚、第5図の本発明実施例ではファインアニールの前に
真空蒸着を行なったが、冷却過程で先ずファインアニー
ルを行ない次いで真空蒸着を行なうこともできる。これ
によれば、更に熱エネルギーロスが少なく一層のコスト
ダウンが可能である。
In the embodiment of the present invention shown in FIG. 5, vacuum evaporation was performed before fine annealing, but it is also possible to perform fine annealing first and then vacuum evaporation in the cooling process. According to this, the heat energy loss is further reduced, and the cost can be further reduced.

[発明の効果] 以上の様な本発明によれば、プレス成形後に除歪下限点
より高い温度にある成形品を成膜処理のための除歪下限
点より低い加熱成膜処理温度まで冷却した後、直ちに該
加熱成膜処理温度にて加熱成膜処理を行うので、製造工
程中でのヤケ発生や異物付着等の表面欠陥発生を十分に
防止することができ、これにより低化学的耐久性の故に
従来光学素子製造に適しなかったガラスを用いても光学
素子を製造することが可能であるとともに、良好な効率
及び低消費エネルギーにて安定して表面に薄膜の形成さ
れた光学機能面を有する光学素子を製造することができ
る。
[Effects of the Invention] According to the present invention as described above, a molded product having a temperature higher than the lower limit of strain elimination after press molding is cooled to a heating film forming treatment temperature lower than the lower limit of strain elimination for film forming treatment. Immediately thereafter, the heating film forming process is performed at the heating film forming temperature, so that it is possible to sufficiently prevent surface defects such as burning and adhesion of foreign matter during the manufacturing process, which results in low chemical durability. Therefore, it is possible to manufacture optical elements using glass, which was not suitable for conventional optical element manufacturing, and to provide an optical functional surface with a thin film formed on the surface with good efficiency and low energy consumption. An optical element having the same can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第5図は本発明による光学素子製造方法を説
明するためのガラス温度の時間変化を示すグラフであ
る。 第2図は光学素子を示す図である。 第3図及び第4図は本発明における成形用型装置による
プレス成形の説明図である。 4:ガラスブロック、6:成形品、 12:上型部材、14:下型部材、 33:ルツボ、36:流出部。
FIG. 1 and FIG. 5 are graphs showing the time change of glass temperature for explaining the method for manufacturing an optical element according to the present invention. FIG. 2 is a diagram showing an optical element. FIG. 3 and FIG. 4 are explanatory views of press molding by the molding die device according to the present invention. 4: Glass block, 6: Molded product, 12: Upper mold member, 14: Lower mold member, 33: Crucible, 36: Outflow part.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】溶融ガラス材料を成形用型装置を用いてプ
レス成形することにより光学機能面を有する成形品を
得、該成形品の光学機能面に対し加熱下で成膜処理を行
うことにより、表面に薄膜の形成された光学機能面を有
する光学素子を製造する方法において、 プレス成形後に除歪下限点より高い温度にある前記成形
品を前記成膜処理のための前記除歪下限点より低い加熱
成膜処理温度まで冷却した後、直ちに該加熱成膜処理温
度にて前記加熱成膜処理を行うことにより、前記表面に
薄膜の形成された光学機能面を有する光学素子を得るこ
とを特徴とする、光学素子の製造方法。
1. A molded product having an optical functional surface is obtained by press-molding a molten glass material using a molding die device, and a film-forming treatment is performed on the optical functional surface of the molded product under heating. In the method for producing an optical element having an optical functional surface on which a thin film is formed on the surface, the molded article at a temperature higher than the lower limit of strain removal after press molding is treated from the lower limit of strain removal for the film forming process. An optical element having an optical functional surface having a thin film formed on the surface is obtained by immediately performing the heating film forming process at the heating film forming process temperature after cooling to a low heating film forming process temperature. And a method for manufacturing an optical element.
JP62143048A 1987-06-10 1987-06-10 Optical element manufacturing method Expired - Fee Related JPH0776095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62143048A JPH0776095B2 (en) 1987-06-10 1987-06-10 Optical element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62143048A JPH0776095B2 (en) 1987-06-10 1987-06-10 Optical element manufacturing method

Publications (2)

Publication Number Publication Date
JPS63307129A JPS63307129A (en) 1988-12-14
JPH0776095B2 true JPH0776095B2 (en) 1995-08-16

Family

ID=15329695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62143048A Expired - Fee Related JPH0776095B2 (en) 1987-06-10 1987-06-10 Optical element manufacturing method

Country Status (1)

Country Link
JP (1) JPH0776095B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035702A (en) * 1989-06-01 1991-01-11 Canon Inc Cemented lens or the like and its manufacture
KR100688497B1 (en) 2004-06-28 2007-03-02 삼성전자주식회사 Image sensor and method of fabrication the same
JP2006013522A (en) * 2004-06-28 2006-01-12 Samsung Electronics Co Ltd Image sensor and method of manufacturing it

Also Published As

Publication number Publication date
JPS63307129A (en) 1988-12-14

Similar Documents

Publication Publication Date Title
KR860001491B1 (en) Process for molding glass shapes of high precision
RU2413678C2 (en) Method of producing moulded product, mould and method of its production
JP2620875B2 (en) Manufacturing method of glass molded products for precision optics
US4734118A (en) Process to mold precision glass articles
US5346523A (en) Method of molding chalcogenide glass lenses
JP2015206880A (en) Optical element, and manufacturing method of optical element
CN105008292A (en) Glass lens blank for polishing, manufacturing method therefor, and optical lens manufacturing method
US4391622A (en) Method for the precision/manufacture of glass articles
JPH0776095B2 (en) Optical element manufacturing method
JPH0353260B2 (en)
CN101250021A (en) Lens blank and lentiform production method
JP3801136B2 (en) Method for manufacturing glass optical element and method for determining glass composition of glass material
JP3274953B2 (en) Synthetic quartz glass material for optics, method for producing the same, and synthetic quartz glass product using the synthetic quartz glass material for optics
JPWO2008111475A1 (en) Method for manufacturing optical glass element
JPH0420854B2 (en)
JP2501585B2 (en) Optical element molding method
JP4846362B2 (en) Manufacturing method of glass optical element
JPS6296328A (en) Method of molding optical glass element
JPH0372016B2 (en)
JP2008110897A (en) Preform for precision press molding, and method of manufacturing optical element from the same
JPS6250413B2 (en)
JPS63307130A (en) Production of optical element
JP4256190B2 (en) Manufacturing method of glass optical element
JPS63222021A (en) Molding method of glass lens
JPH08169721A (en) Glass blank for forming optical element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees